1
|
Wang C, Li X, Ye T, Gu J, Zheng Z, Chen G, Dong J, Zhou W, Shi J, Zhang L. Polydatin, a derivative of resveratrol, ameliorates busulfan-induced oligozoospermia in mice by inhibiting NF-κB pathway activation and suppressing ferroptosis. Bioorg Chem 2025; 156:108170. [PMID: 39848165 DOI: 10.1016/j.bioorg.2025.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
Polydatin (PD), a glucoside derivative of resveratrol (RES), is extracted as a monomer compound from the dried rhizome of Polygonum cuspidatum. Our laboratory synthesized PD via the biotransformation of resveratrol. To assess the reproductive protective effects of PD, an oligozoospermia mouse model was induced by administering 30 mg/kg busulfan (BUS) via intraperitoneal injection. Initially, mice were categorized into groups based on PD concentrations of 10, 50, and 100 mg/kg. Subsequently, the optimal concentration of 10 mg/kg was ascertained based on testis weight and spermatological parameters. Additionally, a 10 mg/kg resveratrol group was included as a control. The findings revealed that exposure to BUS resulted in a reduction of testicular weight, diminished spermatogenic cells and epididymal sperm counts, increased sperm deformity, disordered testicular cytoskeleton, compromised blood-testis barrier integrity, and a significant decrease in serum sex hormone levels, notably testosterone. This resulted in decreased expression of androgen receptors and other testosterone-related proteins, increased levels of malondialdehyde and reactive oxygen species, and promoted testicular ferroptosis. However, PD could successfully reverse these injuries. High-throughput sequencing data demonstrated that polydatin significantly downregulated the expression of inflammatory and metabolic genes, including PRKCQ and CARD11. These proteins are pivotal in the activation of the NF-κB pathway during the inflammatory response. Molecular docking studies showed that PD could interact with PRKCQ and CARD11 to reduce the level of inflammation. Additionally, PD was shown to interact with the ferroptosis-promoting gene ACSL4, modulating ferroptosis. In summary, PD facilitates the reversal of BUS-induced oligozoospermia through the mitigation of oxidative stress and inflammation, the inhibition of ferroptosis, and the modulation of hormonal levels.
Collapse
Affiliation(s)
- Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaoran Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Taowen Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiale Gu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Zihan Zheng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Guangtong Chen
- Department of Natural Medicines, School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Jin Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Wenbiao Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China
| | - Lei Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu 226001, China; School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Latifi Z, Nikanfar S, Khodavirdilou R, Beirami SM, Khodavirdilou L, Fattahi A, Oghbaei F. MicroRNAs as diagnostic biomarkers in diabetes male infertility: a systematic review. Mol Biol Rep 2024; 52:90. [PMID: 39739064 DOI: 10.1007/s11033-024-10197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
This study conducts an in-depth review of the correlation between testis tissue changes and circulating microRNAs (miRNA) in diabetes-induced male reproductive complications, drawing upon both animal and clinical studies. The original articles published in English that specifically investigate miRNAs linked to male infertility in humans or animals with either type I or ΙΙ diabetes mellitus were included. The relevant articles were gathered from the PubMed, Google Scholar, Cochrane Library, and ScienceDirect databases. The quality of study was assessed utilizing the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Prevalence Studies. We collected an overall number of 1989 citations relating to our research subject. Following the elimination of articles based on the criteria, a total of 20 papers were included in the study. Aberrant expression profiles of 25 miRNAs were identified in diabetes associated with male reproductive issues, with 15 miRNAs exhibiting increased expression and 10 miRNAs showing decreased expression. Among the chosen publications, eighteen were identified as low-risk and two were classed as moderate quality. The dysregulated miRNAs were linked to testicular injury, disrupted steroid production, decreased sperm development and quality, and erectile dysfunction. The results demonstrate that the miRNA-mRNA network is linked to the pathological progression of diabetic testicular damage or erectile dysfunction. From a therapeutic perspective, the identification of circulating miRNAs could be beneficial in the timely identification and prevention of diabetes problems, such as diabetes-induced male infertility. Among all signaling pathways influenced by modified miRNAs, the Bax-caspase-3, MAPK, PI3K-Akt, and eNOS-cGMP-PKC were the main deregulated pathways.
Collapse
Affiliation(s)
- Zeinab Latifi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Rasa Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lida Khodavirdilou
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Amir Fattahi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farnaz Oghbaei
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
3
|
Zhang X, Yi R, Liu Y, Ma J, Xu J, Tian Q, Yan X, Wang S, Yang G. Resveratrol: potential application in safeguarding testicular health. EPMA J 2024; 15:643-657. [PMID: 39635023 PMCID: PMC11612077 DOI: 10.1007/s13167-024-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 12/07/2024]
Abstract
Factors such as increasing mental pressure and poor living habits in modern society have led to an increase in the incidence of male reproductive diseases, including poor semen quality, testicular malignancy, and congenital developmental defects. The decline of male fertility deserves our attention. Resveratrol (3,4', 5-trihydroxy-trans-Stilbene, 3,4',5-trihydroxy), a polyphenol widely found in plant foods, is expected to enhance testicular function and promote breakthroughs in the treatment of diseases related to the male reproductive system. A large number of studies have shown that in male animals, resveratrol can enhance testicular function and spermatogenesis by activating SIRT1 expression and resist the damage of the testicular system by adverse factors. This article reviews the basic protective pathways of resveratrol against testicular and sperm damage, which involve oxidative stress, cell apoptosis, inflammatory damage, and mitochondrial function. The healthcare framework of predictive, preventive, and personalized medicine (PPPM/3PM) is by far the most beneficial for healthcare and is suitable for the management of chronic diseases. This review also summarizes the health benefits of resveratrol on male reproduction in the context of PPPM/3PM by comprehensively collecting and reviewing the available evidence, thus leading to a working hypothesis that resveratrol can personalize prevention and protection of male reproductive function. It provides a new perspective and direction for future research on the health effects of resveratrol in improving male reproductive function.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Ruhan Yi
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Yun Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Jiaxuan Ma
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Jiawei Xu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Qing Tian
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Xinyu Yan
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Dalian, 116011 China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W, Lushun South Road, Dalian, 116044 China
| |
Collapse
|
4
|
El-Demerdash FM, Naoom AY, Ghanem NF, Abdel-Daim MM, Kang W. Kiwifruit (Actinidia deliciosa) aqueous extract improves hyperglycemia, testicular inflammation, apoptosis, and tissue structure induced by Streptozotocin via oxidative stress inhibition. Tissue Cell 2024; 88:102426. [PMID: 38833941 DOI: 10.1016/j.tice.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/04/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Diabetes mellitus (DM) is a well-known hyperglycemic metabolic condition identified by oxidative stress and biological function disruption. Kiwifruit is a valuable source of polyphenols and vitamin C with great antioxidant, nutritional, and health-promoting effects. Therefore, this study was initiated to explore the antioxidant and anti-hyperglycemic effects of kiwifruit aqueous extract (KFE) against oxidative injury and testis dysfunction in rats with diabetes. Twenty-four male Wistar Albino rats (160-170 g) were divided into four groups: Group 1 served as the control, Group 2 supplemented orally with kiwifruit extract (KFE; 1 g/kg/day) for one month, Group 3 was treated with a single streptozotocin dose (STZ; 50 mg/kg ip), and Group 4 where the diabetic rats were administered with KFE, respectively. According to the results, the GC-MS analysis of KFE revealed several main components with strong antioxidant properties. In diabetic rats, lipid peroxidation and hyperglycemia were accompanied by perturbations in hormone levels and sperm characteristics. Antioxidant enzymes, glutathione content, aminotransferase, phosphatase activities, and protein content were decreased. Furthermore, histology, immunohistochemical PCNA expression, and histochemical analysis of collagen, DNA, RNA, and total protein. were altered in rat testis sections, supporting the changes in biochemistry. Furthermore, diabetic rats supplemented with KFE manifested considerable amendment in all the tested parameters besides improved tissue structure and gene expressions (NF-kB, p53, IL-1β, Bax, IL-10, and Bcl2) relative to the diabetic group. In conclusion, KFE has beneficial effects as it can improve glucose levels and testis function, so it might be used as a complementary therapy in DM.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Ali Y Naoom
- Department of Medical Laboratory Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Nora F Ghanem
- Department of Zoology, Faculty of Science, Kafr ElSheikh University, Kafr ElSheikh, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Batterjee Medical College, Pharmacy Program, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
5
|
Hwang YY, Sudirman S, Wei EY, Kong ZL, Hwang DF. Fucoidan from Cladosiphon okamuranus enhances antioxidant activity and prevents reproductive dysfunction in polystyrene microplastic-induced male rats. Biomed Pharmacother 2024; 170:115912. [PMID: 38056235 DOI: 10.1016/j.biopha.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Plastic pollution, including microplastic, has emerged as a severe environmental and public health problem. The health risks, especially in the case of reproductive damage caused by polystyrene microplastic (PS-MP) exposure, are emerging problems that need to be solved. This study aimed to investigate the effects of fucoidan extracted from Cladosiphon okamuranus on the polystyrene microplastic-induced oxidative stress of the Leydig (LC540) cells and reproductive damage in male rats. The oxidative stress of the LC540 cells and reproductive damage in the rats were induced by PS-MP. The fucoidan treatment reduces nitric oxide (NO) and reactive oxygen species generation in the LC540 cells. In the animal study, fucoidan treatment enhanced enzymatic antioxidant activities (glutathione peroxidase, superoxide dismutase, glucose-6-phosphate dehydrogenase, and glutathione reductase) and reduced malondialdehyde and nitric oxide production. Fucoidan supplementation also downregulates tumor necrosis factor-alpha, interleukin-6, and caspase-3 expression. Additionally, fucoidan upregulates testosterone levels, prevents the reduction of epithelium thickness, and reduces the area of the seminiferous tubule lumen. According to these conditions, fucoidan from Cladosiphon okamuranus prevents reproductive damage by downregulating oxidative stress and pro-inflammatory cytokines. Therefore, fucoidan can be used as a source of food supplements or functional food ingredients for reproductive or testicular damage management.
Collapse
Affiliation(s)
- Yi-Yuh Hwang
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Sabri Sudirman
- Fisheries Product Technology, Faculty of Agriculture, Universitas Sriwijaya, Indralaya 30862, Indonesia
| | - En-Yu Wei
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Deng-Fwu Hwang
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| |
Collapse
|
6
|
Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int J Mol Sci 2022; 23:ijms23137292. [PMID: 35806303 PMCID: PMC9266317 DOI: 10.3390/ijms23137292] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Differential evolution of apoptosis, programmed necrosis, and autophagy, parthanatos is a form of cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1), which is caused by DNA damage. PARP1 hyper-activation stimulates apoptosis-inducing factor (AIF) nucleus translocation, and accelerates nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) depletion, leading to DNA fragmentation. The mechanisms of parthanatos mainly include DNA damage, PARP1 hyper-activation, PAR accumulation, NAD+ and ATP depletion, and AIF nucleus translocation. Now, it is reported that parthanatos widely exists in different diseases (tumors, retinal diseases, neurological diseases, diabetes, renal diseases, cardiovascular diseases, ischemia-reperfusion injury...). Excessive or defective parthanatos contributes to pathological cell damage; therefore, parthanatos is critical in the therapy and prevention of many diseases. In this work, the hallmarks and molecular mechanisms of parthanatos and its related disorders are summarized. The questions raised by the recent findings are also presented. Further understanding of parthanatos will provide a new treatment option for associated conditions.
Collapse
|
7
|
Alfarhan MW, Al-Hussaini H, Kilarkaje N. Role of PPAR-γ in diabetes-induced testicular dysfunction, oxidative DNA damage and repair in leptin receptor-deficient obese type 2 diabetic mice. Chem Biol Interact 2022; 361:109958. [PMID: 35472412 DOI: 10.1016/j.cbi.2022.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
The testis expresses peroxisome proliferator-activated receptor-γ (PPAR-γ), but its involvement in regulating diabetes-induced testicular dysfunction and DNA damage repair is not known. Pioglitazone-induced activation of PPAR-γ for 12 weeks in db/db obese diabetic mice increases bodyweights and reduces blood glucose levels, but PPAR-γ inhibition by 2-chloro-5-nitro-N-phenylbenzamide does not alter these parameters; instead, improves testis and epididymis weights and sperm count. Neither activation nor inhibition of PPAR-γ normalizes the diabetes-induced seminiferous epithelial degeneration. The PPAR-γ activation normalizes testicular lipid peroxidation, but its inhibition reduces lipid peroxidation and oxidative DNA damage (8-oxo-dG) in diabetic mice. As a response to diabetes-induced oxidative DNA damage, the base-excision repair (BER) mechanism proteins- 8-oxoguanine DNA glycosylases (OGG1/2) and X-ray repair cross-complementing protein-1 (XRCC1) increase, whereas the redox-factor-1 (REF1), DNA polymerase (pol) δ and poly (ADP-ribose) polymerase-1 (PARP1) show a tendency to increase suggesting an attempt to repair the oxidative DNA damage. The PPAR-γ stimulation inhibits OGG2, DNA pol δ, and XRCC1 in diabetic mice testes, but PPAR-γ inhibition reduces oxidative DNA damage and normalizes BER protein levels. In conclusion, type 2 diabetes negatively affects testicular structure and function and increases oxidative DNA damage and BER protein levels due to increased DNA damage. The PPAR-γ modulation does not significantly affect the structural changes in the testis. The PPAR-γ stimulation aggravates diabetes-induced effects on testis, including oxidative DNA damage and BER proteins, but PPAR-γ inhibition marginally recovers these diabetic effects indicating the involvement of the receptor in the reproductive effects of diabetes.
Collapse
Affiliation(s)
| | - Heba Al-Hussaini
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|
8
|
Diet and Male Fertility: The Impact of Nutrients and Antioxidants on Sperm Energetic Metabolism. Int J Mol Sci 2022; 23:ijms23052542. [PMID: 35269682 PMCID: PMC8910394 DOI: 10.3390/ijms23052542] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Diet might affect male reproductive potential, but the biochemical mechanisms involved in the modulation of sperm quality remain poorly understood. While a Western diet is considered a risk factor for male infertility, the Mediterranean diet seems to protect against male infertility; moreover, the role of a vegetarian habitus in the preservation of sperm quality is controversial. The aim of this review is to analyze the molecular effects of single nutrients on sperm quality, focusing on their involvement in biochemical mechanisms related to sperm bioenergetics. It appears that diets rich in saturated fatty acids (SFA) and low in polyunsaturated fatty acids (PUFA) negatively affect sperm quality, whereas unsaturated fatty acids supplementation ameliorates sperm quality. In fact, the administration of PUFA, especially omega-3 PUFA, determined an increase in mitochondrial energetic metabolism and a reduction in oxidative damage. Carbohydrates and proteins are also nutritional modulators of oxidative stress and testosterone levels, which are strictly linked to sperm mitochondrial function, a key element for sperm quality. Moreover, many dietary natural polyphenols differentially affect (positively or negatively) the mitochondrial function, depending on their concentration. We believe that an understanding of the biochemical mechanisms responsible for sperm quality will lead to more targeted and effective therapeutics for male infertility.
Collapse
|
9
|
Tvrdá E, Benko F, Slanina T, du Plessis SS. The Role of Selected Natural Biomolecules in Sperm Production and Functionality. Molecules 2021; 26:5196. [PMID: 34500629 PMCID: PMC8434568 DOI: 10.3390/molecules26175196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence from in vivo as well as in vitro studies indicates that natural biomolecules may play important roles in the prevention or management of a wide array of chronic diseases. Furthermore, the use of natural compounds in the treatment of male sub- or infertility has been proposed as a potential alternative to conventional therapeutic options. As such, we aimed to evaluate the effects of selected natural biomolecules on the sperm production, structural integrity, and functional activity. At the same time, we reviewed their possible beneficial or adverse effects on male reproductive health. Using relevant keywords, a literature search was performed to collect currently available information regarding molecular mechanisms by which selected natural biomolecules exhibit their biological effects in the context of male reproductive dysfunction. Evidence gathered from clinical trials, in vitro experiments and in vivo studies suggest that the selected natural compounds affect key targets related to sperm mitochondrial metabolism and motion behavior, oxidative stress, inflammation, DNA integrity and cell death. The majority of reports emphasize on ameliorative, stimulating and protective effects of natural biomolecules on the sperm function. Nevertheless, possible adverse and toxic behavior of natural compounds has been indicated as well, pointing out to a possible dose-dependent impact of natural biomolecules on the sperm survival and functionality. As such, further research leading to a deeper understanding of the beneficial or adverse roles of natural compounds is necessary before these can be employed for the management of male reproductive dysfunction.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Filip Benko
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Tomáš Slanina
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Stefan S. du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates;
| |
Collapse
|
10
|
Al-Hussaini H, Kittaneh RS, Kilarkaje N. Effects of trans-resveratrol on type 1 diabetes-induced up-regulation of apoptosis and mitogen-activated protein kinase signaling in retinal pigment epithelium of Dark Agouti rats. Eur J Pharmacol 2021; 904:174167. [PMID: 33974882 DOI: 10.1016/j.ejphar.2021.174167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/29/2022]
Abstract
Microvascular changes and retinal degeneration precede diabetic retinopathy. Oxidative stress alters several intracellular signaling pathways, which form the basis of diabetic retinopathy. Many antioxidants have been investigated as possible preventive and therapeutic remedies for diabetic retinopathy. The current study investigated the modulatory effects of trans-resveratrol on streptozotocin-induced type 1 diabetes mediated changes in the transcription and levels of apoptosis-related proteins and mitogen-activated protein kinases (MAPKs) in the retinal pigment epithelium (RPE) of adult male dark Agouti rats. In control rats, 5 mg/kg/d trans-resveratrol administration for 30 days increased gene expressions of tumor suppressor protein 53, Bcl2-associated X protein, B-cell lymphoma-2 (Bcl2), Caspase-3 (CASP3), CASP8 and CASP9, p38αMAPK, c-Jun N-terminal kinase-1 (JNK1), and extracellular signal-regulated kinase-1 (ERK1). On the other hand, diabetes decreased gene expressions of CASP3, CASP8, p38αMAPK, JNK, and ERK1. Trans-resveratrol reversed the inhibited gene expressions of CASP8, p38αMAPK, JNK, and ERK1 to normal control levels in diabetic rats. Trans-resveratrol normalized diabetes-induced upregulation of CASP3 and -9, cytochrome-c, Bcl-2, and ERK1 proteins. In conclusion, Trans-resveratrol-induced alterations in gene expressions do not seem to affect RPE functions as they do not reflect as altered protein functions. Trans-resveratrol imparts its protective effects by normalizing apoptosis-related proteins and ERK1 but does not affect JNK proteins. Trans-resveratrol causes cytostasis in RPE of normal rats by upregulating Bcl2 protein and apoptotic proteins.
Collapse
Affiliation(s)
- Heba Al-Hussaini
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait.
| | | | | |
Collapse
|
11
|
Sudirman S, Su CY, Tsou D, Lee MC, Kong ZL. Hippocampus kuda protein hydrolysate improves male reproductive dysfunction in diabetic rats. Biomed Pharmacother 2021; 140:111760. [PMID: 34052566 DOI: 10.1016/j.biopha.2021.111760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
The global prevalence of diabetes mellitus is rapidly increasing. This disease is associated with many complications including male reproductive dysfunctions and infertility. Seahorse ( Hippocampus kuda) is a marine teleost fish well known for its beneficial effects on the reproductive system in traditional Chinese medicine books. Recently, several studies have been shown that the enzymatic hydrolysate of seahorse has multiple pharmacological activities. This study aimed to investigate the seahorse peptide hydrolysate (SH) ameliorative effects on the diabetic-induced male reproductive dysfunction in rat models. The in vivo studies were carried out with three different doses of SH (4, 8, and 20 mg/kg) and the diabetes condition was induced by administrating with streptozotocin (35 mg/kg) and fed a 40% high-fat diet. Seahorse hydrolysate (20 mg/kg) inhibited lipid peroxidation, increased antioxidant enzyme activity, and restored seminiferous tubules morphology in testis. Moreover, it improved reproductive dysfunction by increasing the level of testosterone, follicle-stimulating hormone, luteinizing hormone, sperm count, and motility. According to these results, we suggested that SH exhibited amelioration effects on the reproductive dysfunction.
Collapse
Affiliation(s)
- Sabri Sudirman
- Fisheries Product Technology, Faculty of Agriculture, Universitas Sriwijaya, Indralaya 30862, Indonesia.
| | - Chieh-Yu Su
- Department of Food Science; National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - David Tsou
- Department of Food Science; National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Zwe-Ling Kong
- Department of Food Science; National Taiwan Ocean University, Keelung City 20224, Taiwan.
| |
Collapse
|
12
|
Kilarkaje N, Al-Qaryyan M, Al-Bader MD. Trans-resveratrol imparts disparate effects on transcription of DNA damage sensing/repair pathway genes in euglycemic and hyperglycemic rat testis. Toxicol Appl Pharmacol 2021; 418:115510. [PMID: 33775663 DOI: 10.1016/j.taap.2021.115510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Prevention or repair of DNA damage is critical to inhibit carcinogenesis in living organisms. Using quantitative RT2 Profiler™ PCR array, we investigated if trans-resveratrol could modulate the transcription of DNA damage sensing/repair pathway genes in euglycemic and non-obese type 2 diabetic Goto-Kakizaki rat testis. Trans-resveratrol imparted disparate effects on gene expressions. In euglycemic rats, it downregulated 79% and upregulated 2% of genes. However, in diabetic rats, it upregulated only 2% and downregulated 4% of genes. As such, diabetes upregulated 16% and downregulated 4% of genes. Trans-resveratrol normalized the expression of 9 (60%) out of 15 upregulated genes in diabetic rats. In euglycemic rats, trans-resveratrol inhibited ATM/ATR, DNA damage repair, pro-cell cycle progression, and apoptosis signaling genes. However, it increased Cdkn1a and Sumo1, indicating cell cycle arrest, apoptosis, and cytostasis in conjunction with increased DNA double-strand breaks and apoptosis. Diabetes increased DNA damage and apoptosis but did not affect ATM/ATR and double-strand break repair genes, although it increased few single-strand repair genes. Diabetes increased Abl1 and Sirt1, which may be related to apoptosis, but their increase may well suggest the enhanced cell cycle progression and putative carcinogenicity. The transcription of Rad17 and Smc1a increased in diabetic rats indicating G2 phase arrest and increases in a few DNA single-strand breaks repair genes suggesting DNA damage repair. Trans-resveratrol inhibits the cell cycle and causes cell death in euglycemic rat testis but normalizes diabetes-induced genes related to DNA damage and cell cycle control, suggesting its usefulness in maintaining DNA integrity in diabetes.
Collapse
Affiliation(s)
| | - Mariam Al-Qaryyan
- Department of Physiology Faculty of Medicine, Kuwait University, Kuwait
| | - Maie D Al-Bader
- Department of Physiology Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
13
|
Li S, Li Y, Chen F, Yang Y, Song L, Liu C, Wang B, Xu Y, Shao M, Li E. Metabolomics analysis reveals metabolic changes associated with trans-resveratrol treatment in experimental cryptorchidism mice. Reprod Fertil Dev 2021; 33:328-337. [PMID: 33602390 DOI: 10.1071/rd20189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
This study aimed to analyse global metabolomic changes associated with trans-resveratrol (RSV) treatment in mice with cryptorchidism using untargeted metabolomics. Cryptorchidism was established surgically in Kunming mice, which were then treated with 20µg g-1 day-1, s.c., RSV for 35 consecutive days. Typical manifestations of spermatogenesis arrest were seen in mice with cryptorchidism, and RSV treatment for 35 days restored spermatogenesis. Liquid chromatography-tandem mass spectrometry was used to profile the metabolome of testes from mice in the control (non-cryptorchid, untreated), cryptorchid and RSV-treated cryptorchid groups. In all, 1386 and 179 differential metabolites were detected in the positive and negative modes respectively. Seven and six potential biomarkers were screened for spermatogenesis arrest and restoration respectively. Pathway analysis showed changes in 197 metabolic pathways. The hexosamine biosynthesis pathway was inhibited in the cryptorchid group, which probably resulted in a decrease in the end product, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). Immunoblot analysis showed that total testicular protein O-linked β-N-acetylglucosamine glycosylation was related to spermatogenesis arrest, further indicating a decrease in UDP-GlcNAc in the cryptorchid group. Thus, untargeted metabolomics revealed the biochemical pathways associated with the restoration of metabolic status in the cryptorchid group following RSV treatment and the findings could be used to monitor the response to RSV treatment. This study provides a meaningful foundation for the future clinical application of RSV in the treatment of spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Siqiang Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Yun Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China; and Zhumadian Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, China
| | - Fujia Chen
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Yurong Yang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Li Song
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Chaoying Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China; and Zhumadian Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, China
| | - Baogen Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Yuanhong Xu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Mingguang Shao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China; and Corresponding author.
| |
Collapse
|
14
|
Gaderpour S, Ghiasi R, Hamidian G, Heydari H, Keyhanmanesh R. Voluntary exercise improves spermatogenesis and testicular apoptosis in type 2 diabetic rats through alteration in oxidative stress and mir-34a/SIRT1/p53 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:58-65. [PMID: 33643571 PMCID: PMC7894640 DOI: 10.22038/ijbms.2020.49498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/07/2020] [Indexed: 11/02/2022]
Abstract
OBJECTIVES This research was designed to demonstrate the impact of voluntary exercise on sperm parameters including sperm count, morphology, motility, viability, testicular apoptosis, oxidative stress, and the mir-34a/SIRT1/p53 pathway in type 2 diabetic rats. MATERIALS AND METHODS 32 Wistar male rats were separated into four groups: control (C), voluntary exercise (VE), diabetic (D), and diabetic rats that performed voluntary exercise (VED). To induce diabetes, animals were injected with streptozotocin (35 mg/kg) after receiving a high-fat diet. The testicular protein levels of SIRT1 and P53, miR-34a expression, MDA, GPx, SOD, catalase, and sperm parameters were evaluated. RESULTS Diabetes caused increased testicular MDA content, miR-34a expression, acetylated p53 protein expression, and the percent of immotile sperm (P<0.01 to P<0.001) as well as reduced testicular GPx, SOD and catalase activities, SIRT1 protein expression, and sperm parameters (P<0.05 to P<0.001). Voluntary exercise reduced testicular MDA content, miR-34a, and acetylated p53 protein expression compared with the D group (P<0.001), however, GPx, SOD, catalase activities, and sperm parameters in voluntarily exercised rats were elevated compared with diabetic rats (P<0.05 to P<0.001). CONCLUSION It seems that voluntary exercise has significant positive impacts that can be employed to reduce the complications of type 2 diabetes in the testis of male rats.
Collapse
Affiliation(s)
- Saber Gaderpour
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Heydari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Two resveratrol analogs, pinosylvin and 4,4′-dihydroxystilbene, improve oligoasthenospermia in a mouse model by attenuating oxidative stress via the Nrf2-ARE pathway. Bioorg Chem 2020; 104:104295. [DOI: 10.1016/j.bioorg.2020.104295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023]
|
16
|
The Role of Resveratrol in Mammalian Reproduction. Molecules 2020; 25:molecules25194554. [PMID: 33027994 PMCID: PMC7582294 DOI: 10.3390/molecules25194554] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol is one of the most investigated natural polyphenolic compounds and is contained in more than 70 types of plants and in red wine. The widespread interest in this polyphenol derives from its antioxidant, anti-inflammatory and anti-aging properties. Several studies have established that resveratrol regulates animal reproduction. However, the mechanisms of action and the potential therapeutic effects are still unclear. This review aims to clarify the role of resveratrol in male and female reproductive functions, with a focus on animals of veterinary interest. In females, resveratrol has been considered as a phytoestrogen due to its capacity to modulate ovarian function and steroidogenesis via sirtuins, SIRT1 in particular. Resveratrol has also been used to enhance aged oocyte quality and as a gametes cryo-protectant with mainly antioxidant and anti-apoptotic effects. In males, resveratrol enhances testes function and spermatogenesis through activation of the AMPK pathway. Furthermore, resveratrol has been supplemented to semen extenders, improving the preservation of sperm quality. In conclusion, resveratrol has potentially beneficial effects for ameliorating ovarian and testes function.
Collapse
|
17
|
Wang PT, Sudirman S, Hsieh MC, Hu JY, Kong ZL. Oral supplementation of fucoxanthin-rich brown algae extract ameliorates cisplatin-induced testicular damage in hamsters. Biomed Pharmacother 2020; 125:109992. [PMID: 32084700 DOI: 10.1016/j.biopha.2020.109992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress is recognized as a common pathology that affects up to half of all men infertile. Fucoxanthin possesses antioxidant activity, and several investigators have reported anti-inflammatory action. This study extracted powder of Sargassum glaucescens by acetone to obtained fucoxanthin rich-brown algae extract (FXE). The objective of this study was to evaluate the ameliorative effects of fucoxanthin extract from Sargassum glaucescens on lipopolysaccharide-induced inflammation in RAW264.7 macrophage cells and its protective effects of against Cisplatin (CP)-induced reproductive damage in hamsters. Eighty male Syrian hamsters were injected with and without CP, then daily oral gavage with various concentrations of fucoxanthin for 5 days. Treatment with FXE reduced the level of reactive oxygen species and malondialdehyde in RAW 264.7 cells and the rats' testis as well as protective effects on mitochondrial membrane potential. The FXE administration also improved testosterone level and alpha-glucosidase activity. The sperm count also increased after treated with FXE, whereas sperm abnormality was reduced. Histopathological analysis showed that FXE successfully improved the seminiferous tubules morphology. According to these findings, fucoxanthin extract from Sargassum glaucescens can be used as an alternative for the treatment of testicular damage.
Collapse
Affiliation(s)
- Pei-Tzu Wang
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Ming-Chou Hsieh
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Jia-Yuan Hu
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, No.2, Peining Rd., Jhongjheng District, Keelung City, 20224, Taiwan.
| |
Collapse
|
18
|
de Oliveira FA, Costa WS, B Sampaio FJ, Gregorio BM. Resveratrol attenuates metabolic, sperm, and testicular changes in adult Wistar rats fed a diet rich in lipids and simple carbohydrates. Asian J Androl 2020; 21:201-207. [PMID: 30198494 PMCID: PMC6413558 DOI: 10.4103/aja.aja_67_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High-fat diets affect male reproduction and sexual function. Therefore, we evaluated the effects of prolonged resveratrol administration on the metabolic, sperm, and testicular parameters of rats fed a cafeteria diet. Male Wistar rats were divided at weaning into control (C, n = 20) and cafeteria (CAF, n = 16) groups. At 3 months, half of them were given daily supplementations of resveratrol (C-R, n = 10; CAF-R, n = 8) at a dosage of 30 mg kg-1 body mass for 2 months. Animals were killed at 5 months of age, and blood, spermatozoa, and testes were collected for further analysis. Data were analyzed by one-way ANOVA, and P < 0.05 was considered statistically significant. The CAF diet promoted hyperglycemia (P < 0.0001), and treatment with resveratrol reversed this condition (P < 0.0001). The CAF diet reduced sperm viability and motility, while resveratrol improved these parameters (P < 0.05). Regarding testicular morphology, the height of the seminiferous epithelium was reduced in the CAF group compared with that of the C group (P = 0.0007). Spermatogenic cell proliferation was also reduced in the CAF group compared with that of the C group. However, the CAF-R showed an increase in cell proliferation rate compared with that of the untreated CAF group (P = 0.0024). Although it did not modify body mass, the consumption of a CAF diet promoted hyperglycemia, adverse testicular morphology remodeling, and abnormal sperm, which were attenuated by treatment with resveratrol, thus suggesting a protective effect of this antioxidant on spermatogenesis.
Collapse
Affiliation(s)
- Fabiana A de Oliveira
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Waldemar S Costa
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Francisco J B Sampaio
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| | - Bianca M Gregorio
- Urogenital Research Unit, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil
| |
Collapse
|
19
|
Kong ZL, Sudirman S, Hsu YC, Su CY, Kuo HP. Fucoxanthin-Rich Brown Algae Extract Improves Male Reproductive Function on Streptozotocin-Nicotinamide-Induced Diabetic Rat Model. Int J Mol Sci 2019; 20:E4485. [PMID: 31514311 PMCID: PMC6770327 DOI: 10.3390/ijms20184485] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Hypogonadism and oxidative stress are occurring commonly in men with diabetes and associated male infertility. This study aimed to investigate the capability of anti-oxidative and anti-inflammatory properties of fucoxanthin as well as to evaluate its protective effects on male reproduction in diabetic rats. The RAW 264.7 macrophage cells were used to evaluate the anti-oxidative and anti-inflammatory activity. Thirty male Sprague-Dawley rats were induced by streptozotocin-nicotinamide for a diabetes model and fed either with three different doses of fucoxanthin (13, 26, and 65 mg/kg) or rosiglitazone (0.571 mg/kg) for four weeks. The fucoxanthin significantly inhibited nitric oxide production and reduced reactive oxygen species level in lipopolysaccharide-induced RAW 264.7 cells. In the animal study, fucoxanthin administration improved insulin resistance, restored sperm motility, decreased abnormal sperm number, and inhibited lipid peroxidation. Moreover, it restored GPR54 and SOCS-3 mRNA expression in the hypothalamus and recovered luteinizing hormone level, as well as the testosterone level. In conclusion, fucoxanthin not only possessed antioxidant and anti-inflammatory properties but also decreased the diabetes signs and symptoms as well as improved spermatogenesis and male reproductive function.
Collapse
Affiliation(s)
- Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Biotaiwan Foundation, New Taipei City 24886, Taiwan.
| | - Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Yu-Chun Hsu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Chieh-Yu Su
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | | |
Collapse
|
20
|
Kilarkaje N, Al-Hussaini H. Type 1 diabetes upregulates metastasis-associated protein 1- phosphorylated histone 2AX signaling in the testis. Eur J Pharmacol 2019; 846:30-37. [DOI: 10.1016/j.ejphar.2019.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/12/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
|
21
|
Sanjeev S, Murthy MK, Sunita Devi M, Khushboo M, Renthlei Z, Ibrahim KS, Kumar NS, Roy VK, Gurusubramanian G. Isolation, characterization, and therapeutic activity of bergenin from marlberry (Ardisia colorata Roxb.) leaf on diabetic testicular complications in Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7082-7101. [PMID: 30648235 DOI: 10.1007/s11356-019-04139-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Bergenin is one of the phytochemical constituents in marlberry (Ardisia colorata Roxb.) having antioxidant, anti-diabetic, and anti-inflammatory properties. A. colorata has been used as an herbal medicine in Southeast Asia particularly in Northeast India to treat diabetes. Bergenin was isolated from methanol extract of A. colorata leaf (MEACL) by column chromatography and TLC profiling. Characterization and structural validation of bergenin were performed by spectroscopic analyses. A LC-ESI-MS/MS method was developed for the quantitation of bergenin and validated as per the guidelines of FDA and EMA. The validated method was successfully utilized to quantify bergenin concentration in MEACL samples. Therapeutic efficacy of bergenin was investigated on streptozotocin-induced diabetic rats by following standard protocols. Bergenin supplementation significantly improved the physiological and metabolic processes and in turn reverses diabetic testicular dysfunction via increasing serum testosterone concentrations and expression pattern of PCNA, improving histopathological and histomorphometric manifestations, modulating spermatogenic events and germ cell proliferation, restoring sperm quality, reducing sperm DNA damage, and balancing the antioxidant enzymes levels. Hence, A. colorata leaf is one of the alternate rich resources of bergenin and could be used as a therapeutic agent for diabetic testicular complications.
Collapse
Affiliation(s)
- Sanasam Sanjeev
- Department of Zoology, Mizoram Central University, Aizawl, Mizoram, 796004, India
| | | | - Maibam Sunita Devi
- Department of Zoology, Mizoram Central University, Aizawl, Mizoram, 796004, India
| | - Maurya Khushboo
- Department of Zoology, Mizoram Central University, Aizawl, Mizoram, 796004, India
| | - Zothanmawii Renthlei
- Department of Zoology, Mizoram Central University, Aizawl, Mizoram, 796004, India
| | | | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram Central University, Aizawl, Mizoram, 796004, India
| | | |
Collapse
|
22
|
Li ZM, Liu N, Jiang YP, Yang JM, Zheng J, Sun M, Li YX, Sun T, Wu J, Yu JQ. Vitexin alleviates streptozotocin-induced sexual dysfunction and fertility impairments in male mice via modulating the hypothalamus-pituitary-gonadal axis. Chem Biol Interact 2018; 297:119-129. [PMID: 30365938 DOI: 10.1016/j.cbi.2018.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
Diabetes-associated sexual dysfunction and fertility impairments are major secondary complications in diabetic patients and animal models. Natural herbs are important sources of therapeutic agents for diabetic complications. This study investigated the effect of vitexin on male sexual dysfunction and fertility impairments in streptozotocin (STZ)-induced diabetic mice. Diabetes was induced by intraperitoneal injection of 45 mg/kg STZ for 5 consecutive days in mice. Vitexin (10, 20 or 40 mg/kg) and Sildenafil citrate (SC, 5 mg/kg) were administered daily for 62 days after the induction of diabetes. The parameters of sexual behavior and fertility were analyzed. The reproductive organ weight, sperm motility, and viability of the treated mice were examined. Testicular histopathological alterations were detected by hematoxylin and eosin (H&E) staining. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate serum hormonal levels. Results showed that 40 mg/kg vitexin significantly improved the sexual behavior and fertility levels compared with the diabetic group. Moreover, vitexin (20 or 40 mg/kg) significantly increased reproductive organ weight and improved testicular pathological structure damage. Meanwhile, sperm analysis demonstrated that vitexin significantly restored sperm quality in a dose-dependent manner. Furthermore, ELISA data showed that vitexin significantly increased the serum testosterone (T), follicular-stimulating hormone (FSH), and luteinizing hormone (LH) levels but decreased the gonadotropin-releasing hormone (GnRH) level to different degrees. These findings suggest that vitexin ameliorates sexual dysfunction and fertility impairments in male diabetic mice possibly by modulating the hypothalamus-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Ya-Ping Jiang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Jie Zheng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Miao Sun
- Key Laboratory of Fertility Preservation and Maintenance of Ministry Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Jing Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China.
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China.
| |
Collapse
|
23
|
Contribution of poly(ADP-ribose)polymerase-1 activation and apoptosis in trichloroethene-mediated autoimmunity. Toxicol Appl Pharmacol 2018; 362:28-34. [PMID: 30315841 DOI: 10.1016/j.taap.2018.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Trichloroethene (TCE), a common environmental toxicant and widely used industrial solvent, has been implicated in the development of various autoimmune diseases (ADs). Although oxidative stress has been involved in TCE-mediated autoimmunity, the molecular mechanisms remain to be fully elucidated. These studies were, therefore, aimed to further explore the contribution of oxidative stress to TCE-mediated autoimmune response by specifically assessing the role of oxidative DNA damage, its repair enzyme poly(ADP-ribose)polymerase-1 (PARP-1) and apoptosis. To achieve this, groups of female MRL +/+ mice were treated with TCE, TCE plus N-acetylcysteine (NAC) or NAC alone (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day in drinking water) for 6 weeks. TCE treatment led to significantly higher levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the livers compared to controls, suggesting increased oxidative DNA damage. TCE-induced DNA damage was associated with significant activation of PARP-1 and increases in caspase-3, cleaved caspase-8 and -9, and alterations in Bcl-2 and Bax in the livers. Moreover, the TCE-mediated alterations corresponded with remarkable increases in the serum anti-ssDNA antibodies. Interestingly, NAC supplementation not only attenuated elevated 8-OHdG, PARP-1, caspase-3, cleaved caspase-9, and Bax, but also the TCE-mediated autoimmune response supported by significantly reduced serum anti-ssDNA antibodies. These results suggest that TCE-induced activation of PARP-1 followed by increased apoptosis presents a novel mechanism in TCE-associated autoimmune response and could potentially lead to development of targeted preventive and/or therapeutic strategies.
Collapse
|
24
|
Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodium-induced colitis in mice. PLoS One 2018; 13:e0205252. [PMID: 30289911 PMCID: PMC6173412 DOI: 10.1371/journal.pone.0205252] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/23/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a known medical burden in most developed countries and a significant cause of morbidity. The IBD label includes Crohn's disease (CD) and ulcerative colitis (UC). Pharmacological and surgical intervention are the two main management approaches for IBD. Some drugs have been developed for IBD therapy, but accessibility is limited due to high costs. Furthermore, these agents have demonstrated inactivity over long-term treatment courses. Therefore, an urgent need is present for new treatment options that are safe, able to sustain clinical remission, and improve mucosal gut healing. Seaweed has received much attention in the pharmacological field owing to its various biomedical properties, including the prolongation of blood clotting time, as well as antitumor, anti-inflammation, and antioxidant effects. This study therefore aimed to examine the effects of a dietary polysaccharide-rich extract obtained from Eucheuma cottonii (EC) on a model of colitis. Colitis was induced in male BALB/c mice by the administration of 2.5% (w/v) dextran sulfate sodium (DSS) for 7 days. DSS-induced mice were treated with either one of three different doses of EC extracts (0.35, 0.70, and 1.75 g/kg body weight) or curcumin as a positive control (0.10 g/kg). Mice were sacrificed post-treatment and blood samples were collected. The disease activity index (DAI) and inflammatory cytokine levels (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10) were measured. After treatment for 7 days, EC extract administration protected against weight loss and decreased the colon weight per length ratio. EC extract administration also decreased pro-inflammatory cytokine expression, increased IL-10 levels, and reduced colonic damage. Therefore, a dietary polysaccharide-rich extract from E. cottonii reduced DSS-induced bowel inflammation, thereby becoming a promising candidate for the treatment of colitis.
Collapse
|
25
|
Sudirman S, Hsu YH, Johnson A, Tsou D, Kong ZL. Amelioration effects of nanoencapsulated triterpenoids from petri dish-cultured Antrodia cinnamomea on reproductive function of diabetic male rats. Int J Nanomedicine 2018; 13:5059-5073. [PMID: 30233173 PMCID: PMC6129015 DOI: 10.2147/ijn.s172906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Nanoencapsulated triterpenoids from petri dish-cultured Antrodia cinnamomea (PAC) and its amelioration effects on reproductive function in diabetic rats were investigated. MATERIALS AND METHODS PAC encapsulated in silica-chitosan nanoparticles (Nano-PAC) was prepared by the biosilicification method. The diabetic condition in male Sprague Dawley rats was induced by high-fat diet and streptozotocin (STZ). Three different doses of Nano-PAC (4, 8, and 20 mg/kg) were administered for 6 weeks. Metformin and control of nanoparticles (Nano-con) were taken as positive and negative controls, respectively. RESULTS The average particle size was ~79.46±1.63 nm, and encapsulation efficiency was ~73.35%±0.09%. Nano-PAC administration improved hyperglycemia and insulin resistance. In addition, Nano-PAC ameliorated the morphology of testicular seminiferous tubules, sperm morphology, motility, ROS production, and mitochondrial membrane potential. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) antioxidant, as well as testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) were increased, whereas proinflammatory cytokines TNF-α, IL-6, and IFN-γ were decreased. CONCLUSION In the present study, we successfully nanoencapsulated PAC and found that a very low dosage of Nano-PAC exhibited amelioration effects on the reproductive function of diabetic rats.
Collapse
Affiliation(s)
- Sabri Sudirman
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan, Republic of China,
| | - Yuan-Hua Hsu
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan, Republic of China,
| | - Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan, Republic of China,
| | - David Tsou
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan, Republic of China,
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan, Republic of China,
| |
Collapse
|
26
|
Al-Hussaini H, Kilarkaje N. Effects of trans-resveratrol on type 1 diabetes-induced inhibition of retinoic acid metabolism pathway in retinal pigment epithelium of Dark Agouti rats. Eur J Pharmacol 2018; 834:142-151. [DOI: 10.1016/j.ejphar.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 01/03/2023]
|
27
|
Jiao D, Zhang H, Jiang Z, Huang W, Liu Z, Wang Z, Wang Y, Wu H. MicroRNA-34a targets sirtuin 1 and leads to diabetes-induced testicular apoptotic cell death. J Mol Med (Berl) 2018; 96:939-949. [DOI: 10.1007/s00109-018-1667-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/30/2018] [Accepted: 07/03/2018] [Indexed: 01/07/2023]
|
28
|
Resveratrol Ameliorates Microcystin-LR-Induced Testis Germ Cell Apoptosis in Rats via SIRT1 Signaling Pathway Activation. Toxins (Basel) 2018; 10:toxins10060235. [PMID: 29890735 PMCID: PMC6024601 DOI: 10.3390/toxins10060235] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Microcystin-leucine arginine (MC-LR), a cyclic heptapeptide produced by cyanobacteria, is a strong reproductive toxin. Studies performed in rat Sertoli cells and Chinese hamster ovary cells have demonstrated typical apoptosis after MC-LR exposure. However, little is known on how to protect against the reproductive toxicity induced by MC-LR. The present study aimed to explore the possible molecular mechanism underlying the anti-apoptosis and protective effects of resveratrol (RES) on the co-culture of Sertoli–germ cells and rat testes. The results demonstrated that MC-LR treatment inhibited the proliferation of Sertoli–germ cells and induced apoptosis. Furthermore, sirtuin 1 (SIRT1) and Bcl-2 were inhibited, while p53 and Ku70 acetylation, Bax expression, and cleaved caspase-3 were upregulated by MC-LR. However, RES pretreatment ameliorated MC-LR-induced apoptosis and SIRT1 inhibition, and downregulated the MC-LR-induced increase in p53 and Ku70 acetylation, Bax expression, and caspase-3 activation. In addition, RES reversed the MC-LR-mediated reduction in Ku70 binding to Bax. The present study indicated that the administration of RES could ameliorate MC-LR-induced Sertoli–germ cell apoptosis and protect against reproductive toxicity in rats by stimulating the SIRT1/p53 pathway, suppressing p53 and Ku70 acetylation and enhancing the binding of Ku70 to Bax.
Collapse
|
29
|
Rauf A, Imran M, Suleria HAR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct 2018; 8:4284-4305. [PMID: 29044265 DOI: 10.1039/c7fo01300k] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many natural products present in our diet, including flavonoids, can prevent the progression of cancer and other diseases. Resveratrol, a natural polyphenol present in various fruits and vegetables, plays an important role as a therapeutic and chemopreventive agent used in the treatment of various illnesses. It exhibits effects against different types of cancer through different pathways. It additionally exerts antidiabetic, anti-inflammatory, and anti-oxidant effects in a variety of cell types. Furthermore, the cardiovascular protective capacities of resveratrol are associated with multiple molecular targets and may lead to the development of novel therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, and heart failure. Accordingly, this article presents an overview of recent developments in the use of resveratrol for the prevention and treatment of different diseases along with various mechanisms. In addition, the present review summarizes the most recent literature pertaining to resveratrol as a chemotherapeutic agent against multiple diseases and provides an assessment of the potential of this natural compound as a complementary or alternative medicine.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | | | | | | | | | | |
Collapse
|
30
|
Al-Hussaini H, Kilarkaje N. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys. Toxicol Appl Pharmacol 2017; 339:97-109. [PMID: 29229234 DOI: 10.1016/j.taap.2017.11.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Hyperglycemia induces the formation of advanced glycation end products (AGEs) and their receptors (RAGEs), which alter several intracellular signaling mechanisms leading to the onset and progression of diabetic nephropathy. The present study focused on, i) modulatory effects of trans-resveratrol (3,5,4'-trihydroxy-trans-stilbene) on structural changes, AGE (NƐ-carboxymethyl-lysine), RAGE, oxidative stress and DNA damage, and apoptosis, and ii) localization of fibrotic changes, AGE, RAGE, 8-oxo-dG and 4-hydroxynonenal (4-HNE) in diabetic rat kidneys. Resveratrol (5mg/kg; po, administered during last 45days of 90-day-long hyperglycemic period) administration to streptozotocin-induced type 1 diabetic male Wistar rats reduced renal hypertrophy and structural changes (tubular atrophy, mesangial expansion or shrinkage, diffuse glomerulonephritis, and fibrosis), AGE accumulation, oxidative stress and DNA damage (8-oxo-dG), 4-HNE, caspase-3, and cleaved-caspase-3, but not the RAGE expression. The AGE accumulated in the mesangium, vascular endothelium, and proximal convoluted tubules and less intensely in distal convoluted tubules of diabetic rat kidneys. The RAGE expression increased in the convoluted tubules and collecting ducts of diabetic rat kidneys, but not in the mesangium. Diabetes increased the expression of 8-oxo-dG in nuclei and cytoplasm of renal cells, and 4-HNE in glomeruli, convoluted tubules, the loops of Henle and collecting ducts. Hyperglycemia-induced AGE-RAGE axis and oxidative stress in turn induced apoptosis in diabetic kidneys. Resveratrol mitigated all diabetic effects except the RAGE expression. In conclusion, Resveratrol significantly alleviates diabetes-induced glycation, oxidative damage, and apoptosis to inhibit the progression of diabetic nephropathy. Resveratrol supplementation may be useful to hinder the onset and progression of diabetic kidney diseases.
Collapse
Affiliation(s)
- Heba Al-Hussaini
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|
31
|
Simas JN, Mendes TB, Paccola CC, Vendramini V, Miraglia SM. Resveratrol attenuates reproductive alterations in type 1 diabetes-induced rats. Int J Exp Pathol 2017; 98:312-328. [PMID: 29285813 PMCID: PMC5826946 DOI: 10.1111/iep.12251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
The progression of diabetes mellitus leads to several complications including overproduction of reactive oxygen species and reproductive alterations. As resveratrol (RES) is a powerful anti-oxidant and an anti-apoptotic compound, we hypothesized that side effects of type-1 diabetes (DM1) on male reproduction could be reduced by the RES treatment. Eighty-four prepubertal male rats were distributed into seven groups: sham-control (SC), RES-treated (R), resveratrol-vehicle-treated (RV), diabetic (D), diabetic-insulin-treated (DI), diabetic-RES-treated (DR), diabetic-insulin and RES-treated (DIR). DM1 was induced by a single intraperitoneal streptozotocin (STZ) injection (65 mg/kg) on the 30th day postpartum (dpp). Animals of DR, DIR and R groups received 150 mg/day of RES by gavage for 43 consecutive days (from the 33 to 75 dpp). DI and DIR rats received subcutaneous injections of insulin (1 U/100 g b.w./day) from 5th day after the DM1 induction. The blood glucose level was monitored. At 75 dpp, the euthanasia was performed for morphometric and biometric testicular analyses, spermatic evaluation and hormonal doses. In the D group, the blood glucose level was higher than in the DR, DI and DIR groups. Besides morphometric testicular measurements, testosterone and estradiol doses were lower in D group than in DR and DIR groups; LH dose was also lower than in DR. The preputial separation age was delayed in diabetes-induced groups. The DR and DIR groups showed an improvement in sperm mitochondrial activity, epididymal sperm counts and the frequency of morphologically normal sperms. RES treatment improved glycaemic level, sperm quantitative and qualitative parameters and the hormonal profile in DM1-induced rats and seems to be a good reproductive protector.
Collapse
Affiliation(s)
- Joana Noguères Simas
- Laboratory of Developmental BiologyDepartment of Morphology and GeneticsFederal University of Sao Paulo (UNIFESP)Sao PauloSPBrazil
| | - Talita Biude Mendes
- Laboratory of Developmental BiologyDepartment of Morphology and GeneticsFederal University of Sao Paulo (UNIFESP)Sao PauloSPBrazil
| | - Camila Cicconi Paccola
- Laboratory of Developmental BiologyDepartment of Morphology and GeneticsFederal University of Sao Paulo (UNIFESP)Sao PauloSPBrazil
| | - Vanessa Vendramini
- Laboratory of Developmental BiologyDepartment of Morphology and GeneticsFederal University of Sao Paulo (UNIFESP)Sao PauloSPBrazil
| | - Sandra Maria Miraglia
- Laboratory of Developmental BiologyDepartment of Morphology and GeneticsFederal University of Sao Paulo (UNIFESP)Sao PauloSPBrazil
| |
Collapse
|
32
|
Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Hum Reprod Update 2017; 24:86-105. [DOI: 10.1093/humupd/dmx033] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Constanze C Maresch
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
- Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Dina C Stute
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - David M de Kretser
- Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
33
|
Abdelali A, Al-Bader M, Kilarkaje N. Dataset of Trans-Resveratrol on diabetes-induced abnormal spermatogenesis, poly (ADP-ribose) polymerase-1 (PARP1) expression in intra-testicular blood vessels, and stage-dependent expression of PARP1 and Sirtuin 1 in the rat testis. Data Brief 2016; 10:230-237. [PMID: 27995160 PMCID: PMC5155044 DOI: 10.1016/j.dib.2016.11.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 01/28/2023] Open
Abstract
This article contains data related to the article “Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis” (A. Abdelali, M. Al-Bader, N. Kilarkaje, 2016) [1]. The data are related to Resveratrol on diabetes-induced changes in blood glucose levels, body weights of rats, sperm count and motility, expression of poly (ADP-ribose) polymerase-1 (PARP1) in Leydig cells and in intratesticular blood vessels, and stage-dependent expression of PARP1 and Sirtuin 1 (SirT1) in the rat testis. In this experiment, the data were obtained from control, Resveratrol-treated, diabetic and Resveratrol-treated diabetic rats on day 42 after the induction of diabetes. Resveratrol treatment for a group each of normal and diabetic rats started on day 22 and extended up to day 42. The sperm parameters were conducted in samples obtained from the epididymis. The expression of proteins was evaluated by immunohistochemistry by using specific primary antibodies. The data are presented in the form of figures and significance of them has been given in the research article [1].
Collapse
Affiliation(s)
- Ala Abdelali
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Maie Al-Bader
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|