1
|
Wu H, Ning Y, Sun Z, Ji J, Lu M, Jiao X, Xu X, Ding X, Cheng X, Yu X. Both carvedilol and cimetidine alleviate cisplatin-induced nephrotoxicity via downregulating OCT2. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167754. [PMID: 40044066 DOI: 10.1016/j.bbadis.2025.167754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Cisplatin is a common chemotherapy agent for solid tumors but severe nephrotoxicity limits its application, with no effective pharmacological treatments. Organic cation transporter 2 (OCT2) is involved in cisplatin uptake in kidneys. This study aimed to find drugs with promising clinical applications that could prevent cisplatin-induced acute kidney injury (Cis-AKI) by inhibiting OCT2. METHODS The mRNA level of OCT2 was examined in human induced pluripotent stem cells (iPSCs) from Cis-AKI patients and paired non-AKI patients. The association between OCT2 and Cis-AKI was investigated by HEK293FT cells and kidney organoids. We screened potential compounds exhibiting protective effects against Cis-AKI in US Food and Drug Administration-approved drugs through virtual screening and activity screening. Subsequently, we determined the effects of these compounds on OCT2 expression, cisplatin uptake, and apoptosis in cells, kidney organoids and mice. A549 and HeLa cells were adopted to observe the influence of drugs on the anti-tumor function of cisplatin. RESULTS Compared to non-AKI patients, the OCT2 mRNA levels of iPSCs from Cis-AKI patients were elevated. OCT2 exhibits similar expression patterns in kidney organoids and human kidney tissues. Furthermore, the overexpression of OCT2 in kidney organoids and HEK293FT cells exacerbated the injury caused by cisplatin. Carvedilol and cimetidine were identified as potent OCT2 inhibitors by drug screening. Further analysis revealed that the pretreatment of carvedilol or cimetidine downregulated OCT2, reduced cisplatin uptake, and alleviated cisplatin-induced apoptosis, but the combination of the two drugs didn't further improve these outcomes. Additionally, carvedilol and cimetidine didn't compromise the cisplatin-induced cell death in A549 and HeLa cells. CONCLUSION Our study confirmed that carvedilol and cimetidine exert protective effects against Cis-AKI by inhibiting OCT2, without altering the anti-tumor effects of cisplatin.
Collapse
Affiliation(s)
- Huan Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Medical Center for Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Zhaoxing Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Ji Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Min Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Medical Center for Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaoliang Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Medical Center for Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xin Cheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China; Shanghai Medical Center for Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China; Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| |
Collapse
|
2
|
Toba H, Jin D, Takai S. Suppressing SPARC gene with siRNA exerts therapeutic effects and inhibits MMP-2/9 and ADAMTS1 overexpression in a murine model of ischemia/reperfusion-induced acute kidney injury. J Pharmacol Sci 2025; 158:103-112. [PMID: 40288820 DOI: 10.1016/j.jphs.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), a collagen-binding matricellular protein, is reported to facilitate inflammation and fibrosis in various tissues including the kidneys. Ischemia/reperfusion (I/R) is a major process of acute kidney injury. To investigate whether SPARC inhibition might attenuate renal I/R injury, we injected small interfering RNA (siRNA) targeting SPARC into male BALB/c mice one day before 45 min of renal ischemia followed by 72 h of reperfusion. Serum creatinine concentration, blood urea nitrogen, histological tubular damage, tubulointerstitial fibrosis, and expression of collagen I and transforming growth factor-β were increased after I/R. Expression of 4-hydroxy-2-nonenal, an oxidative stress marker, and the inflammatory cytokines monocyte chemoattractant protein-1 and tumor necrosis factor-α, were also upregulated in I/R kidneys. Overexpression of SPARC mRNA was observed after I/R, and immunohistochemistry revealed that SPARC was localized mainly in damaged tubuloepithelial cells. Additionally, a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1) expression colocalized with SPARC. Injection of siRNA targeting SPARC attenuated renal dysfunction, histological abnormalities, collagen deposition, oxidative stress, and renal inflammation. In addition, SPARC gene knockdown suppressed the I/R-induced increases in ADAMTS1 and matrix metalloproteinase-2/9 expression. In conclusion, I/R-induced SPARC could be a novel therapeutic target against acute kidney injury.
Collapse
Affiliation(s)
- Hiroe Toba
- Laboratory of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 1 Misasagi Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan; Department of Pharmacology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan.
| | - Denan Jin
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan
| | - Shinji Takai
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan
| |
Collapse
|
3
|
Yang Y, Wang P, Zhou K, Zhang W, Liu S, Ouyang J, Bai M, Ding G, Huang S, Jia Z, Zhang A. HUWE1-Mediated Degradation of MUTYH Facilitates DNA Damage and Mitochondrial Dysfunction to Promote Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412250. [PMID: 39921445 PMCID: PMC11967787 DOI: 10.1002/advs.202412250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/26/2025] [Indexed: 02/10/2025]
Abstract
The role of MUTYH, a DNA repair glycosylase in the pathogenesis of acute kidney injury (AKI) is unclear. In this study, it is found that MUTYH protein levels are significantly decreased in the kidneys of cisplatin- or folic acid (FA)-induced mouse AKI models and patients with AKI. MUTYH deficiency aggravates renal dysfunction and tubular injury following cisplatin and FA treatment, along with the accumulation of 7, 8-dihydro-8-oxoguanine (8-oxoG) and impairs mitochondrial function. Importantly, the overexpression of type 2 MUTYH (nuclear) significantly ameliorates cisplatin-induced apoptosis, oxidative stress, mitochondrial dysfunction, and DNA damage in vivo and in vitro. In contrast, overexpression of type 1 MUTYH (mitochondrial) shows a marginal effect against cisplatin-induced injury, indicating the chief role of type 2 MUTYH in antagonizing AKI. Interestingly, the results also indicate that the upregulation of the E3 ligase HUWE1 causes the ubiquitination and degradation of MUTYH in tubular epithelial cells. HUWE1 knockout or treatment with the HUWE1 inhibitor BI8622 significantly protect against cisplatin-induced AKI. Taken together, these results suggest that the ubiquitin E3 ligase HUWE1-mediates ubiquitination and degradation of MUTYH can aggravate DNA damage in the nucleus and mitochondria and promote AKI. Targeting the HUWE1/MUTYH pathway may be a potential strategy for AKI treatment.
Collapse
Affiliation(s)
- Yunwen Yang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Peipei Wang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Kaiqian Zhou
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Wen Zhang
- Department of NephrologyAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028P. R. China
| | - Suwen Liu
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021P. R. China
| | - Jing Ouyang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Mi Bai
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Guixia Ding
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Songming Huang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Zhanjun Jia
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Aihua Zhang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| |
Collapse
|
4
|
Huang J, Liu F, Xu ZF, Xiang HL, Yuan Q, Zhang C. Minichromosome maintenance 4 plays a key role in protecting against acute kidney injury by regulating tubular epithelial cells survival and regeneration. J Adv Res 2025:S2090-1232(25)00192-4. [PMID: 40107353 DOI: 10.1016/j.jare.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Minichromosome maintenance 4 (MCM4), a constituent of the MCM family, playing a pivotal role in DNA replication. Although MCM4 expression has been widely linked to various malignant tumors, its role in kidney diseases is not well-studied. This study primarily investigates the role and underlying mechanism of MCM4 in acute kidney injury (AKI). OBJECTIVES Characterizing a novel target of MCM4 in patients with AKI. METHODS We used CRISPR/Cas9 gene editing to delete MCM4 gene in tubular cells from C57BL/6J mice. Adeno-associated virus 9 harboring MCM4 was administered via intraparenchymal injection into the kidney to enhance MCM4 expression in vivo. These mice were used to established cisplatin- and ischemic reperfusion injury (IRI)-induced AKI mouse models, for detecting the functional role of MCM4 in the pathological process of AKI. RESULTS MCM4 level was increased in the tubules of cisplatin- and IRI-induced AKI mouse models. Compare to wide-type mice, MCM4 knockout mice demonstrated greater degree of histological damage and a higher ratio of apoptotic tubular cells, as well as kidney dysfunction upon cisplatin- and IRI-induced AKI models. Conversely, MCM4 overexpression ameliorated the severity of kidney injury and promoted regenerative capacity of tubular cells during AKI development. Mechanically, loss of MCM4 induced the expression of p53-binding protein 1, activating the p53/p21 pathway and exacerbating AKI progression. Additional, MAD2B, as an upstream molecule of MCM4, regulates the transcription level of MCM4 by affecting the level of E2F1. CONCLUSIONS These findings demonstrate that MCM4 upregulation during AKI development is an adaptive response that preserves tubular cell regenerative capacity and limits the severity of renal injury, thus highlighting the potential value of MCM4 as a biomarker or therapeutic target in patients with AKI.
Collapse
Affiliation(s)
- Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Feng Xu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui-Ling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Zhao Z, Xiang W, Guo W, Wang B. A Dual-Channel Fluorescence Probe for Early Diagnosis and Treatment Monitoring of Acute Kidney Injury by Detecting HOCl and Cys with Different Fluorescence Signals. Anal Chem 2025; 97:2127-2135. [PMID: 39823368 DOI: 10.1021/acs.analchem.4c04908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The pathogenesis of acute kidney injury (AKI) is a multifaceted process involving various mechanisms, with oxidative stress playing a crucial role in its development. Hypochlorite (HOCl) and cysteine (Cys) are indicators of oxidative stress in AKI pathophysiology, directly reflecting the degree of oxidative stress and disease severity. However, their exact mechanism of action in AKI pathophysiology remains unknown. Herein, we developed a dual-channel fluorescent probe, MB-NAP, which allowed for the simultaneous detection of HOCl and Cys. The probe exhibited distinct fluorescence responses in the green channel (λex = 450 nm, λem = 560 nm) and red channel (λex = 610 nm, λem = 690 nm), without any spectral crosstalk, allowing for accurate measurement of both analytes. We successfully applied MB-NAP to monitor the levels of HOCl and Cys in cellular and in vivo models of AKI, revealing a significant increase in their concentrations compared to normal models. Furthermore, MB-NAP was demonstrated to exhibit outstanding capabilities for drug screening by effectively real-time monitoring HOCl and Cys. This study not only provides a more sensitive and reliable method/tool for tracking AKI-related pathological processes but also offers a potential breakthrough in the early diagnosis and identification of therapeutic agents aimed at mitigating oxidative stress-induced damage in AKI.
Collapse
Affiliation(s)
- Zhiwen Zhao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China
| | - Wei Xiang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China
| | - Wenting Guo
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China
| |
Collapse
|
6
|
Pissas G, Divani M, Tziastoudi M, Poulianiti C, Polyzou-Konsta MA, Lykotsetas E, Stefanidis I, Eleftheriadis T. In renal proximal tubular epithelial cells of the hibernator Syrian hamster, anoxia-reoxygenation-induced reactive oxygen species bursts do not trigger a DNA damage response and cellular senescence. J Comp Physiol B 2025; 195:91-101. [PMID: 39907746 PMCID: PMC11839863 DOI: 10.1007/s00360-025-01604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/08/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Ischemia-reperfusion (I-R) injury represents a predominant etiology of acute kidney injury (AKI), for which effective treatments remain unavailable. In contrast, hibernating mammals exhibit notable resistance to cell death induced by I-R injury. However, the impact of I-R injury on cellular senescence-an important factor in AKI-has not been extensively studied in these species. Comparative biology may offer novel therapeutic insights. Renal proximal tubular epithelial cells (RPTECs) from the native hibernator Syrian hamster or mouse RPTECs were subjected to anoxia-reoxygenation. Proteins involved in DNA damage response (DDR) and cellular senescence were assessed using western blotting, reactive oxygen species (ROS) levels and cell death were quantified colorimetrically, and IL-6 with ELISA. Anoxia-reoxygenation induced oxidative stress in both mouse and hamster RPTECs; however, cell death was observed exclusively in mouse cells. While anoxia-reoxygenation elicited a DDR and subsequent senescence in mouse RPTECs, such responses were not detected in hamster RPTECs. Thus, RPTECs from the Syrian hamster exhibited increased ROS production upon reoxygenation but did not show DDR or cellular senescence. Further research is required to elucidate the specific protective molecular mechanisms in hibernators, which could potentially lead to the development of novel therapeutic approaches for I-R injury in non-hibernating species, including humans.
Collapse
Affiliation(s)
- Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Maria Divani
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Christina Poulianiti
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Maria-Anna Polyzou-Konsta
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Evangelos Lykotsetas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, Larissa, 41110, Greece.
| |
Collapse
|
7
|
Wang Y, Xue P, Gao L, Wang X, Zhou S, Wu X, Guo C. Improved bioavailability of polydatin and its protective effect against cisplatin induced nephrotoxicity through self-assembled fucoidan and carboxymethyl chitosan delivery system. Int J Biol Macromol 2025; 287:138577. [PMID: 39657878 DOI: 10.1016/j.ijbiomac.2024.138577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Cisplatin induced acute kidney injury (AKI) is clinically prevalent, with a complex pathogenesis and a lack of effective therapeutic drugs. Polydatin (Po) has excellent biological activity, but its low solubility and bioavailability limit its application. In this study, fucoidan (Fu) and carboxymethyl chitosan (Cs) self-assembled into nanoparticles through electrostatic interactions/hydrogen bonding and loaded Po (Fu/Cs Po NPs). In vitro studies found that Fu/Cs Po NPs protected human renal tubular epithelial (HK-2) cells from cisplatin induced damage and accumulation of reactive oxygen species (ROS). Mechanistic studies showed that Fu/Cs Po NPs inhibited cisplatin induced DNA damage and activation of cyclic guanosine monophosphate synthase (cGAS) and intron gene stimulator (STING) pathways. In vivo studies showed that Fu/Cs Po NPs treatment alleviated cisplatin induced AKI symptoms, including elevated blood urea nitrogen (BUN) and serum creatinine (SCr), as well as pathological damage to kidney tissues. In vivo mechanism studies also showed that Fu/Cs Po NPs treatment inhibited cisplatin induced DNA damage and activation of the cGAS-STING pathway. The pharmacokinetic and tissue distribution results demonstrated that the Fu/Cs delivery system enhanced the bioavailability and kidney accumulation of Po in vivo. In summary, our study provided potential drugs for the treatment of cisplatin induced AKI.
Collapse
Affiliation(s)
- Yinghan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pengyu Xue
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuefei Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shilin Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
8
|
Zhu J, Xiang X, Shi L, Song Z, Dong Z. Identification of Differentially Expressed Genes in Cold Storage-associated Kidney Transplantation. Transplantation 2024; 108:2057-2071. [PMID: 38632678 PMCID: PMC11424274 DOI: 10.1097/tp.0000000000005016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Although it is acknowledged that ischemia-reperfusion injury is the primary pathology of cold storage-associated kidney transplantation, its underlying mechanism is not well elucidated. METHODS To extend the understanding of molecular events and mine hub genes posttransplantation, we performed bulk RNA sequencing at different time points (24 h, day 7, and day 14) on a murine kidney transplantation model with prolonged cold storage (10 h). RESULTS In the present study, we showed that genes related to the regulation of apoptotic process, DNA damage response, cell cycle/proliferation, and inflammatory response were steadily elevated at 24 h and day 7. The upregulated gene profiling delicately transformed to extracellular matrix organization and fibrosis at day 14. It is prominent that metabolism-associated genes persistently took the first place among downregulated genes. The gene ontology terms of particular note to enrich are fatty acid oxidation and mitochondria energy metabolism. Correspondingly, the key enzymes of the above processes were the products of hub genes as recognized. Moreover, we highlighted the proximal tubular cell-specific increased genes at 24 h by combining the data with public RNA-Seq performed on proximal tubules. We also focused on ferroptosis-related genes and fatty acid oxidation genes to show profound gene dysregulation in kidney transplantation. CONCLUSIONS The comprehensive characterization of transcriptomic analysis may help provide diagnostic biomarkers and therapeutic targets in kidney transplantation.
Collapse
Affiliation(s)
- Jiefu Zhu
- Department of Urology and Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaohong Xiang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People’s Hospital of Yichang, Yichang, Hubei 443000, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States
| |
Collapse
|
9
|
Pissas G, Tziastoudi M, Divani M, Poulianiti C, Konsta MAP, Lykotsetas E, Liakopoulos V, Stefanidis I, Eleftheriadis T. Malate dehydrogenase-2 inhibition shields renal tubular epithelial cells from anoxia-reoxygenation injury by reducing reactive oxygen species. J Biochem Mol Toxicol 2024; 38:e23854. [PMID: 39287333 DOI: 10.1002/jbt.23854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Ischemia-reperfusion (I-R) injury is the most common cause of acute kidney injury. In experiments involving primary human renal proximal tubular epithelial cells (RPTECs) exposed to anoxia-reoxygenation, we explored the hypothesis that mitochondrial malate dehydrogenase-2 (MDH-2) inhibition redirects malate metabolism from the mitochondria to the cytoplasm, towards the malate-pyruvate cycle and reversed malate-aspartate shuttle. Colorimetry, fluorometry, and western blotting showed that MDH2 inhibition accelerates the malate-pyruvate cycle enhancing cytoplasmic NADPH, thereby regenerating the potent antioxidant reduced glutathione. It also reversed the malate-aspartate shuttle and potentially diminished mitochondrial reactive oxygen species (ROS) production by transferring electrons, in the form of NADH, from the mitochondria to the cytoplasm. The excessive ROS production induced by anoxia-reoxygenation led to DNA damage and protein modification, triggering DNA damage and unfolded protein response, ultimately resulting in apoptosis and senescence. Additionally, ROS induced lipid peroxidation, which may contribute to the process of ferroptosis. Inhibiting MDH-2 proved effective in mitigating ROS overproduction during anoxia-reoxygenation, thereby rescuing RPTECs from death or senescence. Thus, targeting MDH-2 holds promise as a pharmaceutical strategy against I-R injury.
Collapse
Affiliation(s)
- Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Maria Divani
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Christina Poulianiti
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Evangelos Lykotsetas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Vasilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | |
Collapse
|
10
|
Bakinowska E, Kiełbowski K, Pawlik A. The Role of MicroRNA in the Pathogenesis of Acute Kidney Injury. Cells 2024; 13:1559. [PMID: 39329743 PMCID: PMC11444149 DOI: 10.3390/cells13181559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Acute kidney injury (AKI) describes a condition associated with elevated serum creatinine levels and decreased glomerular filtration rate. AKI can develop as a result of sepsis, the nephrotoxic properties of several drugs, and ischemia/reperfusion injury. Renal damage can be associated with metabolic acidosis, fluid overload, and ionic disorders. As the molecular background of the pathogenesis of AKI is insufficiently understood, more studies are needed to identify the key signaling pathways and molecules involved in the progression of AKI. Consequently, future treatment methods may be able to restore organ function more rapidly and prevent progression to chronic kidney disease. MicroRNAs (miRNAs) are small molecules that belong to the non-coding RNA family. Recently, numerous studies have demonstrated the altered expression profile of miRNAs in various diseases, including inflammatory and neoplastic conditions. As miRNAs are major regulators of gene expression, their dysregulation is associated with impaired homeostasis and cellular behavior. The aim of this article is to discuss current evidence on the involvement of miRNAs in the pathogenesis of AKI.
Collapse
Affiliation(s)
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.)
| |
Collapse
|
11
|
Wang Y, Yu C, Yu J, Shen F, Du X, Liu N, Zhuang S. Inhibition of HDAC8 mitigates AKI by reducing DNA damage and promoting homologous recombination repair. J Cell Mol Med 2024; 28:e70114. [PMID: 39317961 PMCID: PMC11422176 DOI: 10.1111/jcmm.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Nephrotoxicity is a major side effect of platinum-based antineoplastic drugs, and there is currently no available therapeutic intervention. Our study suggests that targeting histone deacetylase 8 could be a potential treatment for cisplatin-induced acute kidney injury (AKI). In a murine model of AKI induced by cisplatin, the administration of PCI-34051, a selective inhibitor of HDAC8, resulted in significant improvement in renal function and reduction in renal tubular damage and apoptosis. Pharmacological inhibition of HDAC8 also decreased caspase-3 and PARP1 cleavage, attenuated Bax expression and preserved Bcl-2 levels in the injured kidney. In cultured murine renal epithelial cells (mRTECs) exposed to cisplatin, treatment with PCI-34051 or transfection with HDAC8 siRNA reduced apoptotic cell numbers and diminished expression of cleaved caspase-3 and PARP1; conversely, overexpression of HDAC8 intensified these changes. Additionally, PCI-34051 reduced p53 expression levels along with those for p21, p-CDK2 and γ-H2AX while preserving MRE11 expression in the injured kidney. Similarly, pharmacological and genetic inhibition of HDAC8 reduced γ-H2AX and enhanced MRE11 expression; conversely, HDAC8 overexpression exacerbated these changes in mRTECs exposed to cisplatin. These results support that HDAC8 inhibition attenuates cisplatin-induced AKI through a mechanism associated with reducing DNA damage and promoting its repair.
Collapse
Affiliation(s)
- Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jianjun Yu
- Department of Nephrology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyu Du
- Department of Nephrology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of Medicine, Rhode Island Hospital and Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
12
|
Mashayekhi-Sardoo H, Rezaee R, Yarmohammadi F, Karimi G. Targeting Endoplasmic Reticulum Stress by Natural and Chemical Compounds Ameliorates Cisplatin-Induced Nephrotoxicity: A Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04351-w. [PMID: 39212819 DOI: 10.1007/s12011-024-04351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin is a chemotherapeutic that dose-dependently causes renal complications such as decreased kidney function and acute kidney injury. The endoplasmic reticulum (ER) is responsible for calcium homeostasis and protein folding and plays a major part in cisplatin's nephrotoxicity. The current article reviews how chemical and natural compounds modulate cisplatin-induced apoptosis, autophagy, and inflammation by inhibiting ER stress signaling pathways. The available evidence indicates that natural compounds (Achyranthes aspera water-soluble extract, morin hydrate, fucoidan, isoliquiritigenin, leonurine, epigallocatechin-3-gallate, grape seed proanthocyanidin, and ginseng polysaccharide) and chemicals (Sal003, NSC228155, TUG891, dorsomorphin (compound C), HC-030031, dexmedetomidine, and recombinant human erythropoietin (rHuEpo)) can alleviate cisplatin nephrotoxicity by suppression of ER stress signaling pathways including IRE1α/ASK1/JNK, PERK-eIF2α-ATF4, and ATF6, as well as PI3K/AKT signaling pathway. Since ER and related signaling pathways are important in cisplatin nephrotoxicity, agents that can inhibit the abovementioned signaling pathways may hold promise in alleviating this untoward adverse effect.
Collapse
Affiliation(s)
- Habibeh Mashayekhi-Sardoo
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical, P. O. Box, Sciences, Mashhad, 1365-91775, Iran.
| |
Collapse
|
13
|
陶 怀, 骆 金, 闻 志, 虞 亘, 苏 萧, 王 鑫, 关 翰, 陈 志. [High STING expression exacerbates renal ischemia-reperfusion injury in mice by regulating the TLR4/NF-κB/NLRP3 pathway and promoting inflammation and apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1345-1354. [PMID: 39051080 PMCID: PMC11270667 DOI: 10.12122/j.issn.1673-4254.2024.07.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate renal expression level of STING in mice with renal ischemia-reperfusion injury (IRI) and its regulatory role in IRI. METHODS C57BL/6 mice were divided into sham operation group, IRI (induced by clamping the renal artery) model group, IRI+DMSO treatment group, and IRI+SN-011 treatment group. Serum creatinine and blood urea nitrogen of the mice were analyzed, and pathological changes in the renal tissue were assessed with PAS staining. RT-qPCR, ELISA, Western blotting, and immunohistochemistry were used to detect the expression levels of STING, KIM-1, Bcl-2, Bax, caspase-3, TLR4, P65, NLRP3, caspase-1, CD68, MPO, IL-1β, IL-6, and TNF-α in the renal tissues. In the cell experiment, HK-2 cells exposed to hypoxia-reoxygenation (H/R) were treated with DMSO or SN-011, and cellular STING expression levels and cell apoptosis were analyzed using RT-qPCR, Western blotting or flow cytometry. RESULTS In C57BL/6 mice, renal IRI induced obvious renal tissue damage, elevation of serum creatinine and blood urea nitrogen levels and renal expression levels of KIM-1, STING, TLR4, P65, NLRP3, caspase-1, caspase-3, Bax, CD68, MPO, IL-1β, IL-6, and TNF-α, and reduction of Bcl-2 expression level. Treatment of the mouse models with SN-011 for inhibiting STING expression significantly alleviated these changes. In HK-2 cells, H/R exposure caused significant elevation of cellular STING expression and obviously increased cell apoptosis rate, which was significantly lowered by treatment with SN-011. CONCLUSION Renal STING expression is elevated in mice with renal IRI to exacerbate renal injury by regulating the TLR4/NF-κB/NLRP3 pathway and promoting inflammation and apoptosis in the renal tissues.
Collapse
|
14
|
Khumsri W, Payuhakrit W, Kongkaew A, Chattipakorn N, Chattipakorn S, Yasom S, Mutirangura A. Box A of HMGB1 Maintains the DNA Gap and Prevents DDR-induced Kidney Injury in D-galactose Induction Rats. In Vivo 2024; 38:1170-1181. [PMID: 38688613 PMCID: PMC11059889 DOI: 10.21873/invivo.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM Disability and mortality rates for renal failure are still increasing. DNA damage and oxidative stress intoxication from body metabolism, high blood glucose, or the environment cause significant kidney damage. Recently, we reported that Box A of HMGB1 (Box A) acts as molecular scissors, producing DNA gaps that prevent DNA damage in kidney cell lines and ultimately reverse aging phenotypes in aging rat models. The present study aimed to demonstrate the potency of Box A in preventing D-galactose (D-gal)-induced kidney injury. MATERIALS AND METHODS A Box A expression plasmid was constructed and administered to a rat model. D-gal was injected subcutaneously for eight weeks. Serum was collected to study renal function, and white blood cells were collected for DNA gap measurement. Kidney tissue was also collected for γ-H2AX and NF-κB immunostaining; Senescence-associated (SA)-beta-gal staining; and analysis of the mRNA expression of p16INK4A, TNF-α, and IL-6. Moreover, histopathology analysis was performed using hematoxylin & eosin and Masson trichome staining. RESULTS Pretreatment with Box A administration prevented the reduction of DNA gaps and the consequences of the DNA damage response, which include elevated serum creatinine; high serum BUN; an increased positive SA-beta-gal staining area; overexpression of p16INK4A, NF-κB and senescence-associated secretory phenotype molecules, including IL-6, TNF-α; and histological alterations, including tubular dilation and collagen accumulation. CONCLUSION Box A effectively prevents DNA gap reduction and all D-gal-induced kidney pathological changes at the molecular, histological, and physiological levels. Therefore, Box A administration is a promising novel therapeutic strategy to prevent DNA-damaging agent-induced kidney failure.
Collapse
Affiliation(s)
- Wilunplus Khumsri
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Witchuda Payuhakrit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand;
- Pathobiology Information and Learning Center, Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sakawdaurn Yasom
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand;
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Yang F, Zhu B, Ozols E, Bai H, Jiang M, Ma FY, Nikolic-Paterson DJ, Jiang X. A gradient model of renal ischemia reperfusion injury to investigate renal interstitial fibrosis. Int J Immunopathol Pharmacol 2024; 38:3946320241288426. [PMID: 39363147 PMCID: PMC11526246 DOI: 10.1177/03946320241288426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
Background: The progression from acute kidney injury to chronic kidney disease poses a significant health challenge. Nonetheless, a constraint in existing animal models of renal ischemia/reperfusion (I/R) injury is the necessity for a severe injury, almost reaching a life-threatening level, to trigger the subsequent onset of renal fibrosis. Hence, we explored an adapted gradient approach to induce I/R injury, aiming to promote the progression of renal fibrosis while preserving the overall normal functioning of the kidney. Methods: In each group, 6-8 male C57BL/6 mice were used for model construction, with all undergoing sodium pentobarbital anesthesia and left kidney removal. Subsequently, a silk thread was passed beneath the lower renal branch, elevating the right kidney under a 20-g weight's tension via a pulley system for durations of 30, 40, or 60 min. Afterwards, we lowered the kidney, sutured the wound, and administered intraperitoneal saline. Mice in different groups were euthanized following reperfusion for 1, 3, 7, or 28 days. Results: We observed a complete cessation of blood flow in the lower pole, while an incomplete cessation in the upper pole in the elevated kidney. Significant renal impairment was evident on day 1 with a 60min ischemic period (187.0 ± 65.3 vs 17.9 ± 4.8 μmol/L serum creatinine in normal; p < .001), but not with 30 or 40min. On day 1, tubular necrosis and hyaline cast formation was evident in both lower and upper poles. On day 3, renal function returned to normal and remained normal through day 28. Histologic damage resolved in the upper pole over days 3 to 7, resulting in normal histology on day 28. By contrast, there was sustained tubular damage tubular in the lower pole on days 3 and 7, which failed to resolve and led to significant renal fibrosis by day 28. Conclusion: We created a model demonstrating clinically "silent" renal fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, 3168, Australia
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Nursing, Xiamen Medical College, Xiamen, China
| | - Baoping Zhu
- Department of High-Quality Reproductive Care, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Elyce Ozols
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Haitao Bai
- Department of Nursing, Xiamen Medical College, Xiamen, China
| | - Mengjie Jiang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Frank Y Ma
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Xiaoyun Jiang
- Department of Pediatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Taguchi K, Sugahara S, Elias BC, Pabla NS, Canaud G, Brooks CR. IL-22 is secreted by proximal tubule cells and regulates DNA damage response and cell death in acute kidney injury. Kidney Int 2024; 105:99-114. [PMID: 38054920 PMCID: PMC11068062 DOI: 10.1016/j.kint.2023.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 12/07/2023]
Abstract
Acute kidney injury (AKI) affects over 13 million people worldwide annually and is associated with a 4-fold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces cell death and worsens AKI. The factors that trigger DDR to switch from pro-repair to pro-cell death remain to be resolved. Here we investigated the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identified PTCs as a novel source of urinary IL-22. Functionally, IL-22 binding IL-22RA1 on PTCs amplified the DDR. Treating primary PTCs with IL-22 alone induced rapid activation of the DDR. The combination of IL-22 and either cisplatin- or AA-induced cell death in primary PTCs, while the same dose of cisplatin or AA alone did not. Global deletion of IL-22 protected against cisplatin- or AA-induced AKI, reduced expression of DDR components, and inhibited PTC cell death. To confirm PTC IL-22 signaling contributed to AKI, we knocked out IL-22RA1 specifically in kidney tubule cells. IL-22RA1ΔTub mice displayed reduced DDR activation, cell death, and kidney injury compared to controls. Thus, targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with repair of damaged DNA.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sho Sugahara
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bertha C Elias
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Guillaume Canaud
- Overgrowth Syndrome and Vascular Anomalies Unit, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Craig R Brooks
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
17
|
Xu Z, Zhang M, Wang W, Zhou S, Yu M, Qiu X, Jiang S, Wang X, Tang C, Li S, Wang CH, Zhu R, Peng WX, Zhao L, Fu X, Patzak A, Persson PB, Zhao L, Mao J, Shu Q, Lai EY, Zhang G. Dihydromyricetin attenuates cisplatin-induced acute kidney injury by reducing oxidative stress, inflammation and ferroptosis. Toxicol Appl Pharmacol 2023; 473:116595. [PMID: 37328118 DOI: 10.1016/j.taap.2023.116595] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cisplatin is effective against various types of cancers. However, its clinical application is limited owing to its adverse effects, especially acute kidney injury (AKI). Dihydromyricetin (DHM), a flavonoid derived from Ampelopsis grossedentata, has varied pharmacological activities. This research aimed to determine the molecular mechanism for cisplatin-induced AKI. METHODS A murine model of cisplatin-induced AKI (22 mg/kg, I.P.) and a HK-2 cell model of cisplatin-induced damage (30 μM) were established to evaluate the protective function of DHM. Renal dysfunction markers, renal morphology and potential signaling pathways were investigated. RESULTS DHM decreased the levels of renal function biomarkers (blood urea nitrogen and serum creatinine), mitigated renal morphological damage, and downregulated the protein levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It upregulated the expression levels of antioxidant enzymes (superoxide dismutase and catalase expression), nuclear factor-erythroid-2-related factor 2 (Nrf2) and its downstream proteins, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic (GCLC) and modulatory (GCLM) subunits, thus eventually reducing cisplatin-induced reactive oxygen species (ROS) production. Moreover, DHM partially inhibited the phosphorylation of the active fragments of caspase-8 and -3 and mitogen-activated protein kinase and restored glutathione peroxidase 4 expression, which attenuated renal apoptosis and ferroptosis in cisplatin-treated animals. DHM also mitigated the activation of NLRP3 inflammasome and nuclear factor (NF)-κB, attenuating the inflammatory response. In addition, it reduced cisplatin-induced HK-2 cell apoptosis and ROS production, both of which were blocked by the Nrf2 inhibitor ML385. CONCLUSIONS DHM suppressed cisplatin-induced oxidative stress, inflammation and ferroptosis probably through regulating of Nrf2/HO-1, MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zheming Xu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Minjing Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wenwen Wang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Suhan Zhou
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Minghua Yu
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xingyu Qiu
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Runzhi Zhu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wan Xin Peng
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Lin Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xiaodong Fu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510260, China
| | - Andreas Patzak
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany
| | - Liang Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China
| | - Jianhua Mao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China
| | - Qiang Shu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany.
| | - Gensheng Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China.
| |
Collapse
|
18
|
Xie M, Xie R, Huang P, Yap DYH, Wu P. GADD45A and GADD45B as Novel Biomarkers Associated with Chromatin Regulators in Renal Ischemia-Reperfusion Injury. Int J Mol Sci 2023; 24:11304. [PMID: 37511062 PMCID: PMC10379085 DOI: 10.3390/ijms241411304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Chromatin regulators (CRs) are essential upstream regulatory factors of epigenetic modification. The role of CRs in the pathogenesis of renal ischemia-reperfusion injury (IRI) remains unclear. We analyzed a bioinformatic analysis on the differentially expressed chromatin regulator genes in renal IRI patients using data from public domains. The hub CRs identified were used to develop a risk prediction model for renal IRI, and their expressions were also validated using Western blot, qRT-PCR, and immunohistochemistry in a murine renal IRI model. We also examined the relationships between hub CRs and infiltrating immune cells in renal IRI and used network analysis to explore drugs that target hub CRs and their relevant downstream microRNAs. The results of machine learning methods showed that five genes (DUSP1, GADD45A, GADD45B, GADD45G, HSPA1A) were upregulated in renal IRI, with key roles in the cell cycle, p38 MAPK signaling pathway, p53 signaling pathway, FoxO signaling pathway, and NF-κB signaling pathway. Two genes from the network, GADD45A and GADD45B (growth arrest and DNA damage-inducible protein 45 alpha and beta), were chosen for the renal IRI risk prediction model. They all showed good performance in the testing and validation cohorts. Mice with renal IRI showed significantly upregulated GADD45A and GADD45B expression within kidneys compared to sham-operated mice. GADD45A and GADD45B showed correlations with plasmacytoid dendritic cells (pDCs) in infiltrating immune cell analysis and enrichment in the MAPK pathway based on the weighted gene co-expression network analysis (WGCNA) method. Candidate drugs that target GADD45A and GADD45B include beta-escin, sertraline, primaquine, pimozide, and azacyclonol. The dysregulation of GADD45A and GADD45B is related to renal IRI and the infiltration of pDCs, and drugs that target GADD45A and GADD45B may have therapeutic potential for renal IRI.
Collapse
Affiliation(s)
- Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruiyan Xie
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Pengcheng Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Desmond Y H Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
19
|
Taguchi K, Sugahara S, Elias BC, Pabla N, Canaud G, Brooks CR. IL-22 promotes acute kidney injury through activation of the DNA damage response and cell death in proximal tubule cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544134. [PMID: 37333314 PMCID: PMC10274795 DOI: 10.1101/2023.06.08.544134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Acute kidney injury (AKI) affects over 13 million people world-wide annually and is associated with a fourfold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces to cell death and worsens AKI. The factors that trigger the switch from pro-reparative to pro-cell death DDR remain to be resolved. Here we investigate the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identify PTCs as a novel source of urinary IL-22, making PTCs the only epithelial cells known to secret IL-22, to our knowledge. Functionally, IL-22 binding its receptor (IL-22RA1) on PTCs amplifies the DDR. Treating primary PTCs with IL-22 alone induces rapid activation of the DDR in vitro. The combination of IL-22 + cisplatin or AA treatment on primary PTCs induces cell death, while the same dose of cisplatin or AA alone does not. Global deletion of IL-22 protects against cisplatin or AA induced AKI. IL-22 deletion reduces expression of components of the DDR and inhibits PTC cell death. To confirm PTC IL-22 signaling contributes to AKI, we knocked out IL-22RA1 in renal epithelial cells by crossing IL-22RA1floxed mice with Six2-Cre mice. IL-22RA1 KO reduced DDR activation, cell death, and kidney injury. These data demonstrate that IL-22 promotes DDR activation in PTCs, switching pro-recovery DDR responses to a pro-cell death response and worsening AKI. Targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with the processes necessary for repair of damaged DNA.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sho Sugahara
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bertha C Elias
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Guillaume Canaud
- Overgrowth Syndrome and Vascular Anomalies Unit, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Craig R Brooks
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
20
|
Williams JD, Kumar R, Afolabi JM, Park F, Adebiyi A. Rhabdomyolysis aggravates renal iron accumulation and acute kidney injury in a humanized mouse model of sickle cell disease. Free Radic Res 2023; 57:404-412. [PMID: 37840281 PMCID: PMC11259575 DOI: 10.1080/10715762.2023.2269313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Individuals with sickle cell disease (SCD) are at greater risk of rhabdomyolysis, a potentially life-threatening condition resulting from the breakdown of skeletal muscle fibers. Acute kidney injury (AKI) is one of the most severe complications of rhabdomyolysis. Chronic kidney and cardiovascular disease, which account for SCD mortality, are long-term consequences of AKI. Although SCD elevates the risks of rhabdomyolysis-induced sudden death, the mechanisms that underlie rhabdomyolysis-induced AKI in SCD are unclear. In the present study, we show that, unlike their control non-sickling (AA) counterparts, transgenic homozygous SCD (SS; Townes model) mice exhibited 100% mortality 8-24 h after intramuscular glycerol injection. Five hours after glycerol injection, SS mice showed a more significant increase in myoglobinuria and plasma creatine kinase levels than AA mice. Basal plasma heme and kidney tissue iron levels were significantly higher in SS than in AA mice. In contrast to AA, glycerol-induced rhabdomyolysis aggravated these parameters in SS mice. Rhabdomyolysis also amplified oxidative stress in SS compared to AA mice. Glycerol-treated SS mice exhibited worse renal function, exemplified by a reduction in GFR with a corresponding increase in plasma and urinary biomarkers of early AKI and renal tubular damage. The free radical scavenger and Fenton chemistry inhibitor, TEMPOL, ameliorated rhabdomyolysis-induced AKI in the SS mice. These findings demonstrate that oxidative stress driven by renal iron accumulation amplifies rhabdomyolysis-induced AKI in SCD mice.
Collapse
Affiliation(s)
- Jada D. Williams
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ravi Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jeremiah M. Afolabi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Anesthesiology and Perioperative Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
21
|
Wang P, Ouyang J, Jia Z, Zhang A, Yang Y. Roles of DNA damage in renal tubular epithelial cells injury. Front Physiol 2023; 14:1162546. [PMID: 37089416 PMCID: PMC10117683 DOI: 10.3389/fphys.2023.1162546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
The prevalence of renal diseases including acute kidney injury (AKI) and chronic kidney disease (CKD) is increasing worldwide. However, the pathogenesis of most renal diseases is still unclear and effective treatments are still lacking. DNA damage and the related DNA damage response (DDR) have been confirmed as common pathogenesis of acute kidney injury and chronic kidney disease. Reactive oxygen species (ROS) induced DNA damage is one of the most common types of DNA damage involved in the pathogenesis of acute kidney injury and chronic kidney disease. In recent years, several developments have been made in the field of DNA damage. Herein, we review the roles and developments of DNA damage and DNA damage response in renal tubular epithelial cell injury in acute kidney injury and chronic kidney disease. In this review, we conclude that focusing on DNA damage and DNA damage response may provide valuable diagnostic biomarkers and treatment strategies for renal diseases including acute kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jing Ouyang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yunwen Yang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) drives chronic kidney disease progression in male mice. Nat Commun 2023; 14:1334. [PMID: 36906617 PMCID: PMC10008567 DOI: 10.1038/s41467-023-37043-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Kidney injury initiates epithelial dedifferentiation and myofibroblast activation during the progression of chronic kidney disease. Herein, we find that the expression of DNA-PKcs is significantly increased in the kidney tissues of both chronic kidney disease patients and male mice induced by unilateral ureteral obstruction and unilateral ischemia-reperfusion injury. In vivo, knockout of DNA-PKcs or treatment with its specific inhibitor NU7441 hampers the development of chronic kidney disease in male mice. In vitro, DNA-PKcs deficiency preserves epithelial cell phenotype and inhibits fibroblast activation induced by transforming growth factor-beta 1. Additionally, our results show that TAF7, as a possible substrate of DNA-PKcs, enhances mTORC1 activation by upregulating RAPTOR expression, which subsequently promotes metabolic reprogramming in injured epithelial cells and myofibroblasts. Taken together, DNA-PKcs can be inhibited to correct metabolic reprogramming via the TAF7/mTORC1 signaling in chronic kidney disease, and serve as a potential target for treating chronic kidney disease.
Collapse
|
23
|
Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2023; 19:53-72. [PMID: 36229672 DOI: 10.1038/s41581-022-00631-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent for various solid tumours, but its use is limited by adverse effects in normal tissues. In particular, cisplatin is nephrotoxic and can cause acute kidney injury and chronic kidney disease. Preclinical studies have provided insights into the cellular and molecular mechanisms of cisplatin nephrotoxicity, which involve intracellular stresses including DNA damage, mitochondrial pathology, oxidative stress and endoplasmic reticulum stress. Stress responses, including autophagy, cell-cycle arrest, senescence, apoptosis, programmed necrosis and inflammation have key roles in the pathogenesis of cisplatin nephrotoxicity. In addition, emerging evidence suggests a contribution of epigenetic changes to cisplatin-induced acute kidney injury and chronic kidney disease. Further research is needed to determine how these pathways are integrated and to identify the cell type-specific roles of critical molecules involved in regulated necrosis, inflammation and epigenetic modifications in cisplatin nephrotoxicity. A number of potential therapeutic targets for cisplatin nephrotoxicity have been identified. However, the effects of renoprotective strategies on the efficacy of cisplatin chemotherapy needs to be thoroughly evaluated. Further research using tumour-bearing animals, multi-omics and genome-wide association studies will enable a comprehensive understanding of the complex cellular and molecular mechanisms of cisplatin nephrotoxicity and potentially lead to the identification of specific targets to protect the kidney without compromising the chemotherapeutic efficacy of cisplatin.
Collapse
|
24
|
Wang SY, Xu Y, Hong Q, Chen XM, Cai GY. Mesenchymal stem cells ameliorate cisplatin-induced acute kidney injury via let-7b-5p. Cell Tissue Res 2022; 392:517-533. [PMID: 36543894 DOI: 10.1007/s00441-022-03729-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is a clinically common kidney disease. Age is an important factor that contributes to the susceptibility to AKI. Mesenchymal stem cells (MSCs) are a promising therapy for AKI, and miRNAs in exosomes (Exos) derived from MSCs are an important aspect of MSC treatment. However, the therapeutic effect of miRNA from MSC-derived Exos on AKI and the related mechanism have not been fully clarified. Whether there is a relationship between the mechanisms of senescence for AKI susceptibility and the therapeutic effect of MSCs has not been studied. We compared the degree of cisplatin-induced AKI injury in young and elderly mice and investigated changes in the expression of p53 and markers of DNA damage and apoptosis, which are important in both senescence and AKI. Ageing mice exhibited increased expression of p53 and pro-apoptosis markers. Upregulation of the senescence-associated DNA damage/p53 pathway may be an important susceptibility factor for cisplatin-induced AKI. Treatment with MSCs can reduce the degree of DNA damage and suppress p53 expression and apoptosis. Upon screening for differentially expressed miRNAs, let-7b-5p levels were found to be lower in aged mice than in young mice, and MSC treatment increased let-7b-5p levels. The presence of let-7b-5p in MSC-derived Exos alleviates tubular epithelial cell apoptosis by inhibiting p53, which reduces DNA damage and apoptosis pathway activity. Let-7b-5p downregulation may lead to increased renal AKI susceptibility, thus indicating that this miRNA is a potential driver of the MSC treatment response in AKI.
Collapse
|
25
|
Denisenko NP, Shuev GN, Mukhamadiev RH, Perfilieva OM, Kazakov RE, Kachanova AA, Milyutina OI, Konenkova OV, Ryzhkin SA, Ivashchenko DV, Bure IV, Kirienko SL, Zhmaeva EM, Mirzaev KB, Ametov AS, Poddubnaya IV, Sychev DA. Genetic markers associated with resistance to radioiodine therapy in thyroid cancer patients: Prospective cohort study. JOURNAL OF MODERN ONCOLOGY 2022. [DOI: 10.26442/18151434.2022.3.201867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background. The indication for radiotherapy in oncological practice are metastases of differentiated thyroid cancer after thyroidectomy, the presence of distant metastases, or stage N1b, or negative dynamics of blood thyroglobulin levels after thyroidectomy for thyroid cancer. The mechanism of action of radiotherapy is based on provoking double-stranded DNA breaks. It is important to study the role of polymorphisms of NFKB1, ATM, ATG16L2 and ATG10 genes, products of which are involved in the processes of DNA damage response pathway and autophagy, in the formation of resistance to radioiodine therapy of thyroid cancer patients.
Aim. To examine the association between NFKB1, ATM, ATG16L2 and ATG10 polymorphisms and resistance to radioiodine therapy in thyroid cancer patients.
Materials and methods. The study included 181 patients (37 men, 144 women; mean age 53.515.7 years) with histologically confirmed thyroid cancer and a history of thyroidectomy who received radioiodine therapy. Carriage of single-nucleotide polymorphisms (rs230493) NFKB1, (rs11212570) ATM, (rs10898880) ATG16L2 and (rs10514231, rs1864183, rs4703533) ATG10 was determined by real-time PCR using TaqMan kits.
Results. Among 181 patients, resistance to radioiodine therapy was observed in 11 (6.1%) cases. No significant associations between the individual polymorphisms and resistance to radioiodine therapy were obtained, p0.05. Haplotype analysis showed that carriage of the C-C ATG10 rs10514231-rs1864183 haplotype was associated with an increased risk of developing resistance to radioiodine therapy, p=0.04.
Conclusion. Further studies on large samples of radioiodine therapy-resistant patients using whole-genome sequencing methods are required to specify the role of genetic factors in the response to 131I therapy.
Collapse
|
26
|
Eleftheriadis T, Pissas G, Golfinopoulos S, Efthymiadi M, Liakopoulos V, Stefanidis I. Inhibition of Malate Dehydrogenase-2 Protects Renal Tubular Epithelial Cells from Anoxia-Reoxygenation-Induced Death or Senescence. Biomolecules 2022; 12:1415. [PMID: 36291624 PMCID: PMC9599925 DOI: 10.3390/biom12101415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Ischemia-reperfusion injury is the leading cause of acute kidney injury. Reactive oxygen species (ROS) production causes cell death or senescence. In cultures of primary human renal tubular epithelial cells (RPTECs) subjected to anoxia-reoxygenation, inhibition of the Krebs cycle at the level of malate dehydrogenase-2 (MDH-2) decreases hypoxia-inducible factor-1α and oxidative stress and protects from apoptotic or ferroptotic cell death. Inhibition of MDH-2 decreased reoxygenation-induced upregulation of p53 and p21, restored the levels of the proliferation marker Ki-67, and prevented the upregulation of the senescence marker beta-galactosidase and interleukin-1β production. MDH-2 inhibition reduced the reoxygenation-induced upregulation of ATP, but the alterations of critical cell metabolism enzymes allowed enough ATP production to prevent cell energy collapse. Thus, inhibition of the Krebs cycle at the level of MDH-2 protects RPTECs from anoxia-reoxygenation-induced death or senescence. MDH-2 may be a promising pharmaceutical target against ischemia-reperfusion injury.
Collapse
|
27
|
Zhang C, Guan Y, Zou J, Yang X, Bayliss G, Zhuang S. Histone methyltransferase MLL1 drives renal tubular cell apoptosis by p53-dependent repression of E-cadherin during cisplatin-induced acute kidney injury. Cell Death Dis 2022; 13:770. [PMID: 36068197 PMCID: PMC9448773 DOI: 10.1038/s41419-022-05104-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Mixed lineage leukemia 1 (MLL1) is a histone H3 lysine 4 (H3K4) methyltransferase that interacts with WD repeat domain 5 (WDR5) to regulate cell survival, proliferation, and senescence. The role of MLL1 in the pathogenesis of acute kidney injury (AKI) is unknown. In this study, we demonstrate that MLL1, WDR5, and trimethylated H3K4 (H3K4me3) were upregulated in renal tubular cells of cisplatin-induced AKI in mice, along with increased phosphorylation of p53 and decreased expression of E-cadherin. Administration of MM102, a selective MLL1/WDR5 complex inhibitor, improved renal function and attenuated tubular injury and apoptosis, while repressing MLL1, WDR5, and H3K4me3, dephosphorylating p53 and preserving E-cadherin. In cultured mouse renal proximal tubular cells (RPTCs) exposed to cisplatin, treatment with MM102 or transfection with siRNAs for either MLL1 or WDR5 also inhibited apoptosis and p53 phosphorylation while preserving E-cadherin expression; p53 inhibition with Pifithrin-α lowered cisplatin-induced apoptosis without affecting expression of MLL1, WDR5, and H3K4me3. Interestingly, silencing of E-cadherin offset MM102's cytoprotective effects, but had no effect on p53 phosphorylation. These findings suggest that MLL1/WDR5 activates p53, which, in turn, represses E-cadherin, leading to apoptosis during cisplatin-induced AKI. Further studies showed that MM102 effectively inhibited cisplatin-triggered DNA damage response (DDR), as indicated by dephosphorylation of ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) proteins, dephosphorylation of checkpoint kinase 1 and 2 (Chk1 and Chk2); depression of γ-H2AX; and restrained cell cycle arrest, as evidenced by decreased expression of p21 and phospho-histone H3 at serine 10 in vitro and in vivo. Overall, we identify MLL1 as a novel DDR regulator that drives cisplatin-induced RPTC apoptosis and AKI by modulating the MLL1/WDR5-/ATR/ATM-Chk-p53-E-cadherin axis. Targeting the MLL1/WDR5 complex may have a therapeutic potential for the treatment of AKI.
Collapse
Affiliation(s)
- Chunyun Zhang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
- Department of Nephrology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Guan
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Jianan Zou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Xu Yang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Georgia Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, R02903, USA.
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
2-Mercaptoethanol protects against DNA double-strand breaks after kidney ischemia and reperfusion injury through GPX4 upregulation. Pharmacol Rep 2022; 74:1041-1053. [PMID: 35989399 DOI: 10.1007/s43440-022-00403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 10/25/2022]
Abstract
BACKGROUND Kidney ischemia reperfusion injury (IRI) is characterized by tubular cell death. DNA double-strand breaks is one of the major sources of tubular cell death induced by IRI. 2-Mercaptoethanol (2-ME) is protective against DNA double-strand breaks derived from calf thymus and bovine embryo. Here, we sought to determine whether treatment with 2-ME attenuated DNA double-strand breaks, resulting in reduced kidney dysfunction and structural damage in IRI. METHODS Kidney IRI or sham-operation in mice was carried out. The mice were treated with 2-ME, Ras-selective lethal 3, or vehicle. Kidney function, tubular injury, DNA damage, antioxidant enzyme expression, and DNA damage response (DDR) kinases activation were assessed. RESULTS Treatment with 2-ME significantly attenuated kidney dysfunction, tubular injury, and DNA double-strand breaks after IRI. Among DDR kinases, IRI induced phosphorylation of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR), but IRI reduced phosphorylation of other DDR kinases including ataxia telangiectasia and Rad3 related, checkpoint kinase 1 (Chk1), Chk2, and Chinese hamster cells 1 (XRCC1). Treatment with 2-ME enhanced phosphorylation of ATM and ATM-mediated effector kinases in IRI-subjected kidneys, suggesting that 2-ME activates ATM-mediated DDR signaling pathway. Furthermore, 2-ME dramatically upregulated glutathione peroxidase 4 (GPX4) in IRI-subjected kidneys. Inhibition of GPX4 augmented adverse IRI consequences including kidney dysfunction, tubular injury, DNA double-strand breaks, and inactivation of ATM-mediated DDR signaling pathway after IRI in 2-ME-treated kidneys. CONCLUSIONS We have demonstrated that exogenous 2-ME protects against DNA double-strand breaks after kidney IRI through GPX4 upregulation and ATM activation.
Collapse
|
29
|
Li J, Yu C, Shen F, Cui B, Liu N, Zhuang S. Class IIa histone deacetylase inhibition ameliorates acute kidney injury by suppressing renal tubular cell apoptosis and enhancing autophagy and proliferation. Front Pharmacol 2022; 13:946192. [PMID: 35935816 PMCID: PMC9354984 DOI: 10.3389/fphar.2022.946192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Expression and function of histone deacetylases (HDACs) vary with cell types and pathological conditions. Our recent studies showed that pharmacological targeting class IIa HDACs attenuated renal fibrosis, but the effect of class IIa HDAC inhibition on acute kidney injury (AKI) remains unknown. In this study, we found that four class IIa HDACs (4, 5, 7, 9) were highly expressed in the kidney of folic acid (FA) and ischemia/reperfusion (I/R)-induced AKI in mice. Administration of TMP269, a potent and selective class IIa HDAC inhibitor, improved renal function and reduced tubular cell injury and apoptosis, with concomitant suppression of HDAC4 and elevation of acetyl-histone H3. Mechanistical studies showed that TMP269 treatment inhibited FA and I/R-induced caspase-3 cleavage, Bax expression and p53 phosphorylation. Conversely, TMP269 administration preserved expression of E-cadherin, BMP7, Klotho and Bcl-2 in injured kidneys. Moreover, TMP269 was effective in promoting cellular autophagy as indicated by increased expression of Atg7, beclin-1, and LC3II, and promoted renal tubular cell proliferation as shown by increased number of proliferating cell nuclear antigen-positive cells and expression of cyclin E. Finally, blocking class IIa HDACs inhibited FA-and I/R-induced phosphorylation of extracellular signal-regulated kinases 1 and 2, and p38, two signaling pathways associated with the pathogenesis of AKI. Collectively, these results suggest that pharmacological inhibition of class IIa HDACs protects against AKI through ameliorating apoptosis, enhancing autophagy and promoting proliferation of renal tubular cells by targeting multiple signaling pathways.
Collapse
Affiliation(s)
- Jialu Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Inhibition of PLK3 Attenuates Tubular Epithelial Cell Apoptosis after Renal Ischemia–Reperfusion Injury by Blocking the ATM/P53-Mediated DNA Damage Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201287. [PMID: 35783188 PMCID: PMC9249506 DOI: 10.1155/2022/4201287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Objective Renal ischemia–reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in transplanted kidneys. This study was aimed at exploring the role of PLK3 (polo-like kinase 3) in renal I/R injury, focusing on its relationship with oxidative stress-induced DNA damage and renal tubular epithelial cell (TEC) apoptosis. Methods TRAP-seq data from the development dataset GSE52004 and the validation dataset GSE121191 were analyzed using GEO2R. PLK3 overexpression plasmids and targeted silencing siRNAs were used in a model of hypoxia/reoxygenation (H/R) injury, and rAAV-9-PLK3-KD were administered to C57BL/6J mice exposed to I/R injury. The ATM-specific inhibitor KU-60019 was used to block the DNA damage response (DDR). Western blotting was performed to measure DDR- and apoptosis-associated protein expression. Cell viability was measured by CCK-8 reagent, and apoptosis was examined by flow cytometry and TUNEL assay. Furthermore, the fluorescent probes H2DCFH-DA and DHE were used to measure ROS production in vitro. The MDA level and SOD activity were measured to assess oxidative stress in vivo. KIM-1 staining and Scr and BUN were used to evaluate kidney injury. Results The mRNA and protein levels of PLK3 were markedly increased in the H/R injury and I/R injury models. GO terms showed that PLK3 was mainly involved in oxidative stress and DNA damage after renal I/R injury. Overexpression of PLK3 decreased cell viability and increased apoptosis. In contrast, targeted silencing of PLK3 expression decreased the Bax/Bcl-2 ratio by decreasing P53 phosphorylation, thereby reducing TEC apoptosis. Furthermore, KU-60019 reduced PLK3 activation and DDR-induced apoptosis, while overexpression of PLK3 reversed the mitigating effect of KU-60019 on TEC apoptosis. Similarly, rAAV-9-PLK3 KD mice exhibited a lower rate of TEC apoptosis and milder renal damage after I/R injury. Conclusion We demonstrate for the first time that PLK3 is involved in oxidative stress-induced DNA damage and TEC apoptosis in renal I/R injury. Inhibition of PLK3 attenuates TEC apoptosis after I/R injury by blocking the ATM/P53-mediated DDR. Therefore, PLK3 may serve as a potential therapeutic target for ischemic AKI.
Collapse
|
31
|
Prevention of anticancer therapy-induced neurotoxicity: putting DNA damage in perspective. Neurotoxicology 2022; 91:1-10. [PMID: 35487345 DOI: 10.1016/j.neuro.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe side effect of conventional cancer therapeutics (cAT) that significantly impacts the quality of life of tumor patients. The molecular mechanisms of CIPN are incompletely understood and there are no effective preventive or therapeutic measures available to date. Here, we present a brief overview of the current knowledge about mechanisms underlying CIPN and discuss DNA damage-related stress responses as feasible targets for the prevention of CIPN. In addition, we discuss that the nematode Caenorhabditis elegans is a useful 3R-conform model organism to further elucidate molecular mechanisms of CIPN and to identify novel lead compounds protecting from cAT-triggered neuropathy.
Collapse
|
32
|
Zhou ZY, Yang JY, Shao CZ, Luo F, Du W. Positive regulation of ataxia-telangiectasia-mutated protein (ATM) by E2F transcription Factor 1 (E2F-1) in cisplatin-resistant nasopharyngeal carcinoma cells. World J Surg Oncol 2022; 20:88. [PMID: 35303867 PMCID: PMC8933998 DOI: 10.1186/s12957-022-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Objective To explore the mechanism of E2F transcription Factor 1 (E2F-1)-mediated ataxia-telangiectasia-mutated protein (ATM) in cisplatin (DDP)-resistant nasopharyngeal carcinoma (NPC). Methods E2F-1 and ATM expression was assessed in DDP-resistant NPC cell lines (CNE2/DDP and HNE1/DDP) and parental cells. Then, DDP-resistant NPC cells were transfected with control shRNA (short hairpin RNA) or E2F-1 shRNAs with or without ATM lentiviral activation particles. The half maximal inhibitory concentration (IC50) was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, and the cell cycle and cell proliferation were measured by flow cytometry and EdU staining, respectively. In addition, the expression of genes and proteins was quantified by quantitative reverse-transcription polymerase chain reaction (qRT–PCR) and western blotting, respectively. Results Both E2F-1 and ATM expression in DDP-resistant NPC cells was much higher than that in parental cells. E2F-1 shRNA reduced ATM expression in DDP-resistant NPC cells, but ATM overexpression had no significant effect on E2F-1. ATM overexpression enhanced DDP resistance in DDP-resistant NPC cells with increased IC50 values, which was reversed by E2F-1 inhibition. Meanwhile, ATM overexpression resulted in upregulation of ABCA2 and ABCA5 in DDP-resistant NPC cells, induced elevations in the transition of the cells into S-phase, and increased cell proliferation with enhanced expression of cyclin E1, CDK2, and Ki67, which was reversed by E2F-1 shRNAs. Conclusion Downregulation of E2F-1, possibly by regulating ATM, could block the cell cycle in the G1 phase and reduce the proliferation of CNE2/DDP cells, thereby reversing the resistance of human NPC cells to DDP.
Collapse
Affiliation(s)
- Zun-Yan Zhou
- Department of Oncology, The First People's Hospital of Jingzhou, Jingzhou, 434000, China
| | - Ji-Yuan Yang
- Department of Oncology, The First People's Hospital of Jingzhou, Jingzhou, 434000, China
| | - Cheng-Ze Shao
- Department of Oncology, The First People's Hospital of Jingzhou, Jingzhou, 434000, China
| | - Fei Luo
- Department of Oncology, The First People's Hospital of Jingzhou, Jingzhou, 434000, China
| | - Wei Du
- Department of Oncology, The First People's Hospital of Jingzhou, Jingzhou, 434000, China.
| |
Collapse
|
33
|
Zhang Z, Tan Z, Lv Q, Wang L, Yu K, Yang H, Liang H, Lu T, Ji Y, Chen J, He W, Chen Z, Chen S, Shen X. High Expression of C1ORF112 Predicts a Poor Outcome: A Potential Target for the Treatment of Low-Grade Gliomas. Front Genet 2021; 12:710944. [PMID: 34880897 PMCID: PMC8645850 DOI: 10.3389/fgene.2021.710944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Glioma is the most common primary tumor of the central nervous system and is associated with poor overall survival, creating an urgent need to identify survival-associated biomarkers. C1ORF112, an alpha-helical protein, is overexpressed in some cancers; however, its prognostic role has not yet been explored in gliomas. Thus, in this study, we attempted to address this by determining the prognostic value and potential function of C1ORF112 in low-grade gliomas (LGGs). Methods: The expression of C1ORF112 in normal and tumor tissues was analyzed using data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Oncomine, and Rembrandt databases. The genetic changes of C1ORF112 in LGG were analyzed using cBioPortal. Survival analysis was used to evaluate the relationship between C1ORF112 expression and survival in patients with LGG. Correlation between immune infiltration and C1ORF112 expression was determined using Timer software. Additionally, data from three online platforms were integrated to identify the co-expressed genes of C1ORF112. The potential biological functions of C1ORF112 were investigated by enrichment analysis. Results: C1ORF112 mRNA was highly expressed in LGGs (p < 0.01). Area under the ROC curve (AUC) showed that the expression of C1ORF112 in LGG was 0.673 (95% confidence interval [CI] = 0.618–0.728). Kaplan-Meier survival analysis showed that patients with high C1ORF112 expression had lower OS than patients with low C1ORF112 expression (p < 0.05). Multivariate analysis showed that high expression of C1ORF112 was an independent prognostic factor for the overall survival in patients from TCGA and CGGA databases. C1ORF112 expression was positively correlated with six immunoinfiltrating cells (all p < 0.001). The enrichment analysis suggested the enrichment of C1ORF112 and co-expressed genes in cell cycle and DNA replication. Conclusion: This study suggested that C1ORF112 may be a prognostic biomarker and a potential immunotherapeutic target for LGG.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
| | - Zilong Tan
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Lichong Wang
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Yu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Yang
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianzhu Lu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Yulong Ji
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Junjun Chen
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Wei He
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Chen
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
| | - Shuhui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Xiaoli Shen
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Hu X, Ma Z, Wen L, Li S, Dong Z. Autophagy in Cisplatin Nephrotoxicity during Cancer Therapy. Cancers (Basel) 2021; 13:5618. [PMID: 34830772 PMCID: PMC8616020 DOI: 10.3390/cancers13225618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent but its clinical use is often limited by nephrotoxicity. Autophagy is a lysosomal degradation pathway that removes protein aggregates and damaged or dysfunctional cellular organelles for maintaining cell homeostasis. Upon cisplatin exposure, autophagy is rapidly activated in renal tubule cells to protect against acute cisplatin nephrotoxicity. Mechanistically, the protective effect is mainly related to the clearance of damaged mitochondria via mitophagy. The role and regulation of autophagy in chronic kidney problems after cisplatin treatment are currently unclear, despite the significance of research in this area. In cancers, autophagy may prevent tumorigenesis, but autophagy may reduce the efficacy of chemotherapy by protecting cancer cells. Future research should focus on developing drugs that enhance the anti-tumor effects of cisplatin while protecting kidneys during cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xiaoru Hu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Lu Wen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Siyao Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
35
|
Xiang X, Zhu J, Zhang G, Ma Z, Livingston MJ, Dong Z. Proximal Tubule p53 in Cold Storage/Transplantation-Associated Kidney Injury and Renal Graft Dysfunction. Front Med (Lausanne) 2021; 8:746346. [PMID: 34746182 PMCID: PMC8569378 DOI: 10.3389/fmed.2021.746346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Kidney injury associated with cold storage/transplantation is a primary factor for delayed graft function and poor outcome of renal transplants. p53 contributes to both ischemic and nephrotoxic kidney injury, but its involvement in kidney cold storage/transplantation is unclear. Here, we report that p53 in kidney proximal tubules plays a critical role in cold storage/transplantation kidney injury and inhibition of p53 can effectively improve the histology and function of transplanted kidneys. In a mouse kidney cold storage/transplantation model, we detected p53 accumulation in proximal tubules in a cold storage time-dependent manner, which correlated with tubular injury and cell death. Pifithrin-α, a pharmacologic p53 inhibitor, could reduce acute tubular injury, apoptosis and inflammation at 24 h after cold storage/transplantation. Similar effects were shown by the ablation of p53 from proximal tubule cells. Notably, pifithrin-α also ameliorated kidney injury and improved the function of transplanted kidneys in 6 days when it became the sole life-supporting kidney in recipient mice. in vitro, cold storage followed by rewarming induced cell death in cultured proximal tubule cells, which was accompanied by p53 activation and suppressed by pifithrin-α and dominant-negative p53. Together, these results support a pathogenic role of p53 in cold storage/transplantation kidney injury and demonstrate the therapeutic potential of p53 inhibitors.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Jiefu Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Zhang
- Center of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Man J. Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| |
Collapse
|
36
|
Yamashita N, Nakai K, Nakata T, Nakamura I, Kirita Y, Matoba S, Humphreys BD, Tamagaki K, Kusaba T. Cumulative DNA damage by repeated low-dose cisplatin injection promotes the transition of acute to chronic kidney injury in mice. Sci Rep 2021; 11:20920. [PMID: 34686727 PMCID: PMC8536734 DOI: 10.1038/s41598-021-00392-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a commonly used anticancer drug, but nephrotoxicity is a dose-limiting adverse effect. Recent experimental and clinical observations have demonstrated that multiple injections of cisplatin induce the transition to chronic kidney disease; however, the underlying mechanisms remain unclear. We found that multiple injections of higher doses of cisplatin in a shorter interval affected the severity of kidney injury, causing kidney fibrosis to develop at a later time point. An additional injection of cisplatin during the recovery period after a prior injury, when proximal tubule epithelia are actively proliferating, induced substantial tubular injury by inducing more severe DNA damage than that induced by a single injection. Lineage tracing analysis of proximal tubular epithelia demonstrated that the tubular epithelia that underwent multiple rounds of cell division after multiple injections of cisplatin existed at the chronic phase, and these populations often expressed vcam1 + , suggesting the induction of proinflammatory failed-repair tubular epithelia. Our study revealed that as cisplatin exerts cytotoxic effects on actively proliferating cells, additional cisplatin injections before the completion of tubular repair exacerbates kidney injury through cumulative DNA damage. Appropriate both the setting of dosage and dosing intervals, with careful monitoring, are essential to prevent nephrotoxicity of repeated cisplatin treatment in cancer patients.
Collapse
Affiliation(s)
- Noriyuki Yamashita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Kunihiro Nakai
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohiro Nakata
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Itaru Nakamura
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Benjamin D Humphreys
- Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, USA
| | - Keiichi Tamagaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tetsuro Kusaba
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
37
|
Eleftheriadis T, Pissas G, Filippidis G, Liakopoulos V, Stefanidis I. The Role of Indoleamine 2,3-Dioxygenase in Renal Tubular Epithelial Cells Senescence under Anoxia or Reoxygenation. Biomolecules 2021; 11:1522. [PMID: 34680153 PMCID: PMC8533884 DOI: 10.3390/biom11101522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Ischemia-reperfusion injury is the commonest form of acute kidney injury (AKI). Tubular epithelial cell senescence contributes to incomplete recovery from AKI and predisposes to subsequent chronic kidney disease. In cultures of primary proximal renal tubular epithelial cells (RPTECs) subjected to anoxia or reoxygenation, we evaluated the role of indoleamine 2,3-dioxygenase 1 (IDO) in cellular senescence. Proteins of interest were assessed with Western blotting or enzyme-linked immunosorbent assay or histochemically. Under anoxia or reoxygenation, IDO expression and activity were increased. Moreover, the two IDO-derived pathways, the general control nonderepressible 2 kinase (GCN2K) pathway and the aryl-hydrocarbon receptor (AhR) pathway, were also activated. A DNA damage response (DDR) took place and led to increased levels of the cell-cycle inhibitors p21 and p16, and senescence-associated β-galactosidase (SA-β-Gal) activity. Cell proliferation was inhibited, and more IL-6 was produced. The IDO inhibitor 1-DL-methyl-tryptophan ameliorated the DDR; decreased p21, p16, and SA-β-Gal activity; restored cell proliferation; and decreased IL-6 production. The AhR inhibitor CH223191 did not affect the above parameters. In conclusion, anoxia and the subsequent reoxygenation upregulate IDO. IDO depletes tryptophan and activates GCN2K. The latter enhances the anoxia- or reoxygenation-induced DDR, resulting in increased p21 and p16 expression and eventually leading to RPTEC senescence. Since cellular senescence affects AKI outcome, the role of IDO in cellular senescence and the possible therapeutic role of IDO inhibitors deserve further investigation.
Collapse
|
38
|
Bonventre JV. Ataxia Telangiectasia and Rad3-Related Activation by DNA Damage Mitigates Maladaptive Repair after Acute Kidney Injury. Nephron Clin Pract 2021; 146:274-277. [PMID: 34649246 DOI: 10.1159/000519447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
DNA damage is an important consequence of injury to the proximal tubule. The proximal tubule cell responds to this damage by mounting a DNA damage response (DDR). Two protein kinases, ataxia-telangiectasia mutated (ATM) or ataxia telangiectasia and Rad3-related (ATR), play an important role in this DDR. If efficient, the DDR can lead to repair of the DNA, cell renewal, and return to a healthy state. In many cases, however, especially in the setting of baseline kidney injury, there is incomplete repair. In human chronic kidney disease (CKD) and in human kidney organoids exposed to acute injury, there is increased evidence of DNA damage and activation of ATR. This review focuses on 3 aspects of the DNA damage and response to it: (1) DNA damage and the DDR precipitated by acute injury; (2) protection afforded by the DDR kinase, ATR, in multiple mouse models of acute kidney injury; and (3) downstream effects of genetic inhibition of ATR in the proximal tubule, leading to maladaptive repair, fibrosis, and CKD.
Collapse
Affiliation(s)
- Joseph V Bonventre
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Yang Y, Zhu X, Yu G, Ma J. Protective Effect of Pyxinol, One Active Ingredient of Lichenes on Cisplatin-Induced Nephrotoxicity via Ameliorating DNA Damage Response. Front Pharmacol 2021; 12:735731. [PMID: 34552492 PMCID: PMC8450395 DOI: 10.3389/fphar.2021.735731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cisplatin is a valuable chemotherapeutic agent against malignant tumors. However, the clinical use of cisplatin is limited by its side effects such as renal injury. Pyxinol is an active constituent of Lichenes and its effects on cisplatin-induced nephrotoxicity is currently unknown. This study aims to examine the potential protective effects of pyxinol on cisplatin-induced renal injury and explore the underlying mechanisms. Methods:In vivo rat model of cisplatin-induced nephrotoxicity was induced by intraperitoneal (i.p) administration of cisplatin. The blood urea nitrogen and creatinine levels were measured and renal histological analysis was conducted to evaluate the renal function; The TUNEL staining, western blotting and real-time PCR assays were conducted to examine related molecular changes. Finally, the in vivo anti-tumor efficacy was examined in the xenograft tumor model using nude mice. Results: Pretreatment with pyxinol attenuated cisplatin-induced increase in blood urea nitrogen, creatinine and urinary protein excretion and the magnitude of injury in the renal tubules. Pyxinol ameliorated the activation of p53 via attenuating the DNA damage response, which then attenuated the tubular cell apoptosis. Finally, pyxinol could potentiate the in vivo anti-tumor efficacy of cisplatin against the xenograft tumor of cervical cancer cells in nude mice. Conclusions: Combining pyxinol with cisplatin could alleviate cisplatin-induced renal injury without decreasing its therapeutic efficacy, which might represent a beneficial adjunct therapy for cisplatin-based chemotherapeutic regimens in the clinic.
Collapse
Affiliation(s)
- Yanting Yang
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Xiuhong Zhu
- People's Hospital of Jimo District, Qingdao, China
| | - Guohua Yu
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China.,Department of Pathology, Affiliated Yantai Yuhuangding Hospital, Medical College of Qingdao University, Yantai, China
| | - Jinbo Ma
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
40
|
Bao W, Xiao Z, Wang Z, Liu D, Tan P, Huang M. Comprehensive analysis of the long non-coding RNA expression profile and functional roles in a contrast-induced acute kidney injury rat model. Exp Ther Med 2021; 22:739. [PMID: 34055056 PMCID: PMC8138274 DOI: 10.3892/etm.2021.10171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been identified as a class of regulatory RNAs that participate in both physiological and pathological conditions, including acute kidney injury. However, the roles of lncRNA dysregulation in the pathogenesis of contrast-induced acute kidney injury (CI-AKI) are largely unknown. In the present study, the expression profiles of lncRNAs in kidney tissue were compared between rats with CI-AKI and controls using high-throughput RNA sequencing. In total, 910 differentially expressed (DE) lncRNAs (DElncRNAs), including 415 downregulated and 495 upregulated lncRNAs, were identified at 12 h after intra-arterial iodinated contrast medium injection (fold change ≥2; P<0.05). Eight DElncRNAs were further selected and validated using reverse transcription-quantitative polymerase chain reaction. A previous study defined microRNA (miRNA) and mRNA expression changes in the same CI-AKI model. In the present study, a lncRNA-mRNA co-expression network comprising 349 DElncRNAs and 202 DEmRNAs was constructed. The function of these DElncRNAs was mainly associated with oxidative stress and inflammation. Additionally, lncRNA-associated competing endogenous RNA (ceRNA) analysis revealed a network comprising 40 DElncRNA nodes, 5 DEmiRNA nodes and 59 DEmRNA nodes. Among which, the carnosine dipeptidase 1-specific and the transmembrane protein 184B-specific networks were likely to be associated with CI-AKI. The results of the present study revealed the expression profile and potential roles of lncRNAs in CI-AKI, and provide a framework for further mechanistic studies.
Collapse
Affiliation(s)
- Weiwei Bao
- Department of Cardiology, 900 Hospital of The Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhigang Xiao
- Department of Cadre Health Care, 900 Hospital of The Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Zhiqing Wang
- Graduate College of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Donglin Liu
- Department of Cardiology, 900 Hospital of The Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Ping Tan
- Department of Cadre Health Care, 900 Hospital of The Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Mingfang Huang
- Department of Cardiology, 900 Hospital of The Joint Logistics Team, Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
41
|
Peired AJ, Antonelli G, Angelotti ML, Allinovi M, Guzzi F, Sisti A, Semeraro R, Conte C, Mazzinghi B, Nardi S, Melica ME, De Chiara L, Lazzeri E, Lasagni L, Lottini T, Landini S, Giglio S, Mari A, Di Maida F, Antonelli A, Porpiglia F, Schiavina R, Ficarra V, Facchiano D, Gacci M, Serni S, Carini M, Netto GJ, Roperto RM, Magi A, Christiansen CF, Rotondi M, Liapis H, Anders HJ, Minervini A, Raspollini MR, Romagnani P. Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Sci Transl Med 2021; 12:12/536/eaaw6003. [PMID: 32213630 DOI: 10.1126/scitranslmed.aaw6003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 10/15/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Acute tissue injury causes DNA damage and repair processes involving increased cell mitosis and polyploidization, leading to cell function alterations that may potentially drive cancer development. Here, we show that acute kidney injury (AKI) increased the risk for papillary renal cell carcinoma (pRCC) development and tumor relapse in humans as confirmed by data collected from several single-center and multicentric studies. Lineage tracing of tubular epithelial cells (TECs) after AKI induction and long-term follow-up in mice showed time-dependent onset of clonal papillary tumors in an adenoma-carcinoma sequence. Among AKI-related pathways, NOTCH1 overexpression in human pRCC associated with worse outcome and was specific for type 2 pRCC. Mice overexpressing NOTCH1 in TECs developed papillary adenomas and type 2 pRCCs, and AKI accelerated this process. Lineage tracing in mice identified single renal progenitors as the cell of origin of papillary tumors. Single-cell RNA sequencing showed that human renal progenitor transcriptome showed similarities to PT1, the putative cell of origin of human pRCC. Furthermore, NOTCH1 overexpression in cultured human renal progenitor cells induced tumor-like 3D growth. Thus, AKI can drive tumorigenesis from local tissue progenitor cells. In particular, we find that AKI promotes the development of pRCC from single progenitors through a classical adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Giulia Antonelli
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Marco Allinovi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy.,Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence 50139, Italy
| | - Francesco Guzzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Alessandro Sisti
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Carolina Conte
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Sara Nardi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Maria Elena Melica
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Letizia De Chiara
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence 50139, Italy
| | - Samuela Landini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Sabrina Giglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Andrea Mari
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Fabrizio Di Maida
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Alessandro Antonelli
- Department of Urology, Spedali Civili Hospital, University of Brescia, Brescia 25123, Italy
| | - Francesco Porpiglia
- Department of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Riccardo Schiavina
- Department of Urology, S. Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | | | - Davide Facchiano
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Mauro Gacci
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Sergio Serni
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Marco Carini
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rosa Maria Roperto
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Alberto Magi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | | | - Mario Rotondi
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Scientific Institute of Pavia, Pavia 28100, Italy
| | | | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Klinikum der LMU München, Munich 80336, Germany
| | - Andrea Minervini
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | | | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy. .,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| |
Collapse
|
42
|
McEvoy CM, Clotet-Freixas S, Tokar T, Pastrello C, Reid S, Batruch I, RaoPeters AAE, Kaths JM, Urbanellis P, Farkona S, Van JAD, Urquhart BL, John R, Jurisica I, Robinson LA, Selzner M, Konvalinka A. Normothermic Ex-vivo Kidney Perfusion in a Porcine Auto-Transplantation Model Preserves the Expression of Key Mitochondrial Proteins: An Unbiased Proteomics Analysis. Mol Cell Proteomics 2021; 20:100101. [PMID: 34033948 PMCID: PMC8253910 DOI: 10.1016/j.mcpro.2021.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Normothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of donation after circulatory death injury compared with static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at three time points from pig kidneys subjected to 30 min of warm ischemia, followed by 8 h of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (false discovery rate < 0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (electron transfer flavoprotein subunit beta and carnitine O-palmitoyltransferase 2, mitochondrial) by immunoblotting. Transcription factor databases identified members of the peroxisome proliferator-activated receptors (PPAR) family of transcription factors as the upstream regulators of our dataset, and we confirmed increased expression of PPARA, PPARD, and RXRA in NEVKP with reverse transcription polymerase chain reaction. The proteome-level changes observed in NEVKP mediate critical metabolic pathways. These effects may be coordinated by PPAR-family transcription factors and may represent novel therapeutic targets in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shelby Reid
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adrien A E RaoPeters
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - J Moritz Kaths
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, University Essen-Duisburg, Essen, Germany
| | - Peter Urbanellis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lisa A Robinson
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Markus Selzner
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
43
|
Li F, Sun A, Cheng G, Liu D, Xiao J, Zhao Z, Dong Z. Compound C Protects Against Cisplatin-Induced Nephrotoxicity Through Pleiotropic Effects. Front Physiol 2021; 11:614244. [PMID: 33424637 PMCID: PMC7785967 DOI: 10.3389/fphys.2020.614244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
AICAR (Acadesine/AICA riboside) as an activator of AMPK, can protect renal tubular cells from cisplatin induced apoptosis. But in our experiment, the dorsomorphin (compound C, an inhibitor of AMPK) also significantly reduced cisplatin induced renal tubular cells apoptosis. Accordingly, we tested whether compound C can protect cisplatin-induced nephrotoxicity and the specific mechanism. Here, we treated Boston University mouse proximal tubular cells (BUMPT-306) with cisplatin and/or different dosages of AICAR (Acadesine/AICA riboside) or compound C to confirm the effect of AICAR and compound C in vitro. The AMPK-siRNA treated cells to evaluate whether the protective effect of compound C was through inhibiting AMPK. Male C57BL/6 mice were used to verify the effect of compound C in vivo. Both compound C and AICAR can reduce renal tubular cells apoptosis in dose-dependent manners, and compound C decreased serum creatinine and renal tubular injury induced by cisplatin. Mechanistically, compound C inhibited P53, CHOP and p-IREα during cisplatin treatment. Our results demonstrated that compound C inhibited AMPK, but the renal protective effects of compound C were not through AMPK. Instead, compound C protected cisplatin nephrotoxicity by inhibiting P53 and endoplasmic reticulum (ER) stress. Therefore, compound C may protect against cisplatin-induced nephrotoxicity through pleiotropic effects.
Collapse
Affiliation(s)
- Fanghua Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Anbang Sun
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Genyang Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
44
|
HIF in Nephrotoxicity during Cisplatin Chemotherapy: Regulation, Function and Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13020180. [PMID: 33430279 PMCID: PMC7825709 DOI: 10.3390/cancers13020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cisplatin is a widely used chemotherapy drug, but its use and efficacy are limited by its nephrotoxicity. HIF has protective effects against kidney injury during cisplatin chemotherapy, but it may attenuate the anti-cancer effect of cisplatin. In this review, we describe the role and regulation of HIF in cisplatin-induced nephrotoxicity and highlight the therapeutic potential of targeting HIF in chemotherapy. Abstract Cisplatin is a highly effective, broad-spectrum chemotherapeutic drug, yet its clinical use and efficacy are limited by its side effects. Particularly, cancer patients receiving cisplatin chemotherapy have high incidence of kidney problems. Hypoxia-inducible factor (HIF) is the “master” transcription factor that is induced under hypoxia to trans-activate various genes for adaptation to the low oxygen condition. Numerous studies have reported that HIF activation protects against AKI and promotes kidney recovery in experimental models of cisplatin-induced acute kidney injury (AKI). In contrast, little is known about the effects of HIF on chronic kidney problems following cisplatin chemotherapy. Prolyl hydroxylase (PHD) inhibitors are potent HIF inducers that recently entered clinical use. By inducing HIF, PHD inhibitors may protect kidneys during cisplatin chemotherapy. However, HIF activation by PHD inhibitors may reduce the anti-cancer effect of cisplatin in tumors. Future studies should test PHD inhibitors in tumor-bearing animal models to verify their effects in kidneys and tumors.
Collapse
|
45
|
Sirtuins play critical and diverse roles in acute kidney injury. Pediatr Nephrol 2021; 36:3539-3546. [PMID: 33411071 PMCID: PMC7788193 DOI: 10.1007/s00467-020-04866-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is an extremely common medical affliction affecting both adult and pediatric patients resulting from hypoxic, nephrotoxic, and septic insults affecting approximately 20% of all hospital patients and up to 50% of patients in the intensive care unit. There are currently no therapeutics for patients who suffer AKI. Much recent work has focused on designing and implementing therapeutics for AKI. This review focuses on a family of enzymes known as sirtuins that play critical roles in regulating many cellular and biological functions. There are 7 mammalian sirtuins (SIRT1-7) that play roles in regulating the acylation of a wide variety of pathways. Furthermore, all but one of the mammalian sirtuins have been shown to play critical roles in mediating AKI based on preclinical studies. These diverse enzymes show exciting potential for therapeutic manipulation. This review will focus on the specific roles of each of the investigated sirtuins and the potential for manipulation of the various sirtuins and their effector pathways in mediating kidney injury.
Collapse
|
46
|
Li YY, Lu XY, Sun JL, Wang QQ, Zhang YD, Zhang JB, Fan XH. Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba. Chin J Nat Med 2020; 17:672-681. [PMID: 31526502 DOI: 10.1016/s1875-5364(19)30081-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Evidence continues to grow on potential health risks associated with Ginkgo biloba and its constituents. While biflavonoid is a subclass of the flavonoid family in Ginkgo biloba with a plenty of pharmacological properties, the potential toxicological effects of biflavonoids remains largely unknown. Thus, the aim of this study was to investigate the in vitro and in vivo toxicological effects of the biflavonoids from Ginkgo biloba (i.e., amentoflavone, sciadopitysin, ginkgetin, isoginkgetin, and bilobetin). In the in vitro cytotoxicity test, the five biflavonoids all reduced cell viability in a dose-dependent manner in human renal tubular epithelial cells (HK-2) and human normal hepatocytes (L-02), indicating they might have potential liver and kidney toxicity. In the in vivo experiments, after intragastrical administration of these biflavonoids at 20 mg·kg-1·d-1 for 7 days, serum biochemical analysis and histopathological examinations were performed. The activity of alkaline phosphatase was significantly increased after all the biflavonoid administrations and widespread hydropic degeneration of hepatocytes was observed in ginkgetin or bilobetin-treated mice. Moreover, the five biflavonoids all induced acute kidney injury in treated mice and the main pathological lesions were confirmed to the tubule, glomeruli, and interstitium injuries. As the in vitro and in vivo results suggested that these biflavonoids may be more toxic to the kidney than the liver, we further detected the mechanism of biflavonoids-induced nephrotoxicity. The increased TUNEL-positive cells were detected in kidney tissues of biflavonoids-treated mice, accompanied by elevated expression of proapoptotic protein BAX and unchanged levels of antiapoptotic protein BCL-2, indicating apoptosis was involved in biflavonoids-induced nephrotoxicity. Taken together, our results suggested that the five biflavonoids from Ginkgo biloba may have potential hepatic and renal toxicity and more attentions should be paid to ensure Ginkgo biloba preparations safety.
Collapse
Affiliation(s)
- Yun-Ying Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao-Yan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia-Li Sun
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing-Qing Wang
- Zhejiang University - Wanbangde Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Hangzhou 310058, China
| | - Yao-Dan Zhang
- Zhejiang University - Wanbangde Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Hangzhou 310058, China
| | - Jian-Bing Zhang
- Zhejiang University - Wanbangde Pharmaceutical Group Joint Research Center for Chinese Medicine Modernization, Hangzhou 310058, China
| | - Xiao-Hui Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Pang FM, Yan H, Mo JL, Li D, Chen Y, Zhang L, Liu ZQ, Zhou HH, Wu J, Li X. Integrative analyses identify a DNA damage repair gene signature for prognosis prediction in lower grade gliomas. Future Oncol 2020; 16:367-382. [PMID: 32065545 DOI: 10.2217/fon-2019-0764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: The DNA damage repair (DDR) pathways play important roles for regulating cancer progression and therapeutic response. IDH mutations, well-known prognosis biomarkers for glioma, lead to hypermethylation of tumor cells and affect genes' expression. Whether IDH mutations affect glioma prognosis through influencing the expression of DDR genes remains unclear. Methods: A total of 272 DDR genes were selected for differential expression and survival analysis. The identified genes were then utilized to construct the prognosis predicting model. Results: PARPBP, PLK3, POLL and WEE1 were found differential expressed between IDH mutations carriers and wild-type carriers, and were associated with survival of low grade glioma (LGG) patients. The predicting algorithm can predicts the prognosis of LGG patients. Conclusion: IDH mutations may affect LGG prognosis through regulation of DDR pathways.
Collapse
Affiliation(s)
- Feng-Mei Pang
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Han Yan
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jun-Luan Mo
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China
| | - Dan Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Yi Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhao-Qian Liu
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xi Li
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| |
Collapse
|
48
|
Lu QB, Du Q, Wang HP, Tang ZH, Wang YB, Sun HJ. Salusin-β mediates tubular cell apoptosis in acute kidney injury: Involvement of the PKC/ROS signaling pathway. Redox Biol 2019; 30:101411. [PMID: 31884071 PMCID: PMC6939056 DOI: 10.1016/j.redox.2019.101411] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Salusin-β is abundantly expressed in many organs and tissues including heart, blood vessels, brain and kidneys. Recent studies have identified salusin-β as a bioactive peptide that contributes to various diseases, such as atherosclerosis, hypertension, diabetes and metabolic syndrome. However, the role of salusin-β in the pathogenesis of acute kidney injury (AKI) is largely unclear. In the present study, we investigated the roles of salusin-β in cisplatin or lipopolysaccharide (LPS)-induced renal injury. Herein, we found that salusin-β expression was upregulated in both renal tubular cells and kidney tissues induced by both cisplatin and LPS. In vitro, silencing of salusin-β diminished, whereas overexpression of salusin-β exaggerated the increased PKC phosphorylation, oxidative stress, histone γH2AX expression, p53 activation and apoptosis in either cisplatin or LPS-challenged renal tubular cells. More importantly, salusin-β overexpression-induced tubular cell apoptosis were abolished by using the PKC inhibitor Go 6976, reactive oxygen species (ROS) scavenger NAC, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin (Apo) or p53 inhibitor Pifithrin-α. In animals, blockade of salusin-β alleviated PKC phosphorylation, ROS accumulation, DNA damage, and p53 activation as well as renal dysfunction in mice after administration of cisplatin or LPS. Taken together, these results suggest that overexpressed salusin-β is deleterious in AKI by activation of the PKC/ROS signaling pathway, thereby priming renal tubular cells for apoptosis and death.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Qiong Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Hui-Ping Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Zi-Han Tang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yuan-Ben Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
49
|
Ridzuan NRA, Rashid NA, Othman F, Budin SB, Hussan F, Teoh SL. Protective Role of Natural Products in Cisplatin-Induced Nephrotoxicity. Mini Rev Med Chem 2019; 19:1134-1143. [PMID: 30894108 DOI: 10.2174/1389557519666190320124438] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/31/2023]
Abstract
Cisplatin is a widely used antineoplastic agent for the treatment of metastatic tumors, advanced bladder cancer and many other solid tumors. However, at higher doses, toxicities such as nephrotoxicity may appear. Cisplatin leads to DNA damage and subsequently renal cell death. Besides that, oxidative stress is also implicated as one of the main causes of nephrotoxicity. Several studies showed that numerous natural products: ginseng, curcumin, licorice, honey and pomegranate were able to reduce the oxidative stress by restoring the levels of antioxidant enzymes and also at the same time act as an anti-inflammatory agent. Furthermore, pre-treatment with vitamin supplementation, such as vitamin C, E and riboflavin markedly decreased serum urea and increased the levels of antioxidant enzymes in the kidney even after cisplatin induction in cancer patients. These natural products possess potent antioxidant and anti-inflammatory medicinal properties, and they can be safely used as a supplementary regime or combination therapy against cisplatin-induced nephrotoxicity. The present review focused on the protective role of a few natural products which is widely used in folk medicines in cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Nurul Raudzah Adib Ridzuan
- Department of Anatomy, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norhashima Abd Rashid
- Biomedical Science Program, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Faizah Othman
- Department of Anatomy, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Biomedical Science Program, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farida Hussan
- Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
8-Acetonyldihydronitidine inhibits the proliferation of human colorectal cancer cells via activation of p53. Eur J Pharmacol 2019; 854:256-264. [DOI: 10.1016/j.ejphar.2019.03.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
|