1
|
Kou Y, Chen Y, Feng T, Chen L, Wang H, Sun N, Zhao S, Yang T, Jiao W, Feng G, Fan H, Zhao Y. Glufosinate-ammonium causes liver injury in zebrafish by blocking the Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:148-155. [PMID: 37676913 DOI: 10.1002/tox.23968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/27/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Glufosinate-ammonium (GLA) is a widely used herbicide, but less research has been done on its harmful effects on non-target organisms, especially aquatic organisms. In this study, 600 adult zebrafish were exposed to different concentration of GLA (0, 1.25, 2.5, 5, 10, and 20 mg/L) for 7 days, and the livers were dissected on the eighth day to examine the changes in liver structure, function, oxidative stress, inflammation, apoptosis, and Nrf2 pathway, and finally to clarify the mechanism of GLA induced liver injury in zebrafish. The levels of alanine aminotransferase, aspartate aminotransferase, reactive oxygen species, malondialdehyde, inflammatory factors (IL-6 and TNF-α), and caspase-3 gradually increased, while the levels of superoxide dismutase, catalase, glutathione, and glutathione peroxidase gradually decreased with the increase of GLA concentration. The Nrf2 pathway was activated at low concentrations (1.25-5 mg/L) and significantly inhibited at high concentrations (10 and 20 mg/L). These results suggested that GLA could cause oxidative stress, inflammation, and apoptosis in zebrafish liver. Therefore, GLA can cause liver injury in zebrafish, and at high concentrations, the inhibition of Nrf2 pathway is one of the important causes of liver injury.
Collapse
Affiliation(s)
- Yuhong Kou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tongtong Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Luomeng Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Jiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guofeng Feng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Zhang X, Mei D, Li Y, You M, Wang D, Yao D, Xu Y, Zhai L, Wang Y. Arsenic exposure via drinking water during pregnancy and lactation induces autism-like behaviors in male offspring mice. CHEMOSPHERE 2022; 290:133338. [PMID: 34929279 DOI: 10.1016/j.chemosphere.2021.133338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Exposure to arsenic (As), an environmental toxicant, causes damages to the central nervous system (CNS) structure and function. Emerging epidemiological studies support that exposure to As, especially during the critical periods of the CNS development, may act as an environmental risk factor of autism spectrum disorders (ASD), which is characterized by behavioral changes, including abnormal social behaviors, restricted interests and repetitive behaviors. However, direct evidence supporting the cause-effect relationship between As exposure and the risk of ASD is still missing. Thus, we aimed to investigate whether As exposure during pregnancy and lactation led to autism-like behaviors in offspring mice in the present study. We established a mice model of exposure to As via drinking water during pregnancy and lactation and conducted a battery of behavioral tests to evaluate social behaviors, repetitive behaviors, anxiety behaviors and learning and memory ability in offspring mice. We found that perinatal exposure to As caused autism-like behaviors in male offspring, which demonstrated by abnormal social behaviors and repetitive behaviors. Anxiety-like behaviors, and learning and memory impairments, known as concomitant behavioral phenotypes in mice with autism-like behaviors, were also observed. Decreases of synaptic density, especially in cortex, hippocampus and cerebellum, are extensively observed in both ASD patients and animal models of ASD. Thus, immunofluorescence staining and western blotting were used to observe the expression of PSD-95 and SYP, well-known markers for presynaptic and postsynaptic membranes, to assess the synaptic density in offspring cortex, hippocampus and cerebellum. We found perinatal exposure to As decreased the expression of PSD-95 and SYP in these brain regions. This indicated that perinatal exposure to As caused decreases of synaptic density, a typical autism-like cellular alteration in brains, which may contribute to autism-like behaviors in offspring.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Dongmeng Mei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yongfang Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Heath, Guizhou Medical University, Guiyang, Guizhou, China
| | - Da Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Dianqi Yao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Lingling Zhai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
The Role of Toxic Metals and Metalloids in Nrf2 Signaling. Antioxidants (Basel) 2021; 10:antiox10050630. [PMID: 33918986 PMCID: PMC8142989 DOI: 10.3390/antiox10050630] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), an emerging regulator of cellular resistance to oxidants, serves as one of the key defensive factors against a range of pathological processes such as oxidative damage, carcinogenesis, as well as various harmful chemicals, including metals. An increase in human exposure to toxic metals via air, food, and water has been recently observed, which is mainly due to anthropogenic activities. The relationship between environmental exposure to heavy metals, particularly cadmium (Cd), lead (Pb), mercury (Hg), and nickel (Ni), as well as metaloid arsenic (As), and transition metal chromium (Cr), and the development of various human diseases has been extensively investigated. Their ability to induce reactive oxygen species (ROS) production through direct and indirect actions and cause oxidative stress has been documented in various organs. Taking into account that Nrf2 signaling represents an important pathway in maintaining antioxidant balance, recent research indicates that it can play a dual role depending on the specific biological context. On one side, Nrf2 represents a potential crucial protective mechanism in metal-induced toxicity, but on the other hand, it can also be a trigger of metal-induced carcinogenesis under conditions of prolonged exposure and continuous activation. Thus, this review aims to summarize the state-of-the-art knowledge regarding the functional interrelation between the toxic metals and Nrf2 signaling.
Collapse
|
4
|
Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. CHEMOSPHERE 2021; 262:128350. [PMID: 33182141 DOI: 10.1016/j.chemosphere.2020.128350] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Heavy metal-induced cellular and organismal toxicity have become a major health concern in biomedical science. Indiscriminate use of heavy metals in different sectors, such as, industrial-, agricultural-, healthcare-, cosmetics-, and domestic-sectors has contaminated environment matrices and poses a severe health concern. Xenobiotics mediated effect is a ubiquitous cellular response. Oxidative stress is one such prime cellular response, which is the result of an imbalance in the redox system. Further, oxidative stress is associated with macromolecular damages and activation of several cell survival and cell death pathways. Epidemiological as well as laboratory data suggest that oxidative stress-induced cellular response following heavy metal exposure is linked with an increased risk of neoplasm, neurological disorders, diabetes, infertility, developmental disorders, renal failure, and cardiovascular disease. During the recent past, a relation among heavy metal exposure, oxidative stress, and signaling pathways have been explored to understand the heavy metal-induced toxicity. Heavy metal-induced oxidative stress and its connection with different signaling pathways are complicated; therefore, the systemic summary is essential. Herein, an effort has been made to decipher the interplay among heavy metals/metalloids (Arsenic, Chromium, Cadmium, and Lead) exposures, oxidative stress, and signal transduction, which are essential to mount the cellular and organismal response. The signaling pathways involved in this interplay include NF-κB, NRF2, JAK-STAT, JNK, FOXO, and HIF.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
5
|
Couto-Santos F, Souza ACF, Bastos DSS, Ervilha LOG, Dias FCR, Araújo LDS, Guimarães SEF, Oliveira LLD, Machado-Neves M. Prepubertal exposure to arsenic alters male reproductive parameters in pubertal and adult rats. Toxicol Appl Pharmacol 2020; 409:115304. [PMID: 33127376 DOI: 10.1016/j.taap.2020.115304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Arsenic induces reproductive disorders in pubertal males after prepubertal exposure. However, it is unclear the extent to which those effects remain in testis and epididymis of sexually mature rats after arsenic insult. This study evaluated the effects of prepubertal arsenic exposure in male organs of pubertal rats, and their reversibility in adult rats. Male pups of Wistar rats on postnatal day (PND) 21 were divided into two groups (n = 20/group): Control animals received filtered water and exposed rats received 10 mg L--1 arsenic from PND 21 to PND 51. At PND 52, testis and epididymis of ten animals per group were examined for toxic effects under morphological, functional, and molecular approaches. The other animals were kept alive under free arsenic conditions until PND 82, and further analyzed for the same parameters. Pubertal rats overexpressed mRNA levels of SOD1, SOD2, CAT, GSTK1, and MT1 in their testis and SOD1, CAT, and GSTK1 in their epididymis. In those organs, catalase activity was altered, generating byproducts of oxidative stress. The antioxidant gene expression was unchanged in adult rats in contrast to the altered activity of antioxidant enzymes. Histological alterations of testis and epididymis tissues were observed in pubertal and adult rats. Interestingly, only adult rats exhibited a remarkable decrease in serum testosterone levels. Prepubertal exposure to arsenic caused morphological and functional alterations in male reproductive organs of pubertal rats. In adult rats, these damages disappeared, remained, get worsened, or recovered depending on the parameter analyzed, indicating potential male fertility disorders during adulthood.
Collapse
Affiliation(s)
- Felipe Couto-Santos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ana Cláudia Ferreira Souza
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Mariana Machado-Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Zheng K, Li H, Wang S, Feng X, Wang L, Liu Q. Arsenopyrite weathering in sodium chloride solution: Arsenic geochemical evolution and environmental effects. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122502. [PMID: 32229404 DOI: 10.1016/j.jhazmat.2020.122502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
In situ electrochemical techniques and surface analysis were used to investigate the weathering behavior of arsenopyrite in chlorine-containing brine. Cyclic voltammetry measurements showed that arsenopyrite weathering releases S°, As (III) and Fe (II) during the initial step, even contains different concentrations of H+ and Cl-, and terminal transformation into SO42-, As (V) and Fe (III), respectively. Cl- ions promote the arsenopyrite weathering through diffusion control or adsorption control when Cl- ions are at low or high concentrations. When Ccl- increased from 0.00 to 0.05 mol/L, As (III) release increases from 549.33 to 1135.86 g·m-2·y-1, and the promotion efficiency is 107 %; whereas from 0.20 to 0.40 mol/L, the promotion efficiency is only 15.1 %. H+ ions accelerate arsenopyrite weathering for O2 + 4H+ + 4e- → 2H2O, and the relationship between corrosion current density (icorr) and pH is icorr = -26.54 pH + 199.75. Raman spectra confirm that corrosion produces S° and As (V) and EDX shows the passivation layers are mainly composed of elements Fe, As, S and O, while the adsorption layer are mainly composed of elements Fe, As, S and Cl. The experimental results are of great significance for arsenopyrite geological environment assess and removal of arsenic ions.
Collapse
Affiliation(s)
- Kai Zheng
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Heping Li
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Shuai Wang
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaonan Feng
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Luying Wang
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qingyou Liu
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
7
|
Lyu H, Wang H, Li L, Zhu J, Chen F, Chen Y, Liu C, Fu J, Yang B, Zhang Q, Xu Y, Pi J. Hepatocyte-specific deficiency of Nrf2 exacerbates carbon tetrachloride-induced liver fibrosis via aggravated hepatocyte injury and subsequent inflammatory and fibrogenic responses. Free Radic Biol Med 2020; 150:136-147. [PMID: 32112813 DOI: 10.1016/j.freeradbiomed.2020.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Liver fibrosis, in which hepatocyte damage and inflammatory response play critical roles, is a physiological response to chronic or iterative liver injury and can progress to cirrhosis over time. Nuclear factor E2-related factor 2 (Nrf2) is a master transcription factor that regulates oxidative and xenobiotic stress responses as well as inflammation. METHOD To ascertain the cell-specific roles of Nrf2 in hepatocytes and myeloid lineage cells in the progression of liver fibrosis, mice lacking Nrf2 specifically in hepatocytes [Nrf2(L)-KO] and myeloid lineage cells [Nrf2(M)-KO] were generated to evaluate carbon tetrachloride (CCl4)-induced liver injury, subsequent inflammation and fibrosis. In addition, mouse primary hepatocytes were used to investigate the underlying mechanisms. RESULTS Nrf2-mediated antioxidant response in the liver is responsive to acute CCl4 exposure in mice. With repeated CCl4 administration, Nrf2(L)-KO, but not Nrf2(M)-KO, mice showed more severe liver fibrosis than Nrf2-LoxP control mice. In addition, in response to acute CCl4 exposure, Nrf2(L)-KO mice displayed aggravated liver injury, elevated lipid peroxidation and inflammatory response compared to control mice. In mouse primary hepatocytes, deficiency of Nrf2 resulted in more severe CCl4-induced lipid oxidation and inflammatory response. CONCLUSION Deficiency of Nrf2 in hepatocytes sensitizes the cells to CCl4-induced oxidative damage and inflammatory response, which are initiator and enhancer of subsequent hepatic inflammation and fibrosis. Thus, Nrf2 is a critical determinant of liver injury and fibrosis in response to CCl4, suggesting that Nrf2 might be a valuable target for the intervention.
Collapse
Affiliation(s)
- Hang Lyu
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Huihui Wang
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Lu Li
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jiayu Zhu
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Feng Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Lixia Area, Jinan, 250014, China
| | - Yannan Chen
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Cuijie Liu
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jingqi Fu
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Bei Yang
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Yuanyuan Xu
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| | - Jingbo Pi
- School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
8
|
Dai C, Xiao X, Sun F, Zhang Y, Hoyer D, Shen J, Tang S, Velkov T. T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Arch Toxicol 2019; 93:3041-3056. [PMID: 31570981 DOI: 10.1007/s00204-019-02577-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Mycotoxins are highly diverse secondary metabolites produced in nature by a wide variety of fungi. Mycotoxins cause animal feed and food contamination, resulting in mycotoxicosis. T-2 toxin is one of the most common and toxic trichothecene mycotoxins. For the last decade, it has garnered considerable attention due to its potent neurotoxicity. Worryingly, T-2 toxin can cross the blood-brain barrier and accumulate in the central nervous system (CNS) to cause neurotoxicity. This review covers the current knowledge base on the molecular mechanisms of T-2 toxin-induced oxidative stress and mitochondrial dysfunction in the CNS. In vitro and animal data have shown that induction of reactive oxygen species (ROS) and oxidative stress plays a critical role during T-2 toxin-induced neurotoxicity. Mitochondrial dysfunction and cascade signaling pathways including p53, MAPK, Akt/mTOR, PKA/CREB and NF-κB contribute to T-2 toxin-induced neuronal cell death. T-2 toxin exposure can also result in perturbations of mitochondrial respiratory chain complex and mitochondrial biogenesis. T-2 toxin exposure decreases the mitochondria unfolded protein response and dampens mitochondrial energy metabolism. Antioxidants such as N-acetylcysteine (NAC), activation of Nrf2/HO-1 and autophagy have been shown to provide a protective effect against these detrimental effects. Clearly, translational research and the discovery of effective treatment strategies are urgently required against this common food-borne threat to human health and livestock.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China. .,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Harry Hines Blvd, Dallas, TX, 5323, USA.
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feifei Sun
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
9
|
Carmean CM, Seino S. Braving the Element: Pancreatic β-Cell Dysfunction and Adaptation in Response to Arsenic Exposure. Front Endocrinol (Lausanne) 2019; 10:344. [PMID: 31258514 PMCID: PMC6587364 DOI: 10.3389/fendo.2019.00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/13/2019] [Indexed: 12/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a serious global health problem, currently affecting an estimated 451 million people worldwide. T2DM is characterized by hyperglycemia and low insulin relative to the metabolic demand. The precise contributing factors for a given individual vary, but generally include a combination of insulin resistance and insufficient insulin secretion. Ultimately, the progression to diabetes occurs only after β-cells fail to meet the needs of the individual. The stresses placed upon β-cells in this context manifest as increased oxidative damage, local inflammation, and ER stress, often inciting a destructive spiral of β-cell death, increased metabolic stress due to further insufficiency, and additional β-cell death. Several pathways controlling insulin resistance and β-cell adaptation/survival are affected by a class of exogenous bioactive compounds deemed endocrine disrupting chemicals (EDCs). Epidemiological studies have shown that, in several regions throughout the world, exposure to the EDC inorganic arsenic (iAs) correlates significantly with T2DM. It has been proposed that a lifetime of exposure to iAs may exacerbate problems with both insulin sensitivity as well as β-cell function/survival, promoting the development of T2DM. This review focuses on the mechanisms of iAs action as they relate to known adaptive and maladaptive pathways in pancreatic β-cells.
Collapse
Affiliation(s)
- Christopher M. Carmean
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Christopher M. Carmean
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Susumu Seino
| |
Collapse
|
10
|
Gergues MM, Moiseyenko A, Saad SZ, Kong AN, Wagner GC. Nrf2 deletion results in impaired performance in memory tasks and hyperactivity in mature and aged mice. Brain Res 2018; 1701:103-111. [PMID: 30194014 PMCID: PMC8111504 DOI: 10.1016/j.brainres.2018.08.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/25/2018] [Accepted: 08/30/2018] [Indexed: 12/28/2022]
Abstract
Oxidative stress has been implicated in both the functional and cognitive decline associated with neuropsychiatric diseases and aging. A master regulator of the body's defense mechanism against oxidative stress is nuclear factor erythroid 2-related factor (NRF2). Here we investigated the effects of NRF2 deletion on motor and cognitive performance in "Aged" mice (17-25 months old) as compared to "Mature" mice (3-15 months old). We observed that the Aged Nrf2-/- mice were hyperactive and exhibited impaired acquisition of an active avoidance response. Furthermore, the Mature mice also displayed a hyperactive phenotype and had impaired working memory in the probe trial of the water radial arm maze. Overall, it appears that NRF2 may be implicated in memory and activity functions and its deletion exacerbates deficits associated with aging. These observations provide a model for assessing the role of oxidative stress in age-related disorders.
Collapse
Affiliation(s)
- Mark M Gergues
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States; Department of Neuroscience, University of California San Francisco, San Francisco, California, United States.
| | - Anastasiya Moiseyenko
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States
| | - Syed Z Saad
- Department of Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, United States
| | - Ah-Ng Kong
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States
| | - George C Wagner
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States
| |
Collapse
|
11
|
Rahman MM, Alenazi NA, Hussein MA, Alam MM, Alamry KA, Asiri AM. Nanocomposites-based nitrated polyethersulfone and doped ZnYNiO for selective As3+sensor application. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammed M. Rahman
- Department of Chemistry; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR); King Abdulaziz University; Jeddah Saudi Arabia
| | - Noof A. Alenazi
- Department of Chemistry; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Mahmoud A. Hussein
- Department of Chemistry; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Polymer Chemistry Lab.; Chemistry Department; Faculty of Science; Assiut University; Assiut Egypt
| | - Md Mahmud Alam
- Department of Chemical Engineering and Polymer Science; Shahjalal University of Science and Technology; Sylhet Bangladesh
| | - Khalid A. Alamry
- Department of Chemistry; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Abdullah M. Asiri
- Department of Chemistry; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR); King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|