1
|
Tassaneesuwan N, Khongkow M, Jansrinual S, Khongkow P. Discovering the Potential of Cannabidiol for Cosmeceutical Development at the Cellular Level. Pharmaceuticals (Basel) 2025; 18:202. [PMID: 40006016 PMCID: PMC11859159 DOI: 10.3390/ph18020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Backgrounds: Cannabidiol (CBD) has been used for the development of extensive cosmeceutical commercial products. However, the safety and unclear bioactivity of CBD are still concerns and need to be examined to assess the impact of CBD on skin cells through cosmeceutical applications, particularly its impact on anti-aging and wound healing activities. Methods: In our study, the cytotoxicity of CBD was investigated on keratinocytes and fibroblasts in short-term and long-term treatments using a sulforhodamine B (SRB) assay and a clonogenic assay, respectively. Next, the antioxidant, anti-aging, and wound healing bioactivities of CBD were assessed. Then, we investigated the expression of the related genes. Results: Our results show that CBD at low concentrations (0.625-2.5 µg/mL) was not toxic to cells in the short-term treatment and significantly enhanced the growth of keratinocytes and fibroblasts under long-term exposure. Furthermore, CBD exhibited promising cellular bioactivities, including antioxidant and anti-aging activities in keratinocytes and fibroblasts, and it enhanced wound healing in skin cells. Moreover, CBD has affected the expression of skin regenerative genes in fibroblasts via TGF-β, VEGF, and NF-κB expression. In addition, CBD promoted CO1A2 expression, which is related to collagen production. Conclusions: Altogether, our findings confirm the promising potential of CBD, showing that it can be applied in various topical cosmeceutical products. However, further studies, including in vivo studies and clinical trials, should be conducted to confirm the safety and long-term effectiveness of CBD on the skin.
Collapse
Affiliation(s)
- Natjira Tassaneesuwan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center (TMRC), Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Siriyakorn Jansrinual
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pasarat Khongkow
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center (TMRC), Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Mesas C, Moreno J, Doello K, Peña M, López-Romero JM, Prados J, Melguizo C. Cannabidiol effects in stem cells: A systematic review. Biofactors 2025; 51:e2148. [PMID: 39653426 DOI: 10.1002/biof.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Stem cells play a critical role in human tissue regeneration and repair. In addition, cancer stem cells (CSCs), subpopulations of cancer cells sharing similar characteristics as normal stem cells, are responsible for tumor metastasis and resistance to chemo- and radiotherapy and to tumor relapse. Interestingly, all stem cells have cannabinoid receptors, such as cannabidiol (CBD), that perform biological functions. The aim of this systematic review was to analyze the effect of CBD on both somatic stem cells (SSCs) and CSCs. Of the 276 articles analyzed, 38 were selected according to the inclusion and exclusion criteria. A total of 27 studied the effect of CBD on SSCs, finding that 44% focused on CBD differentiation effect and 56% on its protective activity. On the other hand, 11 articles looked at the effect of CBD on CSCs, including glioblastoma (64%), lung cancer (27%), and breast cancer (only one article). Our results showed that CBD exerted a differentiating and protective effect on SCCs. In addition, this molecule demonstrated an antiproliferative effect on some CSCs, although most of the analyses were performed in vitro. Therefore, although in vivo studies should be necessary to justify its clinical use, CBD and its receptors could be a specific target to act on both SSCs and CSCs.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
- Service of Medical Oncology, Hospital Virgen de las Nieves, Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
| | - Juan M López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Málaga, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Filho MBDS, Aniceto G, Fernandes PM, Aquino IG, Mendes GD, Napimoga MH, Clemente-Napimoga JT, Abdalla HB. Botulinum toxin A dampened inflammatory response in BV-2 microglial cells. Toxicon 2024; 252:108182. [PMID: 39579879 DOI: 10.1016/j.toxicon.2024.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Our previous studies have demonstrated the analgesic effects of botulinum toxin type A (BoNT/A) in a pre-clinical model of rheumatoid arthritis of the temporomandibular joint, where we proposed that BoNT/A decreases the neurogenic milieu after reaching the subnucleus caudalis. However, it is unknown whether BoNT/A directly regulates microglial cell activity. Therefore, the present study investigates the effects of BoNT/A on a microglial murine cell lineage (BV-2) in different inflammatory conditions. Cellular viability and proliferation were carried out with different concentrations of BoNT/A (ranging from 0.3125 to 20 U/mL) for 24 h. Cells were primed with carrageenan (300 μg/mL) or Lipopolysaccharides (LPS) (20 ng/mL). The gene expression of IL-1β, IL-6, IL-18, TNF-α, Ikkβ, p65, Iba1 were quantified using PCR-RT. The supernatant was used to determine IL-1β, IL-6, and TNF-α levels. For all data, the significance level was set at 5%. Overall, data analysis revealed that BoNT/A 1.25 U/mL exhibited the greatest effect cell viability and proliferation. In addition, genes associated with inflammatory response in both stimuli (carrageenan and LPS) were downregulated in the presence of BoNT/A. Lastly, BoNT/A mitigates the protein levels of IL-1β and TNF-α in a time and dose-dependent manner. In conclusion, our results revealed that BoNT/A directly modulates the microglial cells' activities in an inflammatory context, opening new perspectives for using BoNT/A, considering its potential immunomodulatory effect.
Collapse
Affiliation(s)
| | | | - Patrícia Maria Fernandes
- São Camilo Hospital, São Paulo, SP, Brazil; Instituto Brasileiro de Controle do Câncer, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Zhao N, Shao Z, Xia G, Liu H, Zhang L, Zhao X, Dang S, Qian L, Xu W, Yu Z, Wang R. Protective role of the CD73-A2AR axis in cirrhotic cardiomyopathy through negative feedback regulation of the NF-κB pathway. Front Immunol 2024; 15:1428551. [PMID: 39086479 PMCID: PMC11288852 DOI: 10.3389/fimmu.2024.1428551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Background Myocardial inflammation and apoptosis induced by cirrhosis are among the primary mechanisms of cirrhotic cardiomyopathy. CD73, a common extracellular nucleotidase also known as 5'-nucleotidase, is associated with the progression of inflammation and immunity in multiple organs. However, the mechanism by which CD73 contributes to myocardial inflammation and apoptosis in cirrhosis remains unclear. Methods In this study, a cirrhotic cardiomyopathy model in mice was established by bile duct ligation. Myocardial-specific overexpression of CD73 was achieved by tail vein injection of AAV9 (adeno-associated virus)-cTNT-NT5E-mCherry, and cardiac function in mice was assessed using echocardiography. Myocardial inflammation infiltration and apoptosis were evaluated through pathological observation and ELISA assays. The expression of CD73, A2AR, apoptotic markers, and proteins related to the NF-κB pathway in myocardial tissue were measured. Results In the myocardial tissue of the cirrhotic cardiomyopathy mouse model, the expression of CD73 and A2AR increased. Overexpression of CD73 in the myocardium via AAV9 injection and stimulation of A2AR with CGS 21680 inhibited myocardial inflammation and cardiomyocyte apoptosis induced by cirrhosis. Additionally, overexpression of CD73 suppressed the activation of the NF-κB pathway by upregulating the expression of the adenosine receptor A2A. Conclusion Our study reveals that the CD73/A2AR signaling axis mitigates myocardial inflammation and apoptosis induced by cirrhosis through negative feedback regulation of the NF-κB pathway.
Collapse
Affiliation(s)
- Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Zhenhao Shao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Guoqing Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Huanhuan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Zhang
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Xiaoxi Zhao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Shipeng Dang
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Lingling Qian
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Wentao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhiming Yu
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Ruxing Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| |
Collapse
|
5
|
Raïch I, Lillo J, Rivas-Santisteban R, Rebassa JB, Capó T, Santandreu M, Cubeles-Juberias E, Reyes-Resina I, Navarro G. Potential of CBD Acting on Cannabinoid Receptors CB 1 and CB 2 in Ischemic Stroke. Int J Mol Sci 2024; 25:6708. [PMID: 38928415 PMCID: PMC11204117 DOI: 10.3390/ijms25126708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is one of the leading causes of death. It not only affects adult people but also many children. It is estimated that, every year, 15 million people suffer a stroke worldwide. Among them, 5 million people die, while 5 million people are left permanently disabled. In this sense, the research to find new treatments should be accompanied with new therapies to combat neuronal death and to avoid developing cognitive impairment and dementia. Phytocannabinoids are among the compounds that have been used by mankind for the longest period of history. Their beneficial effects such as pain regulation or neuroprotection are widely known and make them possible therapeutic agents with high potential. These compounds bind cannabinoid receptors CB1 and CB2. Unfortunately, the psychoactive side effect has displaced them in the vast majority of areas. Thus, progress in the research and development of new compounds that show efficiency as neuroprotectors without this psychoactive effect is essential. On the one hand, these compounds could selectively bind the CB2 receptor that does not show psychoactive effects and, in glia, has opened new avenues in this field of research, shedding new light on the use of cannabinoid receptors as therapeutic targets to combat neurodegenerative diseases such as Alzheimer's, Parkinson's disease, or stroke. On the other hand, a new possibility lies in the formation of heteromers containing cannabinoid receptors. Heteromers are new functional units that show new properties compared to the individual protomers. Thus, they represent a new possibility that may offer the beneficial effects of cannabinoids devoid of the unwanted psychoactive effect. Nowadays, the approval of a mixture of CBD (cannabidiol) and Δ9-THC (tetrahydrocannabinol) to treat the neuropathic pain and spasticity in multiple sclerosis or purified cannabidiol to combat pediatric epilepsy have opened new therapeutic possibilities in the field of cannabinoids and returned these compounds to the front line of research to treat pathologies as relevant as stroke.
Collapse
Affiliation(s)
- Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Rafael Rivas-Santisteban
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Montserrat Santandreu
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Erik Cubeles-Juberias
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
6
|
Peltner LK, Gluthmann L, Börner F, Pace S, Hoffstetter RK, Kretzer C, Bilancia R, Pollastro F, Koeberle A, Appendino G, Rossi A, Newcomer ME, Gilbert NC, Werz O, Jordan PM. Cannabidiol acts as molecular switch in innate immune cells to promote the biosynthesis of inflammation-resolving lipid mediators. Cell Chem Biol 2023; 30:1508-1524.e7. [PMID: 37647900 DOI: 10.1016/j.chembiol.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Cannabinoids are phytochemicals from cannabis with anti-inflammatory actions in immune cells. Lipid mediators (LM), produced from polyunsaturated fatty acids (PUFA), are potent regulators of the immune response and impact all stages of inflammation. How cannabinoids influence LM biosynthetic networks is unknown. Here, we reveal cannabidiol (CBD) as a potent LM class-switching agent that stimulates the production of specialized pro-resolving mediators (SPMs) but suppresses pro-inflammatory eicosanoid biosynthesis. Detailed metabololipidomics analysis in human monocyte-derived macrophages showed that CBD (i) upregulates exotoxin-stimulated generation of SPMs, (ii) suppresses 5-lipoxygenase (LOX)-mediated leukotriene production, and (iii) strongly induces SPM and 12/15-LOX product formation in resting cells by stimulation of phospholipase A2-dependent PUFA release and through Ca2+-independent, allosteric 15-LOX-1 activation. Finally, in zymosan-induced murine peritonitis, CBD increased SPM and 12/15-LOX products and suppressed pro-inflammatory eicosanoid levels in vivo. Switching eicosanoid to SPM production is a plausible mode of action of CBD and a promising inflammation-resolving strategy.
Collapse
Affiliation(s)
- Lukas K Peltner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Lars Gluthmann
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Robert K Hoffstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Rosella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Mitterweg 24, 6020 Innsbruck, Austria
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
7
|
Bouma J, Broekhuis JD, van der Horst C, Kumar P, Ligresti A, van der Stelt M, Heitman LH. Dual allosteric and orthosteric pharmacology of synthetic analog cannabidiol-dimethylheptyl, but not cannabidiol, on the cannabinoid CB 2 receptor. Biochem Pharmacol 2023; 218:115924. [PMID: 37972874 DOI: 10.1016/j.bcp.2023.115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Cannabinoid CB2 receptor (CB2R) is a class A G protein-coupled receptor (GPCR) involved in a broad spectrum of physiological processes and pathological conditions. For that reason, targeting CB2R might provide therapeutic opportunities in neurodegenerative disorders, neuropathic pain, inflammatory diseases, and cancer. The main components from Cannabis sativa, such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), have been therapeutically exploited and synthetically-derived analogs have been generated. One example is cannabidiol-dimethylheptyl (CBD-DMH), which exhibits anti-inflammatory effects. Nevertheless, its pharmacological mechanism of action is not yet fully understood and is hypothesized for multiple targets, including CB2R. The aim of this study was to further investigate the molecular pharmacology of CBD-DMH on CB2R while CBD was taken along as control. These compounds were screened in equilibrium and kinetic radioligand binding studies and various functional assays, including G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. In dissociation studies, CBD-DMH allosterically modulated the radioligand binding. Furthermore, CBD-DMH negatively modulated the G protein activation of reference agonists CP55,940, AEA and 2-AG, but not the agonist-induced ß-arrestin-2 recruitment. Nevertheless, CBD-DMH also displayed competitive binding to CB2R and partial agonism on G protein activation, inhibition of cAMP production and ß-arrestin-2 recruitment. CBD did not exhibit such allosteric behavior and only very weakly bound CB2R without activation. This study shows a dual binding mode of CBD-DMH, but not CBD, to CB2R with the suggestion of two different binding sites. Altogether, it encourages further research into this dual mechanism which might provide a new class of molecules targeting CB2R.
Collapse
Affiliation(s)
- Jara Bouma
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands
| | - Jeremy D Broekhuis
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands
| | - Cas van der Horst
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, LIC, Leiden University & Oncode Institute, the Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University & Oncode Institute, the Netherlands.
| |
Collapse
|
8
|
Wang X, Zhang H, Liu Y, Xu Y, Yang B, Li H, Chen L. An overview on synthetic and biological activities of cannabidiol (CBD) and its derivatives. Bioorg Chem 2023; 140:106810. [PMID: 37659147 DOI: 10.1016/j.bioorg.2023.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
(-)-Cannabidiol is a class of non-psychoactive plant cannabinoids derived from cannabis plants. Currently, Epidiolex (Cannabidiol) has been approved by the FDA for the treatment of two rare and severe forms of epilepsy related diseases, namely Lennox-Gastaut syndrome (LGS) and Dravet (DS). In addition, Cannabidiol and its structural analogues have received increasing attention due to their potential therapeutic effects such as neuroprotection, anti-epilepsy, anti-inflammation, anti-anxiety, and anti-cancer. Based on literature review, no comprehensive reviews on the synthesis of Cannabidiol and its derivatives have been found in recent years. Therefore, this article summarizes the published synthesis methods of Cannabidiol and the synthesis routes of Cannabidiol derivatives, and introduces the biological activities of some Cannabidiol analogues that have been studied extensively and have significant activities.
Collapse
Affiliation(s)
- Xiuli Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanbang Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
9
|
Rancan L, Linillos-Pradillo B, Centeno J, Paredes SD, Vara E, Tresguerres JAF. Protective Actions of Cannabidiol on Aging-Related Inflammation, Oxidative Stress and Apoptosis Alterations in Liver and Lung of Long Evans Rats. Antioxidants (Basel) 2023; 12:1837. [PMID: 37891916 PMCID: PMC10604065 DOI: 10.3390/antiox12101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Aging is characterised by the progressive accumulation of oxidative damage which leads to inflammation and apoptosis in cells. This affects all tissues in the body causing the deterioration of several organs. Previous studies observed that cannabidiol (CBD) could extend lifespan and health span by its antioxidant, anti-inflammatory and autophagy properties. However, research on the anti-aging effect of CBD is still in the beginning stages. This study aimed to investigate the role of cannabidiol (CBD) in the prevention of age-related alterations in liver and lung using a murine model. METHODS 15-month-old Long Evans rats were treated with 10 mg/kg b.w./day of CBD for 10 weeks and compared to animals of the same age as old control and 2-month-old animals as young control. Gene and/or protein expressions, by RT-qPCR and Western blotting, respectively, were assessed in terms of molecules related to oxidative stress (GST, GPx, GR and HO-1d), inflammation (NFκB, IL-1β and TNF-α) and apoptosis (BAX, Bcl-2, AIF, and CASP-1). In addition, MDA and MPO levels were measured by colorimetric assay. Results were analysed by ANOVA followed by Tukey-Kramer test, considering statistically significant a p < 0.05. RESULTS GST, GPx and GR expressions were significantly reduced (p < 0.01) in liver samples from old animals compared to young ones and CBD treatment was able to revert it. A significant increase was observed in old animals compared to young ones in relation to oxidative stress markers (MDA and HO-1d), proinflammatory molecules (NFκB, IL-1β and TNF-α), MPO levels and proapoptotic molecules (BAX, AIF and CASP-1), while no significant alterations were observed in the antiapoptotic molecules (Bcl-2). All these changes were more noticeable in the liver, while the lung seemed to be less affected. In almost all the measured parameters, CBD treatment was able to revert the alterations caused by age restoring the levels to those observed in the group of young animals. CONCLUSIONS Chronic treatment with CBD in 15-month-old rats showed beneficial effects in lung and more significantly in liver by reducing the levels of inflammatory, oxidative and apoptotic mediators, and hence the cell damage associated with these three processes inherent to aging.
Collapse
Affiliation(s)
- Lisa Rancan
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (L.R.); (B.L.-P.); (E.V.)
| | - Beatriz Linillos-Pradillo
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (L.R.); (B.L.-P.); (E.V.)
| | - Julia Centeno
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (L.R.); (B.L.-P.); (E.V.)
| | - Sergio D. Paredes
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Elena Vara
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (L.R.); (B.L.-P.); (E.V.)
| | - Jesús A. F. Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
10
|
Jin S, Lin C, Wang Y, Wang H, Wen X, Xiao P, Li X, Peng Y, Sun J, Lu Y, Wang X. Cannabidiol Analogue CIAC001 for the Treatment of Morphine-Induced Addiction by Targeting PKM2. J Med Chem 2023; 66:11498-11516. [PMID: 37531582 DOI: 10.1021/acs.jmedchem.3c01029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Opioid addiction is a chronically relapsing disorder that causes critical public health problems. Currently, there is a lack of effective drug treatment. Herein, one cannabidiol derivative, CIAC001, was discovered as an effective agent for treating morphine-induced addiction. In vitro, CIAC001 exhibited significantly improved anti-neuroinflammatory activity with lower toxicity. In vivo, CIAC001 ameliorated the morphine-induced withdrawal reaction, behavioral sensitization, and conditional position preference by inhibiting morphine-induced microglia activation and neuroinflammation. Target fishing for CIAC001 by activity-based protein profiling led to the identification of pyruvate kinase M2 (PKM2) as the target protein. CIAC001 bound to the protein-protein interface of the PKM2 dimer and promoted the tetramerization of PKM2. Moreover, CIAC001 exhibited an anti-neuroinflammatory effect by reversing the decrease of the PKM2 tetramer and inhibiting the nuclear translocation of PKM2. In summary, this study identified CIAC001 as a lead compound in targeting PKM2 to treat morphine-induced addiction.
Collapse
Affiliation(s)
- Sha Jin
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xin Wen
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaodong Li
- Beijing Changping Huayou Hospital, Beijing 102299, China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuyuan Lu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaohui Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Dammann I, Keil C, Hardewig I, Skrzydlewska E, Biernacki M, Haase H. Effects of combined cannabidiol (CBD) and hops (Humulus lupulus) terpene extract treatment on RAW 264.7 macrophage viability and inflammatory markers. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:19. [PMID: 37284961 DOI: 10.1007/s13659-023-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
This study investigates the potential of cannabidiol (CBD), one major cannabinoid of the plant Cannabis sativa, alone and in combination with a terpene-enriched extract from Humulus lupulus ("Hops 1"), on the LPS-response of RAW 264.7 macrophages as an established in vitro model of inflammation. With the present study, we could support earlier findings of the anti-inflammatory potential of CBD, which showed a dose-dependent [0-5 µM] reduction in nitric oxide and tumor necrosis factor-alpha (TNF-α) released by LPS-stimulated RAW 264.7 macrophages. Moreover, we observed an additive anti-inflammatory effect after combined CBD [5 µM] and hops extract [40 µg/mL] treatment. The combination of CBD and Hops 1 showed effects in LPS-stimulated RAW 264.7 cells superior to the single substance treatments and akin to the control hydrocortisone. Furthermore, cellular CBD uptake increased dose-dependently in the presence of terpenes from Hops 1 extract. The anti-inflammatory effect of CBD and its cellular uptake positively correlated with terpene concentration, as indicated by comparison with a hemp extract containing both CBD and terpenes. These findings may contribute to the postulations for the so-called "entourage effect" between cannabinoids and terpenes and support the potential of CBD combined with phytomolecules from a non-cannabinoid source, such as hops, for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Inga Dammann
- Sanity Group GmbH, Jägerstraße 28-31, 10117, Berlin, Germany.
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Iris Hardewig
- Sanity Group GmbH, Jägerstraße 28-31, 10117, Berlin, Germany
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
12
|
Luz-Veiga M, Azevedo-Silva J, Fernandes JC. Beyond Pain Relief: A Review on Cannabidiol Potential in Medical Therapies. Pharmaceuticals (Basel) 2023; 16:155. [PMID: 37259306 PMCID: PMC9958812 DOI: 10.3390/ph16020155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 07/30/2023] Open
Abstract
The phytocannabinoid cannabidiol (CBD) is receiving increasing attention due to its pharmacological properties. Although CBD is extracted from Cannabis sativa, it lacks the psychoactive effects of Δ9-tetrahydrocannabinol (THC) and has become an attractive compound for pharmacological uses due to its anti-inflammatory, antioxidant, anticonvulsant, and anxiolytic potential. The molecular mechanisms involved in CBD's biological effects are not limited to its interaction with classical cannabinoid receptors, exerting anti-inflammatory or pain-relief effects. Several pieces of evidence demonstrate that CBD interacts with other receptors and cellular signaling cascades, which further support CBD's therapeutic potential beyond pain management. In this review, we take a closer look at the molecular mechanisms of CBD and its potential therapeutic application in the context of cancer, neurodegeneration, and autoimmune diseases.
Collapse
Affiliation(s)
- Mariana Luz-Veiga
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - João C. Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, 4169-005 Porto, Portugal
| |
Collapse
|
13
|
Wołyniak M, Małecka-Wojciesko E, Zielińska M, Fabisiak A. A Crosstalk between the Cannabinoid Receptors and Nociceptin Receptors in Colitis-Clinical Implications. J Clin Med 2022; 11:jcm11226675. [PMID: 36431153 PMCID: PMC9696262 DOI: 10.3390/jcm11226675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) refer to a group of gastrointestinal (GI) disorders with complex pathogenesis characterized by chronic intestinal inflammation with a variety of symptoms. Cannabinoid and nociceptin opioid receptors (NOPs) and their ligands are widely distributed in the GI tract. The nociceptin opioid receptor is a newly discovered member of the opioid receptor family with unique characteristics. Both cannabinoid and NOP systems exhibit antinociceptive and anti-inflammatory activity and contribute to maintaining proper motility, secretion and absorption in the GI tract. Furthermore, they influence high and low voltage calcium channels, which play a crucial role in the processing of pain, and share at least two kinases mediating their action. Among them there is NF-κB, a key factor in the regulation of inflammatory processes. Therefore, based on functional similarities between cannabinoid and nociceptin receptors and the anti-inflammatory effects exerted by their ligands, there is a high likelihood that there is an interaction between cannabinoid receptors 1 and 2 and the nociceptin receptor in colitis. In this review, we discuss potential overlaps between these two systems on a molecular and functional level in intestinal inflammation to create the basis for novel treatments of IBD.
Collapse
Affiliation(s)
- Maria Wołyniak
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, 90-153 Lodz, Poland
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, 90-153 Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Adam Fabisiak
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, 90-153 Lodz, Poland
- Correspondence: ; Tel.: +48-42-677-66-64
| |
Collapse
|
14
|
Krzyżewska A, Baranowska-Kuczko M, Jastrząb A, Kasacka I, Kozłowska H. Cannabidiol Improves Antioxidant Capacity and Reduces Inflammation in the Lungs of Rats with Monocrotaline-Induced Pulmonary Hypertension. Molecules 2022; 27:molecules27103327. [PMID: 35630804 PMCID: PMC9143935 DOI: 10.3390/molecules27103327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022] Open
Abstract
Cannabidiol (CBD) is a plant-derived compound with antioxidant and anti-inflammatory properties. Pulmonary hypertension (PH) is still an incurable disease. CBD has been suggested to ameliorate monocrotaline (MCT)-induced PH, including reduction in right ventricular systolic pressure (RVSP), a vasorelaxant effect on pulmonary arteries and a decrease in the white blood cell count. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on the parameters of oxidative stress and inflammation in the lungs of rats with MCT-induced PH. In MCT-induced PH, we found a decrease in total antioxidant capacity (TAC) and glutathione level (GSH), an increase in inflammatory parameters, e.g., tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), nuclear factor kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1), and cluster of differentiation 68 (CD68), and the overexpression of cannabinoid receptors type 1 and 2 (CB1-Rs, CB2-Rs). Administration of CBD increased TAC and GSH concentrations, glutathione reductase (GSR) activity, and decreased CB1-Rs expression and levels of inflammatory mediators such as TNF-α, IL -1β, NF-κB, MCP-1 and CD68. In conclusion, CBD has antioxidant and anti-inflammatory effects in MCT-induced PH. CBD may act as an adjuvant therapy for PH, but further detailed preclinical and clinical studies are recommended to confirm our promising results.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz 2A, 15-222 Bialystok, Poland; (M.B.-K.); (H.K.)
- Correspondence:
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz 2A, 15-222 Bialystok, Poland; (M.B.-K.); (H.K.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicz 2A, 15-222 Bialystok, Poland
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicz 2D, 15-222 Bialystok, Poland;
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Mickiewicz 2C, 15-222 Bialystok, Poland;
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz 2A, 15-222 Bialystok, Poland; (M.B.-K.); (H.K.)
| |
Collapse
|
15
|
Valenti C, Billi M, Pancrazi GL, Calabria E, Armogida NG, Tortora G, Pagano S, Barnaba P, Marinucci L. Biological Effects of Cannabidiol on Human Cancer Cells: Systematic Review of the Literature. Pharmacol Res 2022; 181:106267. [DOI: 10.1016/j.phrs.2022.106267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022]
|
16
|
Kongkadee K, Wisuitiprot W, Ingkaninan K, Waranuch N. Anti-inflammation and Gingival Wound Healing Activities of Cannabis sativa L. subsp. sativa (hemp) Extract and Cannabidiol: An in vitro Study. Arch Oral Biol 2022; 140:105464. [DOI: 10.1016/j.archoralbio.2022.105464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022]
|
17
|
Jirasek P, Jusku A, Simanek V, Frankova J, Storch J, Vacek J. Cannabidiol and periodontal inflammatory disease: A critical assessment. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2022; 166:155-160. [PMID: 35332345 DOI: 10.5507/bp.2022.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Cannabidiol (CBD), a non-psychotropic cannabinoid produced by the genus Cannabis, is a phytoceutical that activates the endocannabinoid system (ECS) through binding to CB1 and CB2 receptors. The ECS is involved in cellular homeostasis and regulates metabolic processes in virtually all mammalian tissues. Published studies on CBD focus, inter alia, on its use in prophylaxis and as an anti-inflammatory agent. Here the authors present a critical assessment of the effects of CBD on inflammatory periodontal diseases caused by bacterial virulence factors, and evaluate critically the possible benefits and drawbacks of CBD use in dentistry. Particular attention is paid to the interaction of CBD with microbially colonized oral tissues, the inflammatory response in relation to the immune response, and the destruction/regeneration of hard and soft tissues of the periodontium.
Collapse
Affiliation(s)
- Petr Jirasek
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University Olomouc, Palackeho 12, 779 00 Olomouc, Czech Republic
| | - Alexandr Jusku
- Institute of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacky University Olomouc, Palackeho 12, 779 00 Olomouc, Czech Republic
| | - Vilim Simanek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jana Frankova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jan Storch
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i., Rozvojova 135, 165 02 Prague 6, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
18
|
Network-Based Pharmacology Study Reveals Protein Targets for Medical Benefits and Harms of Cannabinoids in Humans. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This network-based pharmacology study intends to uncover the underlying mechanisms of cannabis leading to a therapeutic benefit and the pathogenesis for a wide range of diseases claimed to benefit from or be caused by the use of the cannabis plant. Cannabis contains more than 600 chemical components. Among these components, cannabinoids are well-known to have multifarious pharmacological activities. In this work, twelve cannabinoids were selected as active compounds through text mining and drug-like properties screening and used for initial protein-target prediction. The disease-associated biological functions and pathways were enriched through GO and KEGG databases. Various biological networks [i.e., protein-protein interaction, target-pathway, pathway-disease, and target-(pathway)-target interaction] were constructed, and the functional modules and essential protein targets were elucidated through the topological analyses of the networks. Our study revealed that eighteen proteins (CAT, COMT, CYP17A1, GSTA2, GSTM3, GSTP1, HMOX1, AKT1, CASP9, PLCG1, PRKCA, PRKCB, CYCS, TNF, CNR1, CNR2, CREB1, GRIN2B) are essential targets of eight cannabinoids (CBD, CBDA, Δ9-THC, CBN, CBC, CBGA, CBG, Δ8-THC), which involve in a variety of pathways resulting in beneficial and adverse effects on the human body. The molecular docking simulation confirmed that these eight cannabinoids bind to their corresponding protein targets with high binding affinities. This study generates a verifiable hypothesis of medical benefits and harms of key cannabinoids with a model which consists of multiple components, multiple targets, and multiple pathways, which provides an important foundation for further deployment of preclinical and clinical studies of cannabis.
Collapse
|
19
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|
20
|
Gęgotek A, Atalay S, Skrzydlewska E. UV induced changes in proteome of rats plasma are reversed by dermally applied cannabidiol. Sci Rep 2021; 11:20666. [PMID: 34667212 PMCID: PMC8526570 DOI: 10.1038/s41598-021-00134-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022] Open
Abstract
UV radiation is known to induce a multiple changes in the metabolism of skin-building cells, what can affect the functioning not only neighboring cells, but also, following signal transduction releasing into the blood vessels, the entire body. Therefore, the aim of this study was to analyze the proteomic disturbances occurred in plasma of chronically UVA/UVB irradiated rats and define the effect on these changes of skin topically applied cannabidiol (CBD). Obtained results showed significant changes in the expression of numerous anti-inflammatory and signaling proteins including: NFκB inhibitor, 14-3-3 protein, protein kinase C, keratin, and protein S100 after UV irradiation and CBD treatment. Moreover, the effects of UVA and UVB were manifested by increased level of lipid peroxidation products-protein adducts formation. CBD partially prevented all of these changes, but in a various degree depending on the UV radiation type. Moreover, topical treatment with CBD resulted in the penetration of CBD into the blood and, as a consequence, in direct modifications to the plasma protein structure by creating CBD adducts with molecules, such as proline-rich protein 30, transcription factor 19, or N-acetylglucosamine-6-sulfatase, what significantly changed the activity of these proteins. In conclusion, it may be suggested that CBD applied topically may be an effective compound against systemic UV-induced oxidative stress, but its effectiveness requires careful analysis of CBD's effects on other tissues of the living organism.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
21
|
Scassellati C, Galoforo AC, Esposito C, Ciani M, Ricevuti G, Bonvicini C. Promising Intervention Approaches to Potentially Resolve Neuroinflammation And Steroid Hormones Alterations in Alzheimer's Disease and Its Neuropsychiatric Symptoms. Aging Dis 2021; 12:1337-1357. [PMID: 34341712 PMCID: PMC8279527 DOI: 10.14336/ad.2021.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a biological process by which the central nervous system responds to stimuli/injuries affecting its homeostasis. So far as this reactive response becomes exacerbated and uncontrolled, it can lead to neurodegeneration, compromising the cognitive and neuropsychiatric domains. Parallelly, modifications in the hypothalamic signaling of neuroprotective hormones linked also to the inflammatory responses of microglia and astrocytes can exacerbate these processes. To complicate the picture, modulations in the gut microbiota (GM) can induce changes in neuroinflammation, altering cognitive and neuropsychiatric functioning. We conducted a web-based search on PubMed. We described studies regarding the cross-talk among microglia and astrocytes in the neuroinflammation processes, along with the role played by the steroid hormones, and how this can reflect on cognitive decline/neurodegeneration, in particular on Alzheimer's Disease (AD) and its neuropsychiatric manifestations. We propose and support the huge literature showing the potentiality of complementary/alternative therapeutic approaches (nutraceuticals) targeting the sustained inflammatory response, the dysregulation of hypothalamic system and the GM composition. NF-κB and Keap1/Nrf2 are the main molecular targets on which a list of nutraceuticals can modulate the altered processes. Since there are some limitations, we propose a new intervention natural treatment in terms of Oxygen-ozone (O2-O3) therapy that could be potentially used for AD pathology. Through a meta-analytic approach, we found a significant modulation of O3 on inflammation-NF-κB/NLRP3 inflammasome/Toll-Like Receptor 4 (TLR4)/Interleukin IL-17α signalling, reducing mRNA (p<0.00001 Odd Ratio (OR)=-5.25 95% CI:-7.04/-3.46) and protein (p<0.00001 OR=-4.85 95%CI:-6.89/-2.81) levels, as well as on Keap1/Nrf2 pathway. Through anti-inflammatory, immune, and steroid hormones modulation and anti-microbial activities, O3 at mild therapeutic concentrations potentiated with nutraceuticals and GM regulators could determine combinatorial effects impacting on cognitive and neurodegenerative domains, neuroinflammation and neuroendocrine signalling, directly or indirectly through the mediation of GM.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy.
- University of Pavia, Pavia, Italy.
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy.
- Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy.
- P.D. High School in Geriatrics, University of Pavia, Italy.
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Giovanni Ricevuti
- P.D. High School in Geriatrics, University of Pavia, Italy.
- Department of Drug Sciences, University of Pavia, Italy.
- St. Camillus Medical University, Rome, Italy.
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
22
|
Yeisley DJ, Arabiyat AS, Hahn MS. Cannabidiol-Driven Alterations to Inflammatory Protein Landscape of Lipopolysaccharide-Activated Macrophages In Vitro May Be Mediated by Autophagy and Oxidative Stress. Cannabis Cannabinoid Res 2021; 6:253-263. [PMID: 33998893 PMCID: PMC8217602 DOI: 10.1089/can.2020.0109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The nonpsychotropic phytocannabinoid cannabidiol (CBD) presents itself as a potentially safe and effective anti-inflammatory treatment relative to clinical standards. In this present study, we compare the capacity of CBD to the corticosteroid dexamethasone (Dex) in altering the secreted protein landscape of activated macrophages and speculate upon the mechanism underpinning these alterations. Materials and Methods: Human THP-1 monocytes were differentiated into macrophages (THP-1 derived macrophages [tMACs]), activated with lipopolysaccharide (LPS), and then treated with 5, 10, 25, 50, or 100 μM CBD or 10 μM Dex for 24 h. Following treatment, cytotoxicity of CBD and protein expression levels from culture supernatants and from whole cell lysates were assessed for secreted and intracellular proteins, respectively. Results: High concentration (50 and 100 μM) CBD treatments exhibit a cytotoxic effect on LPS-activated tMACs following the 24-h treatment. Relative to the LPS-activated and untreated control (M[LPS]), both 25 μM CBD and 10 μM Dex reduced expression of pro-inflammatory markers-tumor necrosis factor alpha, interleukin 1 beta, and regulated on activation, normal T cell expressed and secreted (RANTES)-as well as the pleiotropic marker interleukin-6 (IL-6). A similar trend was observed for anti-inflammatory markers interleukin-10 and vascular endothelial growth factor (VEGF). Dex further reduced secreted levels of monocyte chemoattractant protein-1 in addition to suppressing IL-6 and VEGF beyond treatments with CBD. The anti-inflammatory capacity of 25 μM CBD was concurrent with reduction in levels of phosphorylated mammalian target of rapamycin Ser 2448, endothelial nitric oxide synthase, and induction of cyclooxygenase 2 relative to M(LPS). This could suggest that the observed effects on macrophage immune profile may be conferred through inhibition of mammalian target of rapamycin complex 1 and ensuing induction of autophagy. Conclusion: Cumulatively, these data demonstrate cytotoxicity of high concentration CBD treatment. The data reported herein largely agree with other literature demonstrating the anti-inflammatory effects of CBD. However, there is discrepancy within literature surrounding efficacious concentrations and effects of CBD on specific secreted proteins. These data expand upon previous work investigating the effects of CBD on inflammatory protein expression in macrophages, as well as provide insight into the mechanism by which these effects are conferred.
Collapse
Affiliation(s)
- Daniel J. Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ahmad S. Arabiyat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
23
|
Biernacki M, Brzóska MM, Markowska A, Gałażyn-Sidorczuk M, Cylwik B, Gęgotek A, Skrzydlewska E. Oxidative Stress and Its Consequences in the Blood of Rats Irradiated with UV: Protective Effect of Cannabidiol. Antioxidants (Basel) 2021; 10:antiox10060821. [PMID: 34063802 PMCID: PMC8224002 DOI: 10.3390/antiox10060821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
UVA/UVB radiation disturbs the redox balance of skin cells, and metabolic consequences can be transferred into the blood and internal tissues, especially after chronic skin exposure to UV radiation. Therefore, the aim of this study was to evaluate the effect of cannabidiol (CBD), an antioxidant and anti-inflammatory phytocannabinoid, on oxidative stress and its consequences in the blood of nude rats whose skin was exposed to UVA/UVB radiation for 4 weeks. It was shown that CBD penetrated the blood and in UVB-irradiated rats was preferentially located in the membranes of polymorphonuclear leukocytes, which promoted reduction of ROS generation and up-regulation of antioxidant ability by increasing the activity of glutathione reductase and thioredoxin reductase, while the level of reduced glutathione decreased by UV radiation. Consequently, reduction in UV-induced lipid peroxidation, assessed as 4-hydroxynonenal (4-HNE) and 8-isoprostane (8-isoPGF2α) as well as protein modifications, estimated as 4-HNE-protein adducts and protein carbonyl groups, was observed. CBD, by countering the UV-induced down-regulation of 2-arachidonylglycerol, promoted its antioxidant/anti-inflammatory effects by reducing CB1 and increasing PPARγ receptor activation and consequently ROS and TNF-α down-regulation. The results suggest that CBD applied topically to the skin minimizes redox changes not only at the skin level, but also at the systemic level.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Małgorzata Michalina Brzóska
- Department of Toxicology, Medical University of Bialystok, A. Mickiewicza 2C, 15-089 Bialystok, Poland; (M.M.B.); (M.G.-S.)
| | - Agnieszka Markowska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Małgorzata Gałażyn-Sidorczuk
- Department of Toxicology, Medical University of Bialystok, A. Mickiewicza 2C, 15-089 Bialystok, Poland; (M.M.B.); (M.G.-S.)
| | - Bogdan Cylwik
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, J. Waszyngtona 17, 15-269 Białystok, Poland;
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (M.B.); (A.M.); (A.G.)
- Correspondence: ; Tel.: +48-857-485-708
| |
Collapse
|
24
|
Gęgotek A, Atalay S, Rogowska-Wrzesińska A, Skrzydlewska E. The Effect of Cannabidiol on UV-Induced Changes in Intracellular Signaling of 3D-Cultured Skin Keratinocytes. Int J Mol Sci 2021; 22:1501. [PMID: 33540902 PMCID: PMC7867360 DOI: 10.3390/ijms22031501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/09/2023] Open
Abstract
Human epidermal keratinocytes are constantly exposed to UV radiation. As a result, there is a significant need for safe and effective compounds to protect skin cells against this environmental damage. This study aimed to analyze the effect of phytocannabinoid-cannabinoid (CBD)-on the proteome of UVA/B irradiated keratinocytes. The keratinocytes were cultured in a three-dimensional (3D) system, designed to mimic epidermal conditions closely. The obtained results indicate that CBD protected against the harmful effects of UVA/B radiation. CBD decreased the expression of proinflammatory proteins, including TNFα/NFκB and IκBKB complex and decreased the expression of proteins involved in de novo protein biosynthesis, which are increased in UVA/B-irradiated cells. Additionally, CBD enhanced the UV-induced expression of 20S proteasome subunits. CBD also protected protein structures from 4-hydroxynonenal (HNE)-binding induced by UV radiation, which primarily affects antioxidant enzymes. CBD-through its antioxidant/anti-inflammatory activity and regulation of protein biosynthesis and degradation-protects skin cells against UVA/B-induced changes. In the future, its long-term use in epidermal cells should be investigated.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
| | - Sinemyiz Atalay
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
| | - Adelina Rogowska-Wrzesińska
- Department of Biochemistry and Molecular Biology, University of Southern Danmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (S.A.); (E.S.)
| |
Collapse
|
25
|
Ruiz-Rodríguez VM, Turiján-Espinoza E, Guel-Pañola JA, García-Hernández MH, Zermeño-Nava JDJ, López-López N, Bernal-Silva S, Layseca-Espinosa E, Fuentes-Pananá EM, Estrada-Sánchez AM, Portales-Pérez DP. Chemoresistance in Breast Cancer Patients Associated With Changes in P2X7 and A2A Purinergic Receptors in CD8 + T Lymphocytes. Front Pharmacol 2020; 11:576955. [PMID: 33364951 PMCID: PMC7750810 DOI: 10.3389/fphar.2020.576955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/23/2020] [Indexed: 01/16/2023] Open
Abstract
Breast cancer (BRCA) is the most frequent cancer type that afflicts women. Unfortunately, despite all the current therapeutic strategies, many patients develop chemoresistance hampering the efficacy of treatment. Hence, an early indicator of therapy efficacy might aid in the search for better treatment and patient survival. Although emerging evidence indicates a key role of the purinergic receptors P2X7 and A2A in cancer, less is known about their involvement in BRCA chemoresistance. In this sense, as the chemotherapeutic treatment stimulates immune system response, we evaluated the expression and function of P2X7 and A2A receptors in CD8+ T cells before and four months after BRCA patients received neoadjuvant chemotherapy. The results showed an increase in the levels of expression of P2X7 and a decrease in the expression of A2A in CD8+ T cells in non-chemoresistant (N-CHR) patients, compared to chemoresistant (CHR) patients. Interestingly, in CHR patients, reduced expression of P2X7 occurs along with a decrease in the CD62L shedding and the production of IFN-γ. In the case of the A2A function, the inhibition of IFN-γ production was not observed after chemotherapy in CHR patients. A possible relationship between the modulation of the expression and function of the P2X7 and A2A receptors was found, according to the molecular subtypes, where the patients that were triple-negative and human epidermal growth factor receptor 2 (HER2)-enriched presented more alterations. Comorbidities such as overweight/obesity and type 2 diabetes mellitus (T2DM) participate in the abnormalities detected. Our results demonstrate the importance of purinergic signaling in CD8+ T cells during chemoresistance, and it could be considered to implement personalized therapeutic strategies.
Collapse
Affiliation(s)
- Victor Manuel Ruiz-Rodríguez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Eneida Turiján-Espinoza
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Mariana Haydee García-Hernández
- Unidad de Investigacion Biomédica de Zacatecas, Delegación Zacatecas, Instituto Mexicano del Seguro Social (IMSS), Zacatecas, Mexico
| | - José de Jesús Zermeño-Nava
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Nallely López-López
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Sofia Bernal-Silva
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Esther Layseca-Espinosa
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Ezequiel M Fuentes-Pananá
- Research Unit in Virology and Cancer, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Ana María Estrada-Sánchez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Diana Patricia Portales-Pérez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
26
|
Verrico CD, Wesson S, Konduri V, Hofferek CJ, Vazquez-Perez J, Blair E, Dunner K, Salimpour P, Decker WK, Halpert MM. A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain. Pain 2020; 161:2191-2202. [PMID: 32345916 PMCID: PMC7584779 DOI: 10.1097/j.pain.0000000000001896] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023]
Abstract
ABSTRACT Over the last 2 decades, affirmative diagnoses of osteoarthritis (OA) in the United States have tripled due to increasing rates of obesity and an aging population. Hemp-derived cannabidiol (CBD) is the major nontetrahydrocannabinol component of cannabis and has been promoted as a potential treatment for a wide variety of disparate inflammatory conditions. Here, we evaluated CBD for its ability to modulate the production of proinflammatory cytokines in vitro and in murine models of induced inflammation and further validated the ability of a liposomal formulation to increase bioavailability in mice and in humans. Subsequently, the therapeutic potential of both naked and liposomally encapsulated CBD was explored in a 4-week, randomized placebo-controlled, double-blinded study in a spontaneous canine model of OA. In vitro and in mouse models, CBD significantly attenuated the production of proinflammatory cytokines IL-6 and TNF-α while elevating levels of anti-inflammatory IL-10. In the veterinary study, CBD significantly decreased pain and increased mobility in a dose-dependent fashion among animals with an affirmative diagnosis of OA. Liposomal CBD (20 mg/day) was as effective as the highest dose of nonliposomal CBD (50 mg/day) in improving clinical outcomes. Hematocrit, comprehensive metabolic profile, and clinical chemistry indicated no significant detrimental impact of CBD administration over the 4-week analysis period. This study supports the safety and therapeutic potential of hemp-derived CBD for relieving arthritic pain and suggests follow-up investigations in humans are warranted.
Collapse
Affiliation(s)
- Chris D. Verrico
- Department of Psychiatry, Baylor College of Medicine, Houston TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston TX 77030
| | | | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston TX 77030
| | - Colby J. Hofferek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston TX 77030
| | | | | | - Kenneth Dunner
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston TX 77030
| | | | - William K. Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston TX 77030
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston TX 77030
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston TX 77030
| | - Matthew M. Halpert
- Department of Pathology & Immunology, Baylor College of Medicine, Houston TX 77030
| |
Collapse
|
27
|
Adenosine-Related Mechanisms in Non-Adenosine Receptor Drugs. Cells 2020; 9:cells9040956. [PMID: 32295065 PMCID: PMC7226956 DOI: 10.3390/cells9040956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022] Open
Abstract
Many ligands directly target adenosine receptors (ARs). Here we review the effects of noncanonical AR drugs on adenosinergic signaling. Non-AR mechanisms include raising adenosine levels by inhibiting adenosine transport (e.g., ticagrelor, ethanol, and cannabidiol), affecting intracellular metabolic pathways (e.g., methotrexate, nicotinamide riboside, salicylate, and 5-aminoimidazole-4-carboxamide riboside), or undetermined means (e.g., acupuncture). However, other compounds bind ARs in addition to their canonical ‘on-target’ activity (e.g., mefloquine). The strength of experimental support for an adenosine-related role in a drug’s effects varies widely. AR knockout mice are the ‘gold standard’ method for investigating an AR role, but few drugs have been tested on these mice. Given the interest in AR modulation for treatment of cancer, CNS, immune, metabolic, cardiovascular, and musculoskeletal conditions, it is informative to consider AR and non-AR adenosinergic effects of approved drugs and conventional treatments.
Collapse
|