1
|
Banerjee M, Efferth T. Pharmaceutical Humanities and Narrative Pharmacy: An Emerging New Concept in Pharmacy. Pharmaceuticals (Basel) 2025; 18:48. [PMID: 39861111 PMCID: PMC11768573 DOI: 10.3390/ph18010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
The complexity of our life experiences and the rapid progress in science and technology clearly necessitate reflections from the humanities. The ever-growing intersection between science and society fosters the emergence of novel interdisciplinary fields of research. During the past decade, Medical Humanities arose to meet the need to unravel hidden information beyond technology-driven and fact-based medicine. In the present paper, we put forward the hypothesis that there is a similar requirement to develop Pharmaceutical Humanities as an academic discipline within pharmacy and pharmaceutical biology. Based on Thomas Kuhn's epistemological theory on the structure of scientific revolutions, one may argue that a paradigm change for Pharmaceutical Humanities might open new levels of insight. Many complex diseases (e.g., cancer, neurological diseases, and mental disorders) remain uncurable for many patients by current pharmacotherapies, and the old beaten paths in our therapeutic thinking may at least partly have to be left behind. By taking examples from Pharmaceutical Biology, we attempt to illustrate that the transdisciplinary dialogue with the humanities is fertile ground not only for enlarging our understanding of disease-related conditions but also for exploring new ways of combatting diseases. In this context, we discuss aspects related to traditional herbal medicine, fair access and benefit sharing of indigenous knowledge about medicinal plants, post-traumatic stress syndrome, the opioid crisis, stress myocardiopathy (broken heart syndrome), and global environmental pollution with microplastics. We also explore possibilities for a narrative turn in pharmacy. The urgent need for inter- and transdisciplinary solutions to pressing health-related problems in our society may create a scholarly atmosphere for the establishment of Pharmaceutical Humanities as a fruitful terrain to respond to the current demands of both science and society.
Collapse
Affiliation(s)
- Mita Banerjee
- Department of English and Linguistics, Obama Institute for Transnational American Studies, Johannes Gutenberg University, Jakob Welder Weg 20, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
2
|
Ye J, Ren Y, Dong Y, Fan D. Understanding the impact of nanoplastics on reproductive health: Exposure pathways, mechanisms, and implications. Toxicology 2024; 504:153792. [PMID: 38554767 DOI: 10.1016/j.tox.2024.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Microplastic pollution is a pressing global environmental concern with particular urgency surrounding the issue of nanoplastic particles. Plastic products exhibit a remarkable persistence in natural ecosystems, resisting easy degradation. Nanoplastics, characterized by their diminutive size, possess distinct properties when compared to their larger counterparts, which could potentially render them more ecologically detrimental. Microplastics themselves serve as carriers for toxic and hazardous substances, such as plastic additives, that enter and persist in the environmental cycle. Importantly, nanoplastics exhibit enhanced bioavailability upon entering the food chain. Notably, studies have demonstrated the adverse effects of nanoplastics on the reproductive function of aquatic organisms, and evidence of micro- and nanoplastics have emerged within human reproductive organs, including the placenta. However, a knowledge gap persists regarding the impacts of nanoplastics on the reproductive systems of mammals and, indeed, humans. This paper aims to elucidate the less frequently discussed sources and distribution of nanoplastics in the environment, along with the pathways of human exposure. We also emphasize the extent to which nanoplastics accumulate within the reproductive systems of organisms. Subsequently, we present an in-depth analysis of the effects of nanoplastics and their associated contaminants on mammalian and human reproductive health. The mechanisms through which nanoplastics contribute to reproductive disorders are comprehensively explored, highlighting their potential to disrupt endocrine levels in mammals and humans. Additionally, we scrutinize and discuss studies on biotoxicity of nanoplastics, offering insights into potential areas for future research.
Collapse
Affiliation(s)
- Jingfan Ye
- Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Ren
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yanhui Dong
- Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
3
|
Rosellini M, Turunen P, Efferth T. Impact of Plastic-Related Compounds on P-Glycoprotein and Breast Cancer Resistance Protein In Vitro. Molecules 2023; 28:molecules28062710. [PMID: 36985682 PMCID: PMC10058098 DOI: 10.3390/molecules28062710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Plastic in oceans degrades to microplastics and nanoplastics, causing various problems for marine fauna and flora. Recently, microplastic has been detected in blood, breast milk and placenta, underlining their ability to enter the human body with still unknown effects. In addition, plastic contains other compounds such as plasticizers, antioxidants or lubricants, whose impact on human health is also elusive. On the cellular level, two transporters involved in cell protection and detoxification of xenobiotic compounds are the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Despite the great importance of these proteins to maintain the correct cellular balance, their interaction with plastic and related products is evasive. In this study, the possible interaction between different plastic-related compounds and these two transporters was investigated. Applying virtual compound screening and molecular docking of more than 1000 commercially available plastic compounds, we identified candidates most probably interacting with these two transporters. Cytotoxicity and uptake assays confirmed their toxic interaction on P-glycoprotein-overexpressing CEM/ADR5000 and BCRP-overexpressing MDA-MD-231-BCRP cell lines. To specifically visualize the results obtained on the P-glycoprotein inhibitor 2,2’-methylenebis(6-tert-butyl-4-methylphenol), we performed live cell time-lapse microscopy. Confocal fluorescence microscopy was used to understand the behavior of the molecule and the consequences that it has on the uptake of the well-known substrate doxorubicin and, in comparison, with the known inhibitor verapamil. Based on the results, we provide evidence that the compound in question is an inhibitor of the P-glycoprotein. Moreover, it is also possible that 2,2’-methylenebis(6-tert-butyl-4-methylphenol), together with three other compounds, may also inhibit the breast cancer resistance protein. This discovery implies that plastic-related compounds can not only harm the human body but can also inhibit detoxifying efflux pumps, which increases their toxic potential as these transporters lose their physiological functions.
Collapse
Affiliation(s)
- Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Petri Turunen
- Microscopy Core Facility, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-392-5751; Fax: +49-6131-392-3752
| |
Collapse
|
4
|
Liu Q, Liu N, Lu H, Yuan W, Zhu L. Polybrominated diphenyl ethers interact with the key protein involved in carbohydrate metabolism in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120466. [PMID: 36265726 DOI: 10.1016/j.envpol.2022.120466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Rice exposed to organic pollutants such as polybrominated diphenyl ethers (PBDEs) usually experiences reduced biomass and increased soluble sugar content. This study showed that 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) led to increased glucose, fructose, and sucrose in rice leaves, accompanied by decreased photosynthetic rate and biomass. In order to identify the key enzyme that BDE-47 interacted with, a diazirine-alkynyl photoaffinity probe was designed, and photoaffinity labeling based chemoproteomics was conducted. Among all differentially expressed proteins, fructose-1, 6-bisphosphate aldolase (FBA) involved in carbohydrate metabolism was most likely the target protein of BDE-47. Spectral techniques and molecular docking analysis further revealed that the pollutant-protein interaction was driven by hydrophobic force. BDE-47 inhibited FBA catalytic efficiency by competing with its substrate, fructose-1, 6-diphosphate (F-1, 6-P), leading to soluble sugar accumulation, photosynthetic rate decline and biomass reduction. This study unraveled the influencing mechanism of PBDEs on rice by combining the novel photoaffinity labeling-based chemoproteomics with conventional proteomics. The improved knowledge on direct interaction between organic pollutants and proteins will help alleviate the harmful effects of soil pollution on plants.
Collapse
Affiliation(s)
- Qian Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Na Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenkui Yuan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
5
|
Xiao Q, Lü Z, Zhu Z, Zhang D, Shen J, Huang M, Chen X, Yang J, Huang X, Rao M, Lu S. Exposure to polycyclic aromatic hydrocarbons and the associations with oxidative stress in waste incineration plant workers from South China. CHEMOSPHERE 2022; 303:135251. [PMID: 35688192 DOI: 10.1016/j.chemosphere.2022.135251] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Waste incineration is one of the most common emission sources of polycyclic aromatic hydrocarbons (PAHs), causing potential occupational exposure in waste incineration workers. However, relative investigations among waste incineration plant workers are still very limited, particularly in China. Therefore, we collected urine specimens from 77 workers in a waste incineration plant as the exposed group, and 101 residents as the control group in Shenzhen, China. Nine mono-hydroxylated PAH metabolites (OH-PAHs) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured, and their internal relationships were explored. The urinary levels of most OH-PAHs and 8-OHdG in the exposed group exhibited high levels versus another group (p < 0.05). We found negative associations between OH-PAHs and 8-OHdG in the control group (p < 0.05), while most of OH-PAHs were not associated with 8-OHdG in the exposed group, which indicated that the exposure to waste incineration could enlarge the level of individual oxidative stress damage. Nevertheless, PAHs were less likely to trigger obvious health risks in exposed workers through estimation of human intake and exposure risks. This study provides a reference for occupational PAH exposure and strengthen the need of health monitoring among incineration workers.
Collapse
Affiliation(s)
- Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhanlu Lü
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Junchun Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Manting Rao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Nishi K, Fu W, Kiyama R. Novel estrogen-responsive genes (ERGs) for the evaluation of estrogenic activity. PLoS One 2022; 17:e0273164. [PMID: 35976950 PMCID: PMC9385026 DOI: 10.1371/journal.pone.0273164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogen action is mediated by various genes, including estrogen-responsive genes (ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene expression profiling using a set of ERGs has been used to examine statistically reliable transcriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). However, the quality of ERGs has not been extensively examined. Here, we obtained a set of 300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which was based on the coefficient of variation (CV) analysis, correlation analysis, and examination of the functional association with estrogen action using database searches. A set of the top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and qualitatively by a functional analysis using the GO and KEGG databases and by a mechanistic analysis to classify ERα/β-dependent or ER-independent types of transcriptional regulation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the association with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs identified here represent various cell functions and cell signaling pathways, including estrogen signaling, and thus, may be useful to evaluate estrogenic activity.
Collapse
Affiliation(s)
- Kentaro Nishi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Wenqiang Fu
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
7
|
Fathollahi A, Makoundou C, Coupe SJ, Sangiorgi C. Leaching of PAHs from rubber modified asphalt pavements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153983. [PMID: 35189212 DOI: 10.1016/j.scitotenv.2022.153983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The present study aimed to, for the first time, quantify the total content of 16 priority EPA PAHs in end-of-life tyre derived crumb rubber granulates and various manufactured rubberised asphalt mix designs. After identifying the availability of 16 EPA PAHs, the leaching behaviour of rubberised asphalt specimens, were evaluated using the Dynamic Surface Leaching Test (DSLT) based on CEN/TS 16637-2:2014 standard. This was prior to modelling the release mechanisms of PAHs by utilizing a mathematical diffusion-controlled leaching model. According to the results, the total content of 16 EPA PAHs in crumb rubber granulates ranged between 0.061 and 8.322 μg/g, which were associated with acenaphthene and pyrene, respectively. The total content of PAHs in rubberised asphalt specimens varied between 0.019 and 4.992 μg/g depending on the volume of crumb rubber granulates in the asphalt concrete mix design, and type of binder. Results of the leaching experiments revealed that the highest leached PAHs were benzo[b]fluoranthene, benzo[k]fluoranthene and naphthalene with a 64-days cumulative release per specimen surface area > 1 μg/m2. Acenaphthylene, fluoranthene, fluorene and indeno[1,2,3-c,d]pyrene were released in cumulative concentrations between 0.1 and 1 μg/m2. The PAHs with a cumulative release potential below 0.1 μg/m2 during DSLT were benzo[a]anthracene, benzo[a]pyrene, benzo[g,h,i]perylene and chrysene. The diffusion coefficients, which were calculated by mathematical modelling of DSLT data, revealed that the leaching process of 16 EPA PAHs from surface of rubberised asphalt concrete mix designs fitted all the criteria set by the NEN 7345 standard for diffusion-controlled leaching during all stages of leaching experiments.
Collapse
Affiliation(s)
- Alireza Fathollahi
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | - Christina Makoundou
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy
| | - Stephen J Coupe
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Cesare Sangiorgi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy
| |
Collapse
|
8
|
Sun K, Song Y, He F, Jing M, Tang J, Liu R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145403. [PMID: 33582342 DOI: 10.1016/j.scitotenv.2021.145403] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most widely distributed persistent organic pollutants (POPs) in the environmental media. PAHs have been widely concerned due to their significant health risk and adverse effects to human and animals. Currently, the main sources of PAHs in the environment are the incomplete combustion of fossil fuels, as well as municipal waste incineration and agricultural non-surface source emissions. In this work, the scope of our attention includes 16 typical PAHs themselves without involving their metabolites and industrial by-products. Exposure of human and animals to PAHs can lead to a variety of adverse effects, including carcinogenicity and teratogenicity, genotoxicity, reproductive- and endocrine-disrupting effects, immunotoxicity and neurotoxicity, the type and severity of which depend on a variety of factors. On the other hand, the regulatory effect of microplastics (MPs) on the bio-toxicity and bioaccumulation capacity of PAHs has now gradually attracted attention. We critically reviewed the adsorption capacity and mechanisms of MPs on PAHs as well as the effects of MPs on PAHs toxicity, thus highlighting the importance of paying attention to the joint bio-toxicity caused by PAHs-MPs interactions. In addition, due to the extensive nature of the common exposure pathway of PAHs and ultraviolet ray, an accurate understanding of biological processes exposed to both PAHs and UV light is necessary to develop effective protective strategies. Finally, based on the above critical review, we highlighted the research gaps and pointed out the priority of further studies.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province 250022, China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|