1
|
Zhang Q, Yuan Y, Cao S, Kang N, Qiu F. Withanolides: Promising candidates for cancer therapy. Phytother Res 2024; 38:1104-1158. [PMID: 38176694 DOI: 10.1002/ptr.8090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Natural products have played a significant role throughout history in the prevention and treatment of numerous diseases, particularly cancers. As a natural product primarily derived from various medicinal plants in the Withania genus, withanolides have been shown in several studies to exhibit potential activities in cancer treatment. Consequently, understanding the molecular mechanism of withanolides could herald the discovery of new anticancer agents. Withanolides have been studied widely, especially in the last 20 years, and attracted the attention of numerous researchers. Currently, over 1200 withanolides have been classified, with approximately a quarter of them having been reported in the literature to be able to modulate the survival and death of cancer cells through multiple avenues. To what extent, though, has the anticancer effects of these compounds been studied? How far are they from being developed into clinical drugs? What are their potential, characteristic features, and challenges? In this review, we elaborate on the current knowledge of natural compounds belonging to this class and provide an overview of their natural sources, anticancer activity, mechanism of action, molecular targets, and implications for anticancer drug research. In addition, direct targets and clinical research to guide the design and implementation of future preclinical and clinical studies to accelerate the application of withanolides have been highlighted.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - YongKang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Song Z, Gao K, Asmamaw MD, Liu YJ, Zheng YC, Shi XJ, Liu HM. Discovery of the antitumor activities of a potent DCN1 inhibitor compound 383 targeting LSD1 in gastric cancer. Eur J Pharmacol 2021; 916:174725. [PMID: 34953802 DOI: 10.1016/j.ejphar.2021.174725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/03/2022]
Abstract
Dual target compounds have become a hot spot in the treatment of cancer in recent years. Histone lysine specific demethylase 1 (LSD1) is identified as histone demethylase and acts as a key regulator involved in many other cellular activities through its demethylation function. We have reported a triazolo [1,5-α] pyrimidine-based DCN1(defective in cullin neddylation protein 1) inhibitor compound 383 (IC50 = 11 nM) which could selectively inhibit Cullin 3/1 neddylation in MGC-803 cells. In this research, we investigated that compound 383 could target LSD1 and inhibit the biological function of LSD1 in MGC-803 cells (IC50 = 0.53 μM). We found that compound 383 could induce the degradation of LSD1 and inhibit MGC-803 cell proliferation, migration and invasion in a dose-dependent manner. Compound 383 could cause cell cycle arrest at G2/M phase by down-regulating the expression of LSD1. In addition, compound 383 could significantly reverse epithelial-mesenchymal transition (EMT) through increase H3K4me methylation at E-cadherin promotor. Furthermore, the in vivo inhibitory effect of compound 383 without obvious toxicity was confirmed in nude mouse transplanted MGC-803 tumor cells model. Collectively, these results suggest that the DCN1 inhibitor compound 383 exhibits antiproliferative activity in gastric cancer cells by targeting LSD1 which promotes compound 383 as a good starting point for the development of dual-target therapeutics for gastric cancer.
Collapse
Affiliation(s)
- Zan Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ke Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue-Jiao Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Key Laboratory of Technology of Drug Preparation, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|