1
|
Moustafa PE, Farouk H, Khattab MS, El-Marasy SA. Diacerein counteracts amiodarone‑induced hepatotoxicity in rats via targeting TLR4/NF-kB/NLRP3 pathways. Toxicol Mech Methods 2025:1-13. [PMID: 40331897 DOI: 10.1080/15376516.2025.2499024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
This study investigates the protective effects of diacerein (DCN) against amiodarone (AMIO)-induced hepatotoxicity in a rat model. AMIO administration resulted in significant elevations of liver enzymes, ALT and AST, indicating hepatocellular membrane disruption and oxidative stress, as demonstrated by elevated levels of malondialdehyde (MDA) and decreased glutathione (GSH). Additionally, pro-inflammatory cytokines including TNF-α and IL-1β were expressed more when AMIO triggered the Toll-like receptor 4/nuclear factor kappa B/inflammasome 3 (TLR4/NF-κB/NLRP3) inflammatory pathway, along with elevated caspase-1 (CASP1) levels, which promoted apoptosis. In contrast, oral administration of DCN for two weeks effectively mitigated these effects by reducing liver enzyme levels and improving histopathological alterations. DCN also demonstrated anti-oxidant properties by decreasing MDA levels and increasing nuclear factor erythroid 2-related factor 2 (Nrf2) and GSH content. Furthermore, DCN downregulated the hepatic content of TLR4, NF-κB p65, NLRP3, CASP1, and pro-inflammatory cytokines, thereby inhibiting the activation of the inflammatory cascade. Moreover, DCN reduced protein expression of caspase 3. Those findings suggest that DCN exerts its hepatoprotective effects through its anti-oxidant activity, modulation of TLR4/NF-κB/NLRP3 inflammatory pathways, and reduction of apoptosis. These results provide new insights into potential therapeutic strategies for managing AMIO-induced hepatotoxicity, warranting further investigation into the underlying molecular mechanisms of DCN's protective effects.
Collapse
Affiliation(s)
- Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
2
|
Gao Y, Yang L, Wu H, Yao Q, Wang J, Zheng N. Sodium butyrate attenuates experimental neonatal necrotizing enterocolitis by suppressing TLR4-mediated NLRP3 inflammasome-dependent pyroptosis. Food Funct 2025; 16:3508-3524. [PMID: 40223745 DOI: 10.1039/d4fo03517h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Necrotizing enterocolitis (NEC) is a fatal intestinal disease in premature infants, and is characterized by intestinal inflammation and disruption of the intestinal barrier. The protective effects of sodium butyrate (NaB) against NEC have been documented, however, the underlying fundamental processes remain unknown. To address this deficit, we used the NEC neonatal rat model to confirm the intestinal protective effect of NaB. We then used network pharmacology and confirmed a role for NaB in the attenuation of NEC and this was associated with the NLRP3 inflammasome and the NF-κB signaling pathway. These results were verified by proteome analysis in vivo, and molecular docking analysis was used to explore the potential underlying mechanisms, revealing a suppressive function of NaB on NEC, which may be caused by its interaction with the TLR4-mediated NF-κB signaling pathway. An in vitro cell model (LPS-stimulated IEC-6 cells) was then established to confirm the docking results. Results using assays involving the NLRP3 (MCC950) and TLR4 (TAK-242) inhibitors suggested that NaB protected intestinal cells from inflammatory injuries during NEC by suppressing the TLR4/MyD88/NF-κB/NLRP3/cleaved caspase-1/GSDMD inflammasome pathway. These findings indicated that NaB can be used as a potential modulatory and therapeutic candidate for the treatment of NEC.
Collapse
Affiliation(s)
- Yanan Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liting Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongya Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qianqian Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Department of Food Science, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Jiaqi Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Nan Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Zhao M, Cui M, Fan M, Huang C, Wang J, Zeng Y, Wang X, Lu Y. Octreotide attenuates experimental severe acute pancreatitis through inhibiting pyroptosis and modulating intestinal homeostasis. Eur J Pharmacol 2025; 994:177314. [PMID: 39922420 DOI: 10.1016/j.ejphar.2025.177314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Severe acute pancreatitis (SAP) is a common clinical condition characterized by acute abdominal symptoms. Octreotide (OCT) is a commonly prescribed treatment for acute pancreatitis (AP). Recent research shows that pyroptosis and intestinal homeostasis significantly contribute to the progression of AP. However, it remains unclear whether OCT treats SAP through modulating pyroptosis and intestinal microbiota. Our study aimed to investigate and validate the potential therapeutic effects of OCT on SAP and underlying mechanisms. The inhibition of pyroptosis in mice using disulfiram was investigated to elucidate the role of pyroptosis in AP. Molecular biology experiments confirmed that OCT effectively inhibited the expression of pyroptosis-related markers. Additionally, the composition, abundance, and functionality of the intestinal microbiota were analyzed using 16S rRNA sequencing, while short-chain fatty acids (SCFAs) were quantified by targeted metabolomics. Our study demonstrated that the administration of OCT significantly mitigated the severity of SAP in a dose-dependent manner. Furthermore, the inhibition of pyroptosis in mice attenuated SAP, thereby highlighting the critical role of pyroptosis in this condition. OCT administration was observed to suppress the expression of key pyroptosis markers. Additionally, there was a notable reduction in intestinal permeability and bacterial translocation. OCT reverses gut dysbiosis caused by SAP, increasing beneficial bacteria while inhibiting pathogenic strains. Furthermore, OCT administration enhanced the levels of SCFAs, including propanoic acid, acetic acid, and butyric acid. Our findings indicate OCT has the potential to alleviate SAP by suppressing pyroptosis and restoring intestinal homeostasis.
Collapse
Affiliation(s)
- Mengqi Zhao
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Mengyan Cui
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Miaoyan Fan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Chunlan Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Yue Zeng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.
| | - Yingying Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
4
|
Dong J, Li Z, Fu C, Yang D, Yang H, Lin L, Liang XJ, Chen Z, Chen L, Guo W. Cardiosplenic axis-targeted immunomodulatory liposome for myocardial ischemia-reperfusion injury treatment. J Control Release 2025; 383:113799. [PMID: 40324533 DOI: 10.1016/j.jconrel.2025.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/02/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Monocyte/macrophage (Mo/Mϕ) infiltration is critical in myocardial ischemia-reperfusion injury (MIRI). However, the complex composition of the myocardium severely hinders drug accumulation and makes it challenging to modulate the Mo/Mϕ immune response at the MIRI site. The spleen, acting as a Mo/Mϕ reservoir, plays a crucial role in the development of MIRI along the cardiosplenic axis. Compared to directly delivering medications to the MIRI site, targeting the spleen for Mo/Mϕ immunomodulation provides an alternative strategy to modulate the immunological phenotype on-site. Therefore, we developed a melatonin-loaded liposome (ST-MT@lipo2) that specifically targets the spleen and can effectively regulate the immunological response of splenic monocytes and macrophages, consequently enhancing their immune response at the site of MIRI. Additionally, the splenectomy mouse model revealed that ST-MT@lipo2 regulated MIRI's immune response through the cardiosplenic axis by regulating the MCP-1/CCR2 pathway to reduce circulating inflammatory monocyte migration from the spleen to the MIRI site. Moreover, pathological staining and echocardiography showed that ST-MT@lipo2 reduced myocardial damage and improved cardiac function in MIRI mice. This study demonstrates the crucial importance of modulating the immune response in the cardiosplenic axis for treating MIRI, which also inspired the treatments for inflammatory diseases by controlling the spleen immunological milieu.
Collapse
Affiliation(s)
- Jiankai Dong
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 250001, China
| | - Zechuan Li
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510260, China
| | - Chenxing Fu
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510260, China
| | - Ding Yang
- Department of Radiology, Peking University Cancer Hospital & Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing 100142, China
| | - Huijie Yang
- Department of Neurology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510260, China
| | - Li Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 250001, China
| | - Xing-Jie Liang
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510260, China; Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhaoyang Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 250001, China.
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou 250001, China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
5
|
Yang Z, Guo Z, Qin B, Zhang H, Chen J, Zheng G, Zou S. Establishment of the Tgf2-based anti-hemorrhagic disease system THVS and analysis of its disease resistance effects in Gobiocypris rarus. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110206. [PMID: 39978561 DOI: 10.1016/j.fsi.2025.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Grass carp reovirus (GCRV) belongs to the family of reoviridae, which mainly causes hemorrhagic disease in grass carp, with high morbidity and mortality rate, which seriously affects the efficiency of grass carp aquaculture, and at present, there is no effective treatment and new varieties of disease-resistant species. Capsid-targeted viral inactivation (CTVI) is a potent antiviral strategy based on the formation of fusion proteins between viral coat proteins and exogenous proteins, whereby the fusion proteins are integrated into the virus upon viral invasion and assembly, and the exogenous proteins directly disrupt and degrade the viral DNA/RNA to provide antiviral efficacy. The aim of this paper was to explore the potential application of CTVI in rare minnow infested with GCRV, to provide a theoretical basis for the breeding of new varieties of grass carp resistant to hemorrhagic disease. We used heat shock protein 70 (HSP70) as promoter, combined with Tgf2 transposon, assembled GCRV outer capsid protein VP3 and Staphylococcus aureus nucleases (SN) to form a fusion protein VP3-SN, constructed a Tgf2-based anti-hemorrhagic disease system (THVS) and a transgenic model of rare minnow, and investigated the apoptotic and immune responses of transgenic rare minnow in resistance to GCRV infection by HE and TUNEL staining, CAT and NO detection, and qPCR. Apoptosis, inflammation and immune responses in transgenic rare minnow against GCRV infection. The results showed that the transgenic rare minnow would limit GCRV amplification during GCRV infection, further affect oxidative stress and reduce the expression of TLR4-MYD88-NF-kB pathway, apoptosis-related genes (BCL2, Caspae3) and inflammation-related genes (IL-1β, TNFα), showing strong GCRV resistance. This experiment provides a theoretical basis and rationale for breeding new grass carp varieties resistant to hemorrhagic disease.
Collapse
Affiliation(s)
- Ziquan Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zaozao Guo
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bo Qin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Huimei Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jie Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guodong Zheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Shuming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Diao L, Ma Y, Wang L, Li P, Zhang B, Meng W, Cai J, Meng Y, Zhou Y, Zhai J, Chen H. New Insights into Melatonin's Function on Thiacloprid-Induced Pyroptosis and Inflammatory Response in Head Kidney Lymphocytes of Cyprinus carpio: Implicating Mitochondrial Metabolic Imbalance and mtROS/cGAS-STING/NF-κB Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10574-10588. [PMID: 40238706 DOI: 10.1021/acs.jafc.5c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Thiacloprid (THI) is a synthetic insecticide, the misuse is targeted chiefly to control aphid pest species in orchards and vegetables. Melatonin (MET) is a hormone that plays crucial physiological roles in anti-inflammatory capacities of fish. We explored the function of MET (100 μM) to mitigate the toxicity induced by THI (20 μM) in lymphocytes. Our results indicate that THI led to a notable rise in lymphocyte mortality. Lymphocytes exposed to THI exhibited a heightened incidence of pyroptosis, accompanied by upregulation in expression associated with pyroptosis (NLRP3, GSDMEA, and IL-18). Meanwhile, THI exposure led to a decrease in lymphocyte mitochondrial membrane potential, an increase in mtROS levels, and a reduction in intracellular ATP, DNA, and NADPH/NADP+ levels, indicating an imbalance in the mitochondrial metabolism within the lymphocytes. Additionally, these effects were reversed by MET treatment, where MitoQ treatment showed that the suppression of mtROS reduced the lymphocyte pyroptosis caused by THI via the mtROS/cGAS-STING/NF-κB axis. Importantly, MET provided defense against the immunotoxic impacts of THI by ameliorating pyroptosis and enhancing anti-inflammatory capability via the mtROS/cGAS-STING/NF-κB axis. Our research potentiates the safeguarding of cultured fish from biological hazards caused by THI and highlights the valuable application of MET in common carp.
Collapse
Affiliation(s)
- Lei Diao
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Yang Ma
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Liping Wang
- College of Economics and Management, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Peng Li
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Bin Zhang
- Tongliao Animal Quarantine Technical Service Center, No. 2349, Jianguo Road North, Horqin District, Tongliao 028000, China
| | - Weijing Meng
- Tongliao Agricultural and Animal Husbandry Development Center, No. 2349, Jianguo Road North, Horqin District, Tongliao 028000, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Meng
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Yuxun Zhou
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Jingying Zhai
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Huijie Chen
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| |
Collapse
|
7
|
Ali MA, Khalifa AA, Elblehi SS, Elsokkary NH, El-Mas MM. Effects of remote ischemic preconditioning and/or erythropoietin on lung injury induced by skeletal ischemia reperfusion: role of the NLRP3 inflammasome. Inflamm Res 2025; 74:67. [PMID: 40272513 DOI: 10.1007/s00011-025-02033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Remote ischemic preconditioning (RIPC) diminishes multi-organ failure induced by skeletal muscle ischemia and reperfusion (S-I/R). The current study investigated whether skeletal RIPC protection against S-I/R-induced acute lung injury (ALI) could be facilitated following simultaneous exposure to the glycoprotein hormone erythropoietin (EPO) in rats and whether this interaction is modulated by the NLRP3 inflammasome. METHODS S-I/R challenge was performed by 3-h ischemia followed by 3-h reperfusion of the right hindlimb, whereas RIPC involved three 20-min brief consecutive I/R cycles of the contralateral hindlimb. RESULTS The lung injurious response to S-I/R was verified by: (i) decreases in minute respiratory volume (MRV), forced expiratory volume 1 (FEV1) and functional vital capacity (FVC), (ii) increases in respiratory rate (RR), (iii) falls in lung surfactant protein-D (SP-D) and rises in of lung plasminogen activator inhibitor-1 (PAI-1) and intercellular adhesion molecule-1 (ICAM-1), and (iv) disruption of alveolar architecture. These lung defects were partially amended by RIPC or EPO (500 or 5000 IU/kg). Further, the prior exposure to RIPC plus EPO-500 was more effective than separate interventions in rectifying ALI damages. Molecularly, the dual RIPC/EPO-500 regimen was also more effective in reversing the S-I/R-associated increments in pulmonary expressions of NLRP3 and related inflammatory (TLR4, MyD88, TRAF, NF-κB, TNF-α, IL-1β, and IL-18), apoptotic (ASC, procaspse-1, caspase-1), and microRNA signals (increases in miR-21 and decreases miR-495). CONCLUSION These findings suggest a pivotal role for the suppression of NLRP3 inflammasome and interconnected cellular offenses in the augmented therapeutic potential of the RIPC/EPO-500 regimen against S-I/R-induced ALI.
Collapse
Affiliation(s)
- Mennatallah A Ali
- PharmD Program, Department of Pharmacology and Toxicology, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | - Asmaa A Khalifa
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nahed H Elsokkary
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriyah Block 4, Hawally, Kuwait.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
8
|
Ciftel E, Mercantepe T, Ciftel S, Karakas SM, Aktepe R, Yilmaz A, Mercantepe F. Somatostatin and N-acetylcysteine on testicular damage triggered by ischemia reperfusion: cellular protection and antioxidant effects. Hormones (Athens) 2025:10.1007/s42000-025-00650-6. [PMID: 40220169 DOI: 10.1007/s42000-025-00650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Ischemia-reperfusion (I/R) injury is a significant cause of testicular damage, leading to infertility and other reproductive dysfunctions. Antioxidant therapies have emerged as a potential intervention to mitigate oxidative stress and cellular damage. This study investigates the effects of somatostatin (SST) and N-acetylcysteine (NAC) on testicular damage induced by I/R, focusing on their antioxidant and cellular protective effects. Twenty-four male rats were divided into four groups, as follows: sham operated, I/R injury, I/R + somatostatin treatment, and I/R + NAC treatment. A testicular I/R injury was induced surgically, followed by either SST or NAC administration. Testicular tissues were assessed histopathologically using hematoxylin and eosin staining and employing Johnson's biopsy scoring. Immunohistochemical analyses were performed for caspase- 3, 8-hydroxy- 2'-deoxyguanosine (8-OHdG), testis-specific histone 2B, and testosterone to evaluate apoptosis, oxidative DNA damage, cellular proliferation, and steroidogenesis, respectively. Serum levels of testosterone and follicle-stimulating hormone (FSH) were measured by biochemical analysis. The results showed that both SST and NAC treatments significantly ameliorated histopathological damage and reduced the levels of caspase- 3 and 8-OHdG, indicating reduced apoptosis and oxidative DNA damage. Furthermore, increased testis-specific histone 2B positivity suggested enhanced cellular proliferation. Notably, administration of SST decreased testosterone positivity in the testis, whereas NAC treatment increased it. However, no significant differences in serum testosterone levels were observed between the NAC and SST groups. In addition, serum FSH levels of the I/R + SST group were found to be significantly higher than those of the control group. SST and NAC exhibit protective effects against testicular damage induced by I/R, as evidenced by their antioxidant and anti-apoptotic properties. The differential impact on testosterone positivity in the testis tissue highlights distinct underlying mechanisms, warranting further investigation. Despite these promising findings, the lack of significant changes in serum hormone levels calls for additional studies to fully elucidate the therapeutic potential and mechanistic pathways of SST and NAC in the context of testicular I/R injury.
Collapse
Affiliation(s)
- Enver Ciftel
- Department of Endocrinology and Metabolism, Sivas Numune Hospital, Sivas, Türkiye
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Education and Research Hospital, Erzurum, Türkiye
| | - Sibel Mataracı Karakas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Riza Aktepe
- Department of Anatomy and Morphology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine Recep, Tayyip Erdogan University, Rize, 53010, Türkiye.
| |
Collapse
|
9
|
Liu J, Jin Y, Lv F, Yang Y, Li J, Zhang Y, Zhong L, Liu W. Identification of biomarkers associated with programmed cell death in liver ischemia-reperfusion injury: insights from machine learning frameworks and molecular docking in multiple cohorts. Front Med (Lausanne) 2025; 12:1501467. [PMID: 40160318 PMCID: PMC11949969 DOI: 10.3389/fmed.2025.1501467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Liver ischemia-reperfusion injury (LIRI) is a major reason for liver injury that occurs during surgical procedures such as hepatectomy and liver transplantation and is a major cause of graft dysfunction after transplantation. Programmed cell death (PCD) has been found to correlate with the degree of LIRI injury and plays an important role in the treatment of LIRI. We aim to comprehensively explore the expression patterns and mechanism of action of PCD-related genes in LIRI and to find novel molecular targets for early prevention and treatment of LIRI. Methods We first compared the expression profiles, immune profiles, and biological function profiles of LIRI and control samples. Then, the potential mechanisms of PCD-related differentially expressed genes in LIRI were explored by functional enrichment analysis. The hub genes for LIRI were further screened by applying multiple machine learning methods and Cytoscape. GSEA, GSVA, immune correlation analysis, transcription factor prediction, ceRNA network analysis, and single-cell analysis further revealed the mechanisms and regulatory network of the hub gene in LIRI. Finally, potential therapeutic agents for LIRI were explored based on the CMap database and molecular docking technology. Results Forty-seven differentially expressed genes associated with PCD were identified in LIRI, and functional enrichment analysis showed that they were involved in the regulation of the TNF signaling pathway as well as the regulation of hydrolase activity. By utilizing machine learning methods, 11 model genes were identified. ROC curves and confusion matrix from the six cohorts illustrate the superior diagnostic value of our model. MYC was identified as a hub PCD-related target in LIRI by Cytoscape. Finally, BMS-536924 and PF-431396 were identified as potential therapeutic agents for LIRI. Conclusion This study comprehensively characterizes PCD in LIRI and identifies one core molecule, providing a new strategy for early prevention and treatment of LIRI.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yeheng Jin
- Department of Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Fengchen Lv
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yao Yang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junchen Li
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yunshu Zhang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Zhong
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Liu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Zhang C, Li L, Wang F, Du H, Wang X, Gu X, Liu X, Han H, Wu J, Sun J. Inhibition of Circ0001679 Alleviates Ischemia/Reperfusion-induced Brain Injury via miR-216/TLR4 Regulatory Axis. Curr Neurovasc Res 2025; 21:472-482. [PMID: 39716795 DOI: 10.2174/0115672026352738241205105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Stroke, primarily known as ischemic stroke, is a leading cause of mortality and disability worldwide. Reperfusion after the ischemia stroke resolves is necessary for maintaining the health of brain tissues; however, it also induces inflammation and oxidative stress, resulting in brain injury. This study aimed to investigate the role of circ0001679 in the pathology of I/R (Ischemia/Reperfusion)-induced brain injury and explore its therapeutic potential for I/R injury. METHODS The Oxygen-Glucose Deprivation/Re-oxygenation (OGD/R) model was employed in primary mouse astrocytes, and the Middle Cerebral Artery Occlusion (MCAO) model was established in mice to mimic ischemia-reperfusion-induced injury. Si-circ0001679, anti-miR- 216, and TLR4 ORF-clone were transfected either in cells or mice to study the molecular mechanisms during I/R-induced injury. Inflammation and oxidative stress were monitored after treatment. RESULTS Upregulated gene expression of circ0001679 was noticed in both OGD/R-treated primary mouse astrocytes and MCAO-induced mouse brain tissue. Silencing circ0001679 reduced cellular damage, inflammation, and oxidative stress induced by OGD/R treatment. Knocking down of circ0001679 alone with either miR-216 inhibition or TLR4 overexpression increased the inflammation response and oxidative stress compared to circ0001679 silencing only. Moreover, inhibition of circ0001679 attenuated brain injury in MCAO-treated mice via reduced infarction, neuronal damage, apoptosis, inflammation, and oxidative stress. CONCLUSION This study unveiled a novel regulatory axis of circ0001679-miR-216-TLR4 in I/Rinduced brain injury. Targeting circ0001679 may represent a promising therapeutic strategy for I/R-induced brain injury.
Collapse
Affiliation(s)
- Chenrui Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liaoyu Li
- Department of Thyroid and Breast Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Feng Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Hailong Du
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiaoyu Gu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xinlei Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Haie Han
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Jianliang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Jianping Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| |
Collapse
|
11
|
Lu Y, Wang T, Yu B, Xia K, Guo J, Liu Y, Ma X, Zhang L, Zou J, Chen Z, Zhou J, Qiu T. Mechanism of action of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and its regulation in liver injury. Chin Med J (Engl) 2024:00029330-990000000-01373. [PMID: 39719693 DOI: 10.1097/cm9.0000000000003309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 12/26/2024] Open
Abstract
ABSTRACT Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a cytosolic pattern recognition receptor that recognizes multiple pathogen-associated molecular patterns and damage-associated molecular patterns. It is a cytoplasmic immune factor that responds to cellular stress signals, and it is usually activated after infection or inflammation, forming an NLRP3 inflammasome to protect the body. Aberrant NLRP3 inflammasome activation is reportedly associated with some inflammatory diseases and metabolic diseases. Recently, there have been mounting indications that NLRP3 inflammasomes play an important role in liver injuries caused by a variety of diseases, specifically hepatic ischemia/reperfusion injury, hepatitis, and liver failure. Herein, we summarize new research pertaining to NLRP3 inflammasomes in hepatic injury, hepatitis, and liver failure. The review addresses the potential mechanisms of action of the NLRP3 inflammasome, and its regulation in these liver diseases.
Collapse
Affiliation(s)
- Yifan Lu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Long Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jilin Zou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
12
|
Shi X, Zhang J, Gao J, Guo D, Zhang S, Chen X, Tang H. Melatonin attenuates liver ischemia-reperfusion injury via inhibiting the PGAM5-mPTP pathway. PLoS One 2024; 19:e0312853. [PMID: 39471139 PMCID: PMC11521291 DOI: 10.1371/journal.pone.0312853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024] Open
Abstract
Phosphoglycerate mutase/protein phosphatase (PGAM5)-mediated cell death plays an important role in multiple liver diseases. However, few studies have confirmed the regulatory mechanism of melatonin acting on PGAM5-mediated cell death in the context of liver ischemia-reperfusion (I/R) injury. The liver I/R injury model and cell hypoxia-reoxygenation model were established after melatonin pretreatment. Liver injury, cell activity, cell apoptosis, oxidative stress index, and PGAM5 protein expression were detected. To investigate the role of PGAM5 in melatonin-mediated liver protection during I/R injury, PGAM5 silencing, and overexpression were performed before melatonin pretreatment. Our results indicated that PGAM5 was significantly elevated by I/R injury, and predominantly localized in the necrosis area. However, treatment with melatonin blocked PGAM5 activation and conferred a survival advantage of hepatocytes in liver I/R injury, similar to the results achieved by silencing PGAM5. In terms of mechanism, we illustrated that activated PGAM5 promoted mitochondrial permeability transition pore (mPTP) opening, and administration of melatonin inhibited mPTP opening and interrupted hepatocytes death via blocking PGAM5. Our data indicated that the PGAM5-mPTP axis is responsible for I/R-induced liver injury. In contrast, melatonin supplementation blocked the PGAM5-mPTP axis and thus decreased cell death, providing a protective advantage to hepatocytes in I/R. These results established a new paradigm in melatonin-mediated hepatocyte protection under the burden of I/R attack.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, Henan, China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, Henan, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, Henan, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, Henan, China
| | - Xu Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, Henan, China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, Henan, China
- ZhengZhou Engineering Laboratory of Organ Transplantation Technique and Application, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Luo S, Luo R, Deng G, Huang F, Lei Z. Programmed cell death, from liver Ischemia-Reperfusion injury perspective: An overview. Heliyon 2024; 10:e32480. [PMID: 39040334 PMCID: PMC11260932 DOI: 10.1016/j.heliyon.2024.e32480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Liver ischemia-reperfusion injury (LIRI) commonly occurs in liver resection, liver transplantation, shock, and other hemorrhagic conditions, resulting in profound local and systemic effects via associated inflammatory responses and hepatic cell death. Hepatocyte death is a significant component of LIRI and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of programmed cell death (PCD), necroptosis, ferroptosis, pyroptosis, autophagy, NETosis, and parthanatos have been shown to be involved in LIRI. Understanding the mechanisms underlying cell death following LIRI is indispensable to mitigating the widespread effects of LIRI. Here, we review the roles of different PCD and discuss potential therapy in LIRI.
Collapse
Affiliation(s)
- Shaobin Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Rongkun Luo
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Gang Deng
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Feizhou Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| | - Zhao Lei
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha , PR China
| |
Collapse
|
14
|
Lv S, Zhao X, Ma C, Zhao D, Sun T, Fu W, Wei Y, Li W. Advancements in the study of acute lung injury resulting from intestinal ischemia/reperfusion. Front Med (Lausanne) 2024; 11:1399744. [PMID: 38933104 PMCID: PMC11199783 DOI: 10.3389/fmed.2024.1399744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Intestinal ischemia/reperfusion is a prevalent pathological process that can result in intestinal dysfunction, bacterial translocation, energy metabolism disturbances, and subsequent harm to distal tissues and organs via the circulatory system. Acute lung injury frequently arises as a complication of intestinal ischemia/reperfusion, exhibiting early onset and a grim prognosis. Without appropriate preventative measures and efficacious interventions, this condition may progress to acute respiratory distress syndrome and elevate mortality rates. Nonetheless, the precise mechanisms and efficacious treatments remain elusive. This paper synthesizes recent research models and pertinent injury evaluation criteria within the realm of acute lung injury induced by intestinal ischemia/reperfusion. The objective is to investigate the roles of pathophysiological mechanisms like oxidative stress, inflammatory response, apoptosis, ferroptosis, and pyroptosis; and to assess the strengths and limitations of current therapeutic approaches for acute lung injury stemming from intestinal ischemia/reperfusion. The goal is to elucidate potential targets for enhancing recovery rates, identify suitable treatment modalities, and offer insights for translating fundamental research into clinical applications.
Collapse
Affiliation(s)
- Shihua Lv
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Can Ma
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dengming Zhao
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Sun
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenchao Fu
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuting Wei
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenzhi Li
- Key Laboratory of Anesthesia and Intensive Care Research, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
16
|
Mu X, Yu H, Li H, Feng L, Ta N, Ling L, Bai L, A R, Borjigidai A, Pan Y, Fu M. Metabolomics analysis reveals the effects of Salvia Miltiorrhiza Bunge extract on ameliorating acute myocardial ischemia in rats induced by isoproterenol. Heliyon 2024; 10:e30488. [PMID: 38737264 PMCID: PMC11088323 DOI: 10.1016/j.heliyon.2024.e30488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Salvia miltiorrhiza Bunge (SM) is a widespread herbal therapy for myocardial ischemia (MI). Nevertheless, the therapeutic signaling networks of SM extract on MI is yet unknown. Emerging evidences suggested that alterations in cardiac metabolite influences host metabolism and accelerates MI progression. Herein, we employed an isoproterenol (ISO)-induced acute myocardial ischemia (AMI) rat model to confirm the pharmacological effects of SM extract (0.8, 0.9, 1.8 g/kg/day) via assessment of the histopathological alterations that occur within the heart tissue and associated cytokines; we also examined the underlying SM extract-mediated signaling networks using untargeted metabolomics. The results indicated that 25 compounds with a relative content higher than 1 % in SM aqueous extract were identified using LC-MS/MS analysis, which included salvianolic acid B, lithospermic acid, salvianolic acid A, and caffeic acid as main components. An in vivo experiment showed that pretreatment with SM extract attenuated ISO-induced myocardial injury, shown as decreased myocardial ischemic size, transformed electrocardiographic, histopathological, and serum biochemical aberrations, reduced levels of proinflammatory cytokines, inhibited oxidative stress (OS), and reversed the trepidations of the cardiac tissue metabolic profiles. Metabolomics analysis shows that the levels of 24 differential metabolites (DMs) approached the same value as controls after SM extract therapy, which were primarily involved in histidine; alanine, aspartate, and glutamate; glycerophospholipid; and glycine, serine, and threonine metabolisms through metabolic pathway analysis. Correlation analysis demonstrated that the levels of modulatory effects of SM extract on the inflammation and OS were related to alterations in endogenous metabolites. Overall, SM extract demonstrated significant cardioprotective effects in an ISO-induced AMI rat model, alleviating myocardial injury, inflammation and oxidative stress, with metabolomics analysis indicating potential therapeutic pathways for myocardial ischemia.
Collapse
Affiliation(s)
- Xiyele Mu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Hongzhen Yu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Huifang Li
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Lan Feng
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Na Ta
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ling Ling
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Li Bai
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Rure A
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Almaz Borjigidai
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Yipeng Pan
- Department of Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China
| | - Minghai Fu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
17
|
Ran S, Song L, Yang H, Yu J, Zhen Y, Liu Q. Piperine alleviates nonalcoholic steatohepatitis by inhibiting NF-κB-mediated hepatocyte pyroptosis. PLoS One 2024; 19:e0301133. [PMID: 38547097 PMCID: PMC10977780 DOI: 10.1371/journal.pone.0301133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
PURPOSE Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), which has a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Piperine (Pip) is an extract of plants with powerful anti-inflammatory effects, however, the function of Pip in NASH remains elusive. Here, we aim to explore the role of Pip in NASH and to find the possible mechanisms. METHODS Methionine and choline-deficient (MCD) diets were used to induce steatohepatitis, methionine- and choline-sufficient (MCS) diets were used as the control. After Pip treatment, H&E staining, Oil Red O staining, hepatic triglyceride (TG) content and F4/80 expression were performed to analysis liver steatosis and inflammation; Masson's staining, COL1A1 and α-SMA were detected liver fibrosis. Lipopolysaccharide (LPS) -treated AML12 cells were used to as the cell model to induce pyroptosis. Then, pyroptosis-related proteins, IL-1β and LDH release were detected in vivo and in vitro. Finally, NF-κB inhibitor, BAY11-7082, was used to further demonstrate the mechanism of Pip in NASH. RESULTS The study found that Pip alleviated liver steatosis, inflammation, hepatocyte injury, and fibrosis in mice fed with MCD diets. Moreover, the pyroptosis markers (NLRP3, ASC, caspase-1 p20, and GSDMD), IL-1β and LDH release were decreased by Pip treatment. NF-κB activation was suppressed by Pip treatment and pyroptosis-related proteins were down regulated by BAY11-7082. CONCLUSION Pip ameliorates NASH progression, and the therapeutical effect was associated with inhibition of hepatocyte pyroptosis induced by NF-κB.
Collapse
Affiliation(s)
- Suye Ran
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Lingyu Song
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Hong Yang
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Jiangnan Yu
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qi Liu
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Wu L, Tan Z, Su L, Dong F, Xu G, Zhang F. Transcutaneous electrical acupoint stimulation alleviates cerebral ischemic injury through the TLR4/MyD88/NF-κ B pathway. Front Cell Neurosci 2024; 17:1343842. [PMID: 38273974 PMCID: PMC10808520 DOI: 10.3389/fncel.2023.1343842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
This study was to explore whether transcutaneous electrical acupoint stimulation (TEAS) treatment could mediate inflammation, apoptosis, and pyroptosis of neuronal cells and microglia activation through the TLR4/MyD88/NF-κB pathway in the early stage of ischemic stroke. TEAS treatment at Baihui (GV20) and Hegu (LI4) acupoints of the affected limb was administered at 24, 48, and 72 h following middle cerebral artery occlusion/reperfusion (MCAO/R), with lasting for 30 min each time. Neurological impairment scores were assessed 2 h and 72 h after ischemia/reperfusion (I/R). TTC staining was used to evaluate the volume of brain infarction. The histopathologic changes of hippocampus were detected by H&E staining. WB analysis was performed to assess the levels of TLR4, MyD88, p-NF-κB p65/NF-κB p65, and inflammation, apoptosis, pyroptosis-related proteins. TLR4 expression was measured using immunohistochemistry. The expression of inflammation-related proteins was also measured using ELISA. Immunofluorescence was used to detect the expression level of Iba1. Our findings demonstrated that TEAS intervention after I/R improved neurological function, reduced the volume of brain infarction, and mitigated pathological damage. Moreover, TEAS reduced the levels of TLR4, MyD88, p-NF-κB p65/NF-κB p65, TNF-α, IL-6, Bax, NLRP3, cleaved caspase-1/pro caspase-1, IL-1β, IL-18, GSDMD, and Iba1 while enhancing Bcl-2 expression. Moreover, the protective effects of TEAS could be counteracted by lipopolysaccharide (LPS, a TLR4 agonist). In conclusion, TEAS can reduce cerebral damage and suppress inflammation, cell death, and microglia activation after ischemic stroke via inhibiting the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
19
|
Zhang Y, Li J, Deng H, Wan H, Xu P, Wang J, Liu R, Tang T. High mobility group box 1 knockdown inhibits EV71 replication and attenuates cell pyroptosis through TLR4/NF-κB/NLRP3 axis. J Biochem Mol Toxicol 2024; 38:e23620. [PMID: 38229319 DOI: 10.1002/jbt.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD) in children. Nowadays, there are still no effective antiviral drugs for EV71 infection. High mobility group box 1 (HMGB1) is reported to be highly expressed in HFMD patients. However, the role and underlying mechanism of HMGB1 in EV71-associated HFMD are still unclear. HMGB1 expression was detected using RT-qPCR and western blot assays. Loss- and gain-function experiments were performed to evaluate the effects of HMGB1 on EV71-infected cells. The virus titer was examined by TCID50. CCK-8 and flow cytometry assays were applied to detect the cell viability and cell cycle. Oxidative stress was determined by relative commercial kits. HMGB1 level was elevated in the serum of EV71-infected patients with HFMD and EV71-induced RD cells. EV71 infection induced the transfer of HMGB1 from the nucleus into the cytoplasm. HMGB1 knockdown inhibited virus replication, viral protein (VP1) expression and promoted antiviral factor expression. In addition, the inhibition of HMGB1 improved cell viability, protected against S phase arrest, and inhibited EV71-induced cell injury and oxidative stress, whereas HMGB1 overexpression showed the opposite effects. In terms of mechanism, HMGB1 overexpression activated the TLR4/NF-κB/NLRP3 signaling pathway and promoted cell pyroptosis. The inhibition of TLR4 and NF-κB reversed the effects of HMGB1 overexpression on virus replication, oxidative stress, and pyroptosis. In conclusion, HMGB1 knockdown inhibits EV71 replication and attenuates pyroptosis through TLR4/NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Huiling Deng
- Department of Pediatrics, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Han Wan
- Department of General Surgery, Xi'an No. 3 Hospital, Xi'an, Shaanxi, China
| | - Pengfei Xu
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Jun Wang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Ruiqing Liu
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Tiantian Tang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Yao K, Zhang ZH, Liu MD, Niu FW, Li X, Ding DM, Wang DM, Yu DX, Xu DX, Xie DD. Melatonin alleviates intrarenal CaOx crystals deposition through inhibiting LPS-induced non-canonical inflammasome-mediated renal tubular epithelial cells pyroptosis. Int Immunopharmacol 2023; 124:110796. [PMID: 37633237 DOI: 10.1016/j.intimp.2023.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
Urinary tract infection has long been considered a complication rather than etiology of calcium oxalate (CaOx) nephrolithiasis. This study aimed to explore the role of lipopolysaccharide (LPS), an important component of Gram-negative bacteria, on CaOx nephrolithiasis formation and antagonistic effect of melatonin. Male C57BL/6 mice were intraperitoneally injected with glyoxylate acid (80 mg/kg) daily for 7 days to construct CaOx nephrolithiasis model. A single dose of LPS (2.0 mg/kg) was given 2 h before the second glyoxylate acid treatment in the presence or absence of melatonin (25 mg/kg). Our results found that LPS promoted adhesion of CaOx crystals to renal tubular epithelial cells (RTECs) and intrarenal CaOx crystals deposition. Protein levels of cleaved Caspase-11, N-terminal of cleaved GSDMD (GSDMD-N), NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and cleaved Caspase-1, several markers of non-classical inflammasome activation were upregulated in LPS-treated mouse kidneys and HK-2 cells. Moreover, the number of GSDMD pores was increased in LPS-treated HK-2 cell membrane. Melatonin inhibited Caspase-11 cleavage and antagonized the subsequent LPS-mediated upregulation of GSDMD-N, NLRP3 and cleaved Caspase-1 in kidney tissues and HK-2 cells. In addition, melatonin reduced membrane localization of GSDMD-N and the number of GSDMD pores in LPS-treated HK-2 cells. Accordingly, melatonin inhibited LPS-induced IL-1β and IL-18 in mouse serum and HK-2 culture supernatant. Importantly, melatonin alleviated LPS-induced crystal-cell interactions and intrarenal CaOx crystals deposition. We provide experimental evidence that LPS promoted CaOx nephrolithiasis formation by inducing non-canonical inflammasome-mediated RTECs pyroptosis. Melatonin alleviated CaOx nephrolithiasis formation through inhibiting LPS-induced non-canonical inflammasome-mediated RTECs pyroptosis.
Collapse
Affiliation(s)
- Kai Yao
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Hui Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ming-Dong Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Feng-Wen Niu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xi Li
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - De-Mao Ding
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Da-Ming Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - De-Xin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| | - Dong-Dong Xie
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Urology, Fuyang Hospital of Anhui Medical University, Fuyang 236000, China.
| |
Collapse
|
21
|
Chai R, Ye Z, Xue W, Shi S, Wei Y, Hu Y, Wu H. Tanshinone IIA inhibits cardiomyocyte pyroptosis through TLR4/NF-κB p65 pathway after acute myocardial infarction. Front Cell Dev Biol 2023; 11:1252942. [PMID: 37766966 PMCID: PMC10520722 DOI: 10.3389/fcell.2023.1252942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Tanshinone IIA, derived from Radix Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge), constitutes a significant component of this traditional Chinese medicine. Numerous studies have reported positive outcomes regarding its influence on cardiac function. However, a comprehensive comprehension of the intricate mechanisms responsible for its cardioprotective effects is still lacking. Methods: A rat model of heart failure (HF) induced by acute myocardial infarction (AMI) was established via ligation of the left anterior descending coronary artery. Rats received oral administration of tanshinone IIA (1.5 mg/kg) and captopril (10 mg/kg) for 8 weeks. Cardiac function was assessed through various evaluations. Histological changes in myocardial tissue were observed using staining techniques, including Hematoxylin and Eosin (HE), Masson, and transmission electron microscopy. Tunel staining was used to detect cell apoptosis. Serum levels of NT-pro-BNP, IL-1β, and IL-18 were quantified using enzyme-linked immunosorbent assay (ELISA). Expression levels of TLR4, NF-κB p65, and pyroptosis-related proteins were determined via western blotting (WB). H9C2 cardiomyocytes underwent hypoxia-reoxygenation (H/R) to simulate ischemia-reperfusion (I/R) injury, and cell viability and apoptosis were assessed post treatment with different tanshinone IIA concentrations (0.05 μg/ml, 0.1 μg/ml). ELISA measured IL-1β, IL-18, and LDH expression in the cell supernatant, while WB analysis evaluated TLR4, NF-κB p65, and pyroptosis-related protein levels. NF-κB p65 protein nuclear translocation was observed using laser confocal microscopy. Results: Tanshinone IIA treatment exhibited enhanced cardiac function, mitigated histological cardiac tissue damage, lowered serum levels of NT-pro-BNP, IL-1β, and IL-18, and suppressed myocardial cell apoptosis. Moreover, tanshinone IIA downregulated the expression of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in myocardial tissue. Additionally, it bolstered H/R H9C2 cardiomyocyte viability, curbed cardiomyocyte apoptosis, and reduced the levels of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in H/R H9C2 cells. Furthermore, it hindered NF-κB p65 protein nuclear translocation. Conclusion: These findings indicate that tanshinone IIA enhances cardiac function and alleviates myocardial injury in HF rats following AMI. Moreover, tanshinone IIA demonstrates potential suppression of cardiomyocyte pyroptosis. These effects likely arise from the inhibition of the TLR4/NF-κB p65 signaling pathway, presenting a promising therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Yi Wei
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Lei Y, Xu T, Sun W, Wang X, Gao M, Lin H. Evodiamine alleviates DEHP-induced hepatocyte pyroptosis, necroptosis and immunosuppression in grass carp through ROS-regulated TLR4 / MyD88 / NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108995. [PMID: 37573970 DOI: 10.1016/j.fsi.2023.108995] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a neuroendocrine disruptor that can cause multi-tissue organ damage by inducing oxidative stress. Evodiamine (EVO) is an indole alkaloid with anti-inflammatory, antitumor, and antioxidant pharmacological activity. In this manuscript, the effects of DEHP and EVO on the pyroptosis, necroptosis and immunology of grass carp hepatocytes (L8824) were investigated using DCFH-DA staining, PI staining, IF staining, AO/EB staining, LDH kit, qRT-PCR and protein Western blot. The results showed that DEHP exposure upregulated reactive oxygen species (ROS) levels, promoted the expression of TLR4/MyD88/NF-κB pathway, increased the expression of genes involved in cell pyroptosis pathway (LDH, NLRP3, ASC, caspase1, IL-1β, IL-18 and GSDMD) and necroptosis-related genes (RIPK1, RIPK3 and MLKL). The expression of DEHP can also affect immune function, which can be demonstrated by variationsin the activation of antimicrobial peptides (LEAP2, HEPC, and β-defensin) and inflammatory cytokines (TNF-α, IL-2, IL-6 and IL-10). EVO regulates cellular antioxidant capacity by inhibiting ROS burst, reduces DEHP-induced cell pyroptosis and necroptosis to some extent, and restores cellular immune function, after co-exposure with EVO. The TLR4 pathway was inhibited by the co-treatment of TLR4 inhibitor TLR-IN-C34 and DEHP, which attenuated the expression of cell pyroptosis, necroptosis, and immunosuppression. Thus, DEHP induced pyroptosis, necroptosis and abnormal immune function in L8824 cells by activating TLR4/MyD88/NF-κB pathway. In addition, EVO has a therapeutic effect on DEHP-induced toxic injury. This study further provides a theoretical basis for the risk assessment of plasticizer DEHP on aquatic organisms.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaodan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
23
|
Aydin P, Aksakalli-Magden ZB, Civelek MS, Karabulut-Uzuncakmak S, Mokhtare B, Ozkaraca M, Alper F, Halici Z. The melatonin agonist ramelteon attenuates bleomycin-induced lung fibrosis by suppressing the NLRP3/TGF-Β1/HMGB1 signaling pathway. Adv Med Sci 2023; 68:322-331. [PMID: 37716182 DOI: 10.1016/j.advms.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/10/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
PURPOSE The possible effects of ramelteon, a melatonin receptor agonist on bleomycin-induced lung fibrosis were analyzed via transforming growth factor β1 (TGF-β1), the high mobility group box 1 (HMGB1) and Nod-like receptor pyrin domain-containing 3 (NLRP3) which are related to the fibrosis process. MATERIALS AND METHODS Bleomycin (0.1 mL of 5 mg/kg) was administered by intratracheal instillation to induce pulmonary fibrosis (PF). Starting 24 h after bleomycin administration, a single dose of ramelteon was administered by oral gavage to the healthy groups, i.e. PF + RM2 (pulmonary fibrosis model with bleomycin + ramelteon at 2 mg/kg) and PF + RM4 (pulmonary fibrosis model with bleomycin + ramelteon at 4 mg/kg) at 2 and 4 mg/kg doses, respectively. Real-time polymerase chain reaction (real-time PCR) analyses, histopathological, and immunohistochemical staining were performed on lung tissues. Lung tomography images of the rats were also examined. RESULTS The levels of TGF-β1, HMGB1, NLRP3, and interleukin 1 beta (IL-1β) mRNA expressions increased as a result of PF and subsequently decreased with both ramelteon doses (p < 0.0001). Both doses of ramelteon partially ameliorated the reduction in the peribronchovascular thickening, ground-glass appearances, and reticulations, and the loss of lung volume. CONCLUSIONS The severity of fibrosis decreased with ramelteon application. These effects of ramelteon may be associated with NLRP3 inflammation cascade.
Collapse
Affiliation(s)
- Pelin Aydin
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | | | - Maide S Civelek
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | | | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Cumhurıyet University, Sıvas, Turkey
| | - Fatih Alper
- Department of Radiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey; Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
| |
Collapse
|
24
|
Zou Z, Zhao M, Yang Y, Xie Y, Li Z, Zhou L, Shang R, Zhou P. The role of pyroptosis in hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:811-823. [PMID: 36864264 DOI: 10.1007/s13402-023-00787-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the main histologic type of liver cancer. It accounts for the majority of all diagnoses and deaths due to liver cancer. The induction of tumor cell death is an effective strategy to control tumor development. Pyroptosis is an inflammatory programmed cell death caused by microbial infection, accompanied by activation of inflammasomes and release of pro-inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18). The cleavage of gasdermins (GSDMs) promotes the occurrence of pyroptosis leading to cell swelling, lysis, and death. Accumulating evidence has indicated that pyroptosis influences the progression of HCC by regulating immune-mediated tumor cell death. Currently, some researchers hold the view that inhibition of pyroptosis-related components may prevent the incidence of HCC, but more researchers have the view that activation of pyroptosis exerts a tumor-inhibitory effect. Growing evidence indicates that pyroptosis can prevent or promote tumor development depending on the type of tumor. In this review, pyroptosis pathways and pyroptosis-related components were discussed. Next, the role of pyroptosis and its components in HCC was described. Finally, the therapeutic significance of pyroptosis in HCC was discussed.
Collapse
Affiliation(s)
- Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Minghui Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Yalong Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Liang Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Runshi Shang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, 1095 Jiefang Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
25
|
Huang S, Lin S, Zhou S, Huang Z, Li Y, Liu S, Liu R, Luo X, Li J, Yang J, Yuan Z. Soluble thrombomodulin alleviates Diquat-induced acute kidney injury by inhibiting the HMGB1/IκBα/NF-κB signalling pathway. Food Chem Toxicol 2023:113871. [PMID: 37277018 DOI: 10.1016/j.fct.2023.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Our research aimed to investigate whether soluble thrombomodulin (sTM) relieved Diquat (DQ)-induced acute kidney injury (AKI) via HMGB1/IκBα/NF-κB signaling pathways. An AKI rat model was constructed using DQ. Pathological changes in renal tissue were detected by HE and Masson staining. Gene expression was determined using qRT-PCR, IHC, and western blotting. Cell activity and apoptosis were analysed using CCK-8 and Flow cytometry, respectively. An abnormal kidney structure was observed in DQ rats. The levels of blood urea nitrogen (BUN), creatinine (CRE), uric acid (UA), oxidative stress, and inflammatory responses in the DQ group increased on the 7th day but decreased on the 14th day, compared with the control group. Additionally, HMGB1, sTM, and NF-kappaB (NF-κB) expression had increased in the DQ group compared with the control group, while the IκKα and IκB-α levels had decreased. In addition, sTM relieved the damaging effects of diquat on renal tubular epithelial cell viability, apoptosis, and the inflammatory response. The levels of HMGB1, TM, and NF-κB mRNA and protein were significantly decreased in the DQ + sTM group compared with the DQ group. These findings indicated that sTM could relieve Diquat-induced AKI through HMGB1/IκBα/NF-κB signaling pathways, which provides a treatment strategy for Diquat-induced AKI.
Collapse
Affiliation(s)
- Shaofang Huang
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shirong Lin
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Zhou
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ziyan Huang
- Medical College of Nanchang University, Nanchang, China
| | - Yang Li
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shiwen Liu
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Risheng Liu
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xurui Luo
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiawei Li
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jibin Yang
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Zheng Yuan
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
26
|
Luo H, Liu R, Lang Y, Zhao J, Zhuang C, Wang J, Liang C, Zhang J. Melatonin alleviated fluoride-induced impairment of spermatogenesis and sperm maturation process via Interleukin-17A. Food Chem Toxicol 2023:113867. [PMID: 37269891 DOI: 10.1016/j.fct.2023.113867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Fluoride-induced male reproductive failure is a major environmental and human health concern, but interventions are still lacking. Melatonin (MLT) has potential functions in regulating testicular damage and interleukin-17 (IL-17) production. This study aims to explore whether MLT can mitigate fluoride-induced male reproductive toxicity through IL-17A, and screen the potential targets. So the wild type and IL-17A knockout mice were employed and treated with sodium fluoride (100 mg/L) by drinking water and MLT (10 mg/kg.BW, intraperitoneal injection per two days starting from week 16) for 18 weeks. Bone F- concentrations, grade of dental damage, sperm quality, spermatogenic cells counts, histological morphology of testis and epididymis, and the mRNA expression of spermatogenesis and maturation, classical pyroptosis related and immune factor genes were detected respectively. The results revealed that MLT supplementations alleviated fluoride-induced impairment of spermatogenesis and maturation process, protecting the morphology of testis and epididymis through IL-17A pathway, and Tesk1 and Pten were identified as candidate targets from 29 regulation genes. Taken together, this study demonstrated a new physiological role for MLT in the protection against fluoride-induced reproductive injury and possible regulation mechanisms, which providing a useful therapeutic strategy for male reproductive function failure caused by fluoride or other environmental pollutants.
Collapse
Affiliation(s)
- Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Rongxiu Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yilin Lang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jinhui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
27
|
Yu C, Chen P, Miao L, Di G. The Role of the NLRP3 Inflammasome and Programmed Cell Death in Acute Liver Injury. Int J Mol Sci 2023; 24:3067. [PMID: 36834481 PMCID: PMC9959699 DOI: 10.3390/ijms24043067] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Acute liver injury (ALI) is a globally important public health issue that, when severe, rapidly progresses to acute liver failure, seriously compromising the life safety of patients. The pathogenesis of ALI is defined by massive cell death in the liver, which triggers a cascade of immune responses. Studies have shown that the aberrant activation of the nod-like receptor protein 3 (NLRP3) inflammasome plays an important role in various types of ALI and that the activation of the NLRP3 inflammasome causes various types of programmed cell death (PCD), and these cell death effectors can in turn regulate NLRP3 inflammasome activation. This indicates that NLRP3 inflammasome activation is inextricably linked to PCD. In this review, we summarize the role of NLRP3 inflammasome activation and PCD in various types of ALI (APAP, liver ischemia reperfusion, CCl4, alcohol, Con A, and LPS/D-GalN induced ALI) and analyze the underlying mechanisms to provide references for future relevant studies.
Collapse
Affiliation(s)
- Chaoqun Yu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Longyu Miao
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Guohu Di
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
28
|
Yue RZ, Li YJ, Su BH, Li CJ, Zeng R. Atorvastatin reduces contrast media-induced pyroptosis of renal tubular epithelial cells by inhibiting the TLR4/MyD88/NF-κB signaling pathway. BMC Nephrol 2023; 24:25. [PMID: 36732683 PMCID: PMC9893683 DOI: 10.1186/s12882-023-03066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital-acquired renal failure. However, there is no effective treatment of CI-AKI, and its mechanism is unknown. Interestingly, atorvastatin has been reported to be effective in renal injury. Therefore, the aim of this study was to explore the effect and possible molecular mechanism of atorvastatin in CI-AKI. METHODS On the CI-AKI in vitro model, rat tubular epithelial cells (NRK-52E) were treated with 18 mg I/ml meglumine diatrizoate (MEG) and then pretreated with atorvastatin. pcDNA3.1-TLR4 treatment was performed to overexpress toll-like receptor 4 (TLR4) in NRK-52E cells. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) kits were used to detect NRK-52E cell viability as well as LDH release in each group, respectively; qRT-PCR to determine mRNA expression of TLR4 in cells; western blot to detect protein expression levels of pyroptosis-related proteins (NLRP3, caspase-1, ASC, and GSDMD) and TLR4/MyD88/NF-κB signaling pathway-related proteins (TLR4, MyD88, NF-κBp65, and p-NF-κB p65) in cells. RESULTS MEG treatment significantly inhibited the viability of NRK-52E cells, increased pro-inflammatory factor levels and promoted pyroptosis, representing successful establishment of a rat tubular epithelial cell (NRK-52E) CI-AKI in vitro model. Notably, atorvastatin increased the activity of MEG-treated NRK-52E cells and alleviated cell injury in a concentration-dependent manner. In addition, atorvastatin significantly down-regulated the expression of TLR4 in MEG-treated NRK-52E cells. However, overexpression of TLR4 inhibited the effects of atorvastatin on increasing cell viability, alleviating cell injury, reducing pro-inflammatory factors (IL-1β, IL-6, and TNF-α) levels, and inhibiting apoptosis (by down-regulating the expression of NLRP3, caspase-1, ASC, and GSDMD). Furthermore, atorvastatin also inhibited the expression of TLR4/MyD88/NF-κB pathway-related proteins (TLR4, MyD88, and p-NF-κB p65). CONCLUSION Atorvastatin can attenuate CI-AKI through increasing the activity of MEG-treated renal tubular epithelial cells, relieving cell injury, as well as inhibiting pyroptosis and inflammation. More importantly, the mechanism was achieved by inhibiting the TLR4//MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rong-zheng Yue
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Ya-juan Li
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Bai-hai Su
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Cong-jun Li
- grid.13291.380000 0001 0807 1581Department of nephrology, West China Hospital, School of Clinic Medicine, Sichuan University, 610041 Chengdu, Sichuan China
| | - Rui Zeng
- Department of Cardiovascular diseases, West China Hospital, School of Clinic Medicine, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
A Novel Prognostic Pyroptosis-Related Gene Signature Correlates to Oxidative Stress and Immune-Related Features in Gliomas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4256116. [PMID: 36778205 PMCID: PMC9909087 DOI: 10.1155/2023/4256116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023]
Abstract
Gliomas are highly invasive and aggressive tumors having the highest incidence rate of brain cancer. Identifying effective prognostic and potential therapeutic targets is necessitated. The relationship of pyroptosis, a form of programmed cellular death, with gliomas remains elusive. We constructed and validated a prognostic model for gliomas using pyroptosis-related genes. Differentially expressed pyroptosis-related genes were screened using the "limma" package. Based on LASSO-Cox regression, nine significant genes including CASP1, CASP3, CASP6, IL32, MKI67, MYD88, PRTN3, NOS1, and VIM were employed to construct a prognostic model in the TCGA cohort; the results were validated in the CGGA cohort. According to the median risk score, the patients were classified into two risk groups, namely, high- and low-risk groups. Patients at high risk had worse prognoses relative to those at low risk evidenced by the Kaplan-Meier curve analysis. The two groups exhibited differences in immune cell infiltration and TMB scores, with high immune checkpoint levels, TMB scores, and immune cell infiltration levels in the high-risk group. KEGG and GO analyses suggested enrichment in immune-related pathways. Furthermore, we found that the genes in our signature strongly correlated with oxidative stress-related pathways and the subgroups exhibited different ssGSEA scores. Some small molecules targeted the genes in the model, and we verified their drug sensitivities between the risk groups. The scRNA-seq dataset, GSE138794, was processed using the "Seurat" package to assess the level of risk gene expression in specific cell types. Finally, the MYD88 level was lowered in the U87 glioma cell line using si-RNA constructs. Cellular proliferation was impaired, and fewer pyroptosis-related cytokines were released upon exposure to LPS. In summary, we built a pyroptosis-related gene model that accurately classified glioma patients into high- and low-risk groups. The findings suggest that the signature may be an effective prognostic predictive tool for gliomas.
Collapse
|
30
|
Yang X, Yu H, Wei J, Wei Q, Huang H, Chen J, Li J, Yu S. The protective effects of dietary Clostridium butyricum supplementation on hepatic ischemia reperfusion injury in rats. Acta Cir Bras 2022; 37:e370904. [PMID: 36515313 PMCID: PMC9746544 DOI: 10.1590/acb370904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This study investigated the effects of oral administration of Clostridium butyricum (C. butyricum) on inflammation, oxidative stress, and gut flora in rats with hepatic ischemia reperfusion injury (HIRI). METHODS The rats from C. butyricum group were given C. butyricum for 5 days. Then, hepatic ischemia for 30 min and reperfusion for 6 h were performed in all the rats. After the animals were sacrificed, alanine transaminase (ALT), aspartate aminotransferase (AST), lipopolysaccharide (LPS) in serum, short-chain fatty acids (SCFAs), and gut microbiota composition in feces, and malondialdehyde (MDA), glutathione (GSH), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), Toll-like receptor 4 (TLR4), nuclear factor-kappa Bp65 (NF-κBp65) and histological analysis in the liver were performed. RESULTS The rats given C. butyricum showed decreased ALT, AST, LPS, and MDA; improved GSH and histological damage; changes in SCFAs; declined TNF-α, IL-6, TLR4, and pNF-κBp65/NF-κBp65; and changes in the gut microbial composition, which decreased the Firmicutes/Bacteroidetes ratio and increased the relative abundance (RA) of probiotics. CONCLUSIONS C. butyricum supplementation protected against HIRI by regulating gut microbial composition, which contributed to the decreased LPS and attenuation of inflammation and oxidative stress. These indicate C. butyricum may be a potent clinical preoperative dietary supplement for HIRI.
Collapse
Affiliation(s)
- Xuan Yang
- Undergraduate student. School of Clinical Medicine – Central South University – Changsha, China
| | - Hui Yu
- MSc. Guangxi University of Chinese Medicine – The Affiliated Ruikang Hospital – Nanning, China
| | - Jingli Wei
- MSc. Guangxi University of Chinese Medicine – The Affiliated Ruikang Hospital – Nanning, China
| | - Qiuyan Wei
- MSc. Guangxi University of Chinese Medicine – The Affiliated Ruikang Hospital – Nanning, China
| | - Hui Huang
- MSc. Guangxi University of Chinese Medicine – The Affiliated Ruikang Hospital – Nanning, China
| | - Jing Chen
- MSc. Guangxi University of Chinese Medicine – The Affiliated Ruikang Hospital – Nanning, China
| | - Jianzhe Li
- PhD. Guangxi University of Chinese Medicine – The Affiliated Ruikang Hospital – Nanning, China
| | - Shuyi Yu
- PhD. Central South University – Advanced Research Centre – Changsha, China
| |
Collapse
|
31
|
Peng JF, Salami OM, Habimana O, Xie YX, Yao H, Yi GH. Targeted Mitochondrial Drugs for Treatment of Ischemia-Reperfusion Injury. Curr Drug Targets 2022; 23:1526-1536. [PMID: 36100990 DOI: 10.2174/1389450123666220913121422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury is a complex hemodynamic pathology that is a leading cause of death worldwide and occurs in many body organs. Numerous studies have shown that mitochondria play an important role in the occurrence mechanism of ischemia-reperfusion injury and that mitochondrial structural abnormalities and dysfunction lead to the disruption of the homeostasis of the whole mitochondria. At this time, mitochondria are not just sub-organelles to produce ATP but also important targets for regulating ischemia-reperfusion injury; therefore, drugs targeting mitochondria can serve as a new strategy to treat ischemia-reperfusion injury. Based on this view, in this review, we discuss potential therapeutic agents for both mitochondrial structural abnormalities and mitochondrial dysfunction, highlighting the application and prospects of targeted mitochondrial drugs in the treatment of ischemia-reperfusion injury, and try to provide new ideas for the clinical treatment of the ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jin-Fu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | | | - Olive Habimana
- International College, University of South China, 28 W Chang-sheng Road, Hengyang, Hunan, 421001, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Hui Yao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
32
|
Li W, Yang K, Li B, Wang Y, Liu J, Chen D, Diao Y. Corilagin alleviates intestinal ischemia/reperfusion-induced intestinal and lung injury in mice via inhibiting NLRP3 inflammasome activation and pyroptosis. Front Pharmacol 2022; 13:1060104. [PMID: 36506567 PMCID: PMC9727192 DOI: 10.3389/fphar.2022.1060104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Intestinal ischemia reperfusion (II/R) is a clinical emergency that frequently occurs in a variety of clinical conditions. Severe intestinal injury results in the release of cytotoxic substances and inflammatory mediators which can activate local inflammatory response and bacterial translocation. This triggers multi-organ failure, including lung injury, which is a common complication of II/R injury and contributes to the high mortality rate. Corilagin (Cor) is a natural ellagitannin found in a variety of plants. It has many biological and pharmacological properties, including antioxidant, anti-inflammatory and anti-apoptosis activities. However, no studies have evaluated the effects and molecular mechanisms of Cor in alleviating II/R-induced intestinal and lung damage. In this study, Cor was found to significantly alleviate II/R-induced pathological damage, inflammatory response, oxidative stress, NLRP3 inflammasome activation, and pyroptosis in intestinal and lung tissues both in vivo and in vitro. Further, Cor inhibited the NLRP3 inflammasome activation and pyroptosis in RAW264.7 and MLE-12 cells induced by LPS/nigericin and that in IEC-6 cells induced by nigericin, indicating an amelioration of Cor in II/R-induced intestinal and lung injury via inhibiting NLRP3 inflammasome activation and pyroptosis. Thus, Cor might be a potential therapeutic agent for II/R-induced inflammation and tissue injury.
Collapse
Affiliation(s)
- Wenlian Li
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kejia Yang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China,*Correspondence: Jing Liu, ; Yunpeng Diao,
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China,*Correspondence: Jing Liu, ; Yunpeng Diao,
| |
Collapse
|
33
|
Abd-Ellatif RN, Nasef NA, El-Horany HES, Emam MN, Younis RL, El Gheit REA, Elseady W, Radwan DA, Hafez YM, Eissa A, Aboalsoud A, Shalaby RH, Atef MM. Adrenomedullin Mitigates Doxorubicin-Induced Nephrotoxicity in Rats: Role of Oxidative Stress, Inflammation, Apoptosis, and Pyroptosis. Int J Mol Sci 2022; 23:14570. [PMID: 36498902 PMCID: PMC9741179 DOI: 10.3390/ijms232314570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer antibiotic which has various effects in human cancers. It is one of the commonly known causes of drug-induced nephrotoxicity, which results in acute renal injury. Adrenomedullin (ADM), a vasodilator peptide, is widely distributed in many tissues and has potent protective effects. Therefore, the current study aimed to examine the protective potential mechanisms of ADM against DOX-induced nephrotoxicity. A total of 28 male Wistar rats were randomized into four groups: control group, doxorubicin group (15 mg/kg single intraperitoneal injection of DOX), adrenomedullin + doxorubicin group (12 μg/kg/day intraperitoneal injection of ADM) 3 days prior to DOX injection and continuing for 14 days after the model was established, and adrenomedullin group. Kidney function biomarkers, oxidative stress markers, and inflammatory mediators (TNF-α, NLRP3, IL-1β, and IL-18) were assessed. The expressions of gasdermin D and ASC were assessed by real-time PCR. Furthermore, the abundances of caspase-1 (p20), Bcl-2, and Bax immunoreactivity were evaluated. ADM administration improved the biochemical parameters of DOX-induced nephrotoxicity, significantly reduced oxidative damage markers and inflammatory mediators, and suppressed both apoptosis and pyroptosis. These results were confirmed by the histopathological findings and revealed that ADM's antioxidant, anti-inflammatory, anti-apoptotic, and anti-pyroptotic properties may have prospective applications in the amelioration of DOX-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Hemat El-Sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Biochemistry Department, College of Medicine, Ha’il University, Ha’il 2440, Saudi Arabia
| | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Reham Lotfy Younis
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Walaa Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Doaa A. Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmad Eissa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Alshimaa Aboalsoud
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Rania H. Shalaby
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Dubai Medical College for Girls, Dubai 20170, United Arab Emirates
| | - Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
34
|
Zheng Y, Xu X, Chi F, Cong N. Pyroptosis: A Newly Discovered Therapeutic Target for Ischemia-Reperfusion Injury. Biomolecules 2022; 12:1625. [PMID: 36358975 PMCID: PMC9687982 DOI: 10.3390/biom12111625] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/15/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury, uncommon among patients suffering from myocardial infarction, stroke, or acute kidney injury, can result in cell death and organ dysfunction. Previous studies have shown that different types of cell death, including apoptosis, necrosis, and autophagy, can occur during I/R injury. Pyroptosis, which is characterized by cell membrane pore formation, pro-inflammatory cytokine release, and cell burst, and which differentiates itself from apoptosis and necroptosis, has been found to be closely related to I/R injury. Therefore, targeting the signaling pathways and key regulators of pyroptosis may be favorable for the treatment of I/R injury, which is far from adequate at present. This review summarizes the current status of pyroptosis and its connection to I/R in different organs, as well as potential treatment strategies targeting it to combat I/R injury.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Xinda Xu
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Fanglu Chi
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Ning Cong
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| |
Collapse
|
35
|
Zhao W, He C, Jiang J, Zhao Z, Yuan H, Wang F, Shen B. The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:427-438. [PMID: 36302618 PMCID: PMC9614395 DOI: 10.4196/kjpp.2022.26.6.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1β [IL-1β], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1β and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosis-related proteins and increased concentration of IL-1β and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1β and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.
Collapse
Affiliation(s)
- Weichen Zhao
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Chunyuan He
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Junjie Jiang
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Zongbiao Zhao
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Hongzhong Yuan
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Facai Wang
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| | - Bingxiang Shen
- Department of Pharmacy, Lu'an Hospital Affiliated to Anhui Medical University, Lu'an People's Hospital, Lu'an, Anhui 237005, China
| |
Collapse
|
36
|
Mohamed ME, Younis NS. Ameliorative Effect of D-Carvone against Hepatic Ischemia-Reperfusion-Induced Injury in Rats. Life (Basel) 2022; 12:1502. [PMID: 36294936 PMCID: PMC9604805 DOI: 10.3390/life12101502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND D-carvone is a monoterpene that exists in the essential oils of several plant species. Hepatic ischemia-reperfusion (Hep I/R) takes place clinically during different scenarios of liver pathologies. The aim of the current investigation is to disclose the hepato-protective actions of carvone against Hep I/R-induced damage and to reveal the underlying mechanism. MATERIAL AND METHODS Rats were assigned into five groups: sham and carvone plus sham groups, in which rats were administered either saline or carvone orally for three weeks prior to the induction of Hep I/R. In the Hep I/R group, rats were administered saline orally prior to the Hep I/R induction operation. The carvone 25 plus Hep I/R and Carvone 50 plus Hep I/R groups were administered carvone (25 and 50 mg/kg, respectively) for three weeks, followed by the induction of Hep I/R. RESULTS Liver ischemic animals demonstrated impaired liver function, several histopathological variations, and reduced levels of antioxidant enzyme activities. Furthermore, the Hep I/R groups showed the elevated gene expression of high-mobility group box 1 (HMGB1), toll-like receptors 4 (TLR4), nuclear factor kappa B (NFκB), and LR family pyrin domain containing 3 (NLP3), with subsequent escalated adhesion molecule 1 (ICAM-1), neutrophil infiltration, and several inflammatory mediators, including interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α), as well as apoptotic markers. Pretreatment with D-carvone alleviated ischemia/reperfusion-induced impaired liver function, diminished the histopathological deviations, and augmented the antioxidant enzymes. In addition, D-carvone mitigated the gene expression of HMGB1, TLR4, NFκB, and NLP3, with a subsequent reduction in ICAM-1, neutrophils infiltration, inflammatory mediators, and apoptotic markers. CONCLUSION Rats pretreated with D-carvone exhibited hepato-protective actions against Hep I/R-induced damage via the downregulation of HMGB1, TLR4, NFκB, NLP3, associated inflammatory mediators, and apoptotic markers.
Collapse
Affiliation(s)
- Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | |
Collapse
|
37
|
Ghafouri-Fard S, Shoorei H, Poornajaf Y, Hussen BM, Hajiesmaeili Y, Abak A, Taheri M, Eghbali A. NLRP3: Role in ischemia/reperfusion injuries. Front Immunol 2022; 13:926895. [PMID: 36238294 PMCID: PMC9552576 DOI: 10.3389/fimmu.2022.926895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
NLR family pyrin domain containing 3 (NLRP3) is expressed in immune cells, especially in dendritic cells and macrophages and acts as a constituent of the inflammasome. This protein acts as a pattern recognition receptor identifying pathogen-associated molecular patterns. In addition to recognition of pathogen-associated molecular patterns, it recognizes damage-associated molecular patterns. Triggering of NLRP3 inflammasome by molecules ATP released from injured cells results in the activation of the inflammatory cytokines IL-1β and IL-18. Abnormal activation of NLRP3 inflammasome has been demonstrated to stimulate inflammatory or metabolic diseases. Thus, NLRP3 is regarded as a proper target for decreasing activity of NLRP3 inflammasome. Recent studies have also shown abnormal activity of NLRP3 in ischemia/reperfusion (I/R) injuries. In the current review, we have focused on the role of this protein in I/R injuries in the gastrointestinal, neurovascular and cardiovascular systems.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | | | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
38
|
Li M, Tan H, Gao T, Han L, Teng X, Wang F, Zhang X. Gypensapogenin I Ameliorates Isoproterenol (ISO)-Induced Myocardial Damage through Regulating the TLR4/NF-κB/NLRP3 Pathway. Molecules 2022; 27:5298. [PMID: 36014544 PMCID: PMC9416370 DOI: 10.3390/molecules27165298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Myocardial fibrosis (MF) is a common pathological feature of many heart diseases and seriously threatens the normal activity of the heart. Jiaogulan (Gynostemma pentaphyllum) tea is a functional food that is commercially available worldwide. Gypensapogenin I (Gyp I), which is a novel dammarane-type saponin, was obtained from the hydrolysates of total gypenosides. It has been reported to exert a beneficial anti-inflammatory effect. In our study, we attempted to investigate the efficiency and possible molecular mechanism of Gyp I in cardiac injury treatment induced by ISO. In vitro, Gyp I was found to increase the survival rate of H9c2 cells and inhibit apoptosis. Combined with molecular docking and Western blot analysis, Gyp I was confirmed to regulate the TLR4/NF-κB/NLRP3 signaling pathway. In vivo, C57BL6 mice were subcutaneously injected with 10 mg/kg ISO to induce heart failure. Mice were given a gavage of Gyp I (10, 20, or 40 mg/kg/d for three weeks). Pathological alterations, fibrosis-, inflammation-, and apoptosis-related molecules were examined. By means of cardiac function detection, biochemical index analysis, QRT-PCR monitoring, histopathological staining, immunohistochemistry, and Western blot analysis, it was elucidated that Gyp I could improve cardiac dysfunction, alleviate collagen deposition, and reduce myocardial fibrosis (MF). In summary, we reported for the first time that Gyp I showed good myocardial protective activity in vitro and in vivo, and its mechanism was related to the TLR4/NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
39
|
Salidroside alleviates hepatic ischemia-reperfusion injury during liver transplant in rat through regulating TLR-4/NF-κB/NLRP3 inflammatory pathway. Sci Rep 2022; 12:13973. [PMID: 35978104 PMCID: PMC9385636 DOI: 10.1038/s41598-022-18369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Salidroside has anti-inflammatory, antioxidant and hepatoprotective properties. However, its effect on hepatic ischemia–reperfusion injury (IRI), an unavoidable side effect associated with liver transplantation, remains undefined. Here, we aimed to determine whether salidroside alleviates hepatic IRI and elucidate its potential mechanisms. We used both in vivo and in vitro assays to assess the effect and mechanisms of salidroside on hepatic IRI. Hepatic IRI rat models were pretreated with salidroside (5, 10 or 20 mg/kg/day) for 7 days following liver transplantation while hypoxia/reoxygenation (H/R) model of RAW 264.7 macrophages were pretreated with salidroside (1, 10 or 50 μM). The effect of salidroside on hepatic IRI was assessed using hematoxylin–eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, qRT-PCR, immunosorbent assay and western blotting. Our in vivo assays showed that salidroside significantly reduced pathological liver damage, serum aminotransferase levels and serum levels of IL-1, IL-18 and TNF-α. Besides, salidroside reduced the expression of TLR-4/NF-κB/NLRP3 inflammatory pathway associated proteins (TLR-4, MyD88, p-IKKα, p-IKKβ, p-IKK, p-IκBα, p-P65, NLRP3, ASC, Cleaved caspase-1, IL-1β, IL-18, TNF-α and IL-6) in rats after liver transplantation. On the other hand, data from the in vitro analysis demonstrated that salidroside blocks expression of TLR-4/NF-κB/NLRP3 inflammatory pathway related proteins in the RAW264.7 cells treated with H/R. The salidroside-specific anti-inflammatory effects were partially inhibited by the TLR-4 agonist lipopolysaccharide. Taken together, our study showed that salidroside inhibits hepatic IRI following liver transplantation by modulating the TLR-4/NF-κB/NLRP3 inflammatory pathway.
Collapse
|
40
|
Ding F, Zhang L, Wu X, Liu Y, Wan Y, Hu J, Zhang X, Wu Q. Melatonin ameliorates renal dysfunction in glyphosate- and hard water-treated mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113803. [PMID: 36068739 DOI: 10.1016/j.ecoenv.2022.113803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Chronic interstitial nephritis in agricultural communities (CINAC) is a severe and widespread disease that has been associated with environmental and occupational exposure to glyphosate and hard water. However, the potential underlying mechanisms remain incompletely understood. Melatonin is reported to exert protective effects on the kidney, but whether melatonin can attenuate renal tubular injury in mice exposed to glyphosate combined with hard water is unclear. Here, mice were treated with high doses and environmentally relevant doses of glyphosate (100 mg/kg·bw and 0.7 mg/L, respectively) and/or hard water (2500 mg/L CaCO3 and 250 mg/L Ca2+, respectively) via their drinking water for 12 weeks. We found that high-dose glyphosate or hard water treatment significantly increased the levels of biomarkers of renal damage, including β2-microglobulin, neutrophil gelatinase-associated lipid carrier protein, and/or albumin, in the urine; these increased biomarker levels were correlated with obvious morphological changes, and all of these changes were also observed in animals exposed to environmentally relevant doses of glyphosate and/or high Ca2+ water. Melatonin (10 mg/kg·bw, intraperitoneal injection, daily for 12 weeks) administered concomitantly with high doses of glyphosate and hard water inhibited the glyphosate- and hard water-induced increases in the levels of kidney injury biomarkers and changes in morphology; this result was intriguing. Additionally, glyphosate combined with hard water at both high and environmentally relevant doses significantly upregulated the expression of the endoplasmic reticulum (ER) stress marker proteins Bip, ATF6, and PERK as well as the pyroptosis-related proteins (NLRP3 and caspase 1 signaling proteins) in renal tissues. Similarly, melatonin significantly attenuated the increased ER stress and pyroptosis induced by high doses of glyphosate and hard water. In summary, we conclude that exposure to glyphosate and hard water at both high doses and environmentally relevant doses causes renal dysfunction in mice, and this dysfunction can be attenuated by melatonin, possibly through the inhibition of ER stress and pyroptosis. Our results support the notion that melatonin may have therapeutic potential for the treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Fan Ding
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Lin Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China; Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wu
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Yingying Liu
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Qing Wu
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Chen M, Rong R, Xia X. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation 2022; 19:183. [PMID: 35836195 PMCID: PMC9281180 DOI: 10.1186/s12974-022-02547-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pyroptosis is a programmed cell death characterized by swift plasma membrane disruption and subsequent release of cellular contents and pro-inflammatory mediators (cytokines), including IL‐1β and IL‐18. It differs from other types of programmed cell death such as apoptosis, autophagy, necroptosis, ferroptosis, and NETosis in terms of its morphology and mechanism. As a recently discovered form of cell death, pyroptosis has been demonstrated to be involved in the progression of multiple diseases. Recent studies have also suggested that pyroptosis is linked to various ocular diseases. In this review, we systematically summarized and discussed recent scientific discoveries of the involvement of pyroptosis in common ocular diseases, including diabetic retinopathy, age-related macular degeneration, AIDS-related human cytomegalovirus retinitis, glaucoma, dry eye disease, keratitis, uveitis, and cataract. We also organized new and emerging evidence suggesting that pyroptosis signaling pathways may be potential therapeutic targets in ocular diseases, hoping to provide a summary of overall intervention strategies and relevant multi-dimensional evaluations for various ocular diseases, as well as offer valuable ideas for further research and development from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Meini Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
42
|
Wu T, Zhang C, Shao T, Chen J, Chen D. The Role of NLRP3 Inflammasome Activation Pathway of Hepatic Macrophages in Liver Ischemia-Reperfusion Injury. Front Immunol 2022; 13:905423. [PMID: 35757691 PMCID: PMC9229592 DOI: 10.3389/fimmu.2022.905423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is considered an inherent component involved in liver transplantation, which induce early organ dysfunction and failure. And the accumulating evidences indicate that the activation of host innate immune system, especially hepatic macrophages, play a pivotal role in the progression of LIRI. Inflammasomes is a kind of intracellular multimolecular complexes that actively participate in the innate immune responses and proinflammatory signaling pathways. Among them, NLRP3 inflammasome is the best characterized and correspond to regulate caspase-1 activation and the secretion of proinflammatory cytokines in response to various pathogen-derived as well as danger-associated signals. Additionally, NLRP3 is highly expressed in hepatic macrophages, and the assembly of NLRP3 inflammasome could lead to LIRI, which makes it a promising therapeutic target. However, detailed mechanisms about NLRP3 inflammasome involving in the hepatic macrophages-related LIRI is rarely summarized. Here, we review the potential role of the NLRP3 inflammasome pathway of hepatic macrophages in LIRI, with highlights on currently available therapeutic options.
Collapse
Affiliation(s)
- Tong Wu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianfeng Shao
- Department of General Practice, Shaoxing Yuecheng District Tashan Street Community Health Service Center, Shaoxing, China
| | - Jianzhong Chen
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, Bichescu M, Buzoianu AD. miRNA Involvement in Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2022; 16:901360. [PMID: 35757539 PMCID: PMC9226476 DOI: 10.3389/fnins.2022.901360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs (miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing complex either degrade or prevent target messenger RNAs from being translated and thus, can modulate the synthesis of target proteins. In the neurological field, miRNAs have been evaluated as potential regulators in brain development processes and pathological events. Following ischemic hypoxic stress, the cellular and molecular events initiated dysregulate different miRNAs, responsible for long-terming progression and extension of neuronal damage. Because of their ability to regulate the synthesis of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the neuronal damage following a cerebral ischemic event. This review aims to summarize the recent literature evidence of the miRNAs involved in signaling and modulating cerebral ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage and repair mechanisms. An in-depth overview of the molecular pathways involved in ischemia reperfusion injury and the involvement of specific miRNAs, could provide future perspectives in the development of neuroprotective agents targeting these specific miRNAs.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carina Mihu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen-Stanca Melincovici
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius Bichescu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
44
|
Wang J, Zhang F, Xu H, Yang H, Shao M, Xu S, Lyu F. TLR4 aggravates microglial pyroptosis by promoting DDX3X-mediated NLRP3 inflammasome activation via JAK2/STAT1 pathway after spinal cord injury. Clin Transl Med 2022; 12:e894. [PMID: 35692100 PMCID: PMC9189419 DOI: 10.1002/ctm2.894] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
Background Toll‐like receptor 4 (TLR4) participates in the initiation of neuroinflammation in various neurological diseases, including central nervous system injuries. NLR family pyrin domain containing 3 (NLRP3) inflammasome‐mediated microglial pyroptosis is crucial for the inflammatory response during secondary spinal cord injury (SCI). However, the underlying mechanism by which TLR4 regulates NLRP3 inflammasome activation and microglial pyroptosis after SCI remains uncertain. Methods We established an in vivo mouse model of SCI using TLR4‐knockout (TLR4‐KO) and wild‐type (WT) mice. The levels of pyroptosis, tissue damage and neurological function recovery were evaluated in the three groups (Sham, SCI, SCI‐TLR4‐KO). To identify differentially expressed proteins, tandem mass tag (TMT)‐based proteomics was conducted using spinal cord tissue between TLR4‐KO and WT mice after SCI. For our in vitro model, mouse microglial BV2 cells were exposed to lipopolysaccharides (1 µg/ml, 8 h) and adenosine triphosphate (ATP) (5 mM, 2 h) to induce pyroptosis. A series of molecular biological experiments, including Western blot (WB), real‐time quantitative polymerase chain reaction (RT‐qPCR), enzyme‐linked immunosorbent assay (ELISA), immunofluorescence (IF), immunohistochemical (IHC), chromatin immunoprecipitation (ChIP), Dual‐Luciferase Reporter assay (DLA) and co‐immunoprecipitation (Co‐IP), were performed to explore the specific mechanism of microglial pyroptosis in vivo and in vitro. Results Our results indicated that TLR4 promoted the expression of dead‐box helicase 3 X‐linked (DDX3X), which mediated NLRP3 inflammasome activation and microglial pyroptosis after SCI. Further analysis revealed that TLR4 upregulated the DDX3X/NLRP3 axis by activating the JAK2/STAT1 signalling pathway, and importantly, STAT1 was identified as a transcription factor promoting DDX3X expression. In addition, we found that biglycan was increased after SCI and interacted with TLR4 to jointly regulate microglial pyroptosis through the JAK2/STAT1/DDX3X/NLRP3 axis after SCI. Conclusion Our study preliminarily identified a novel mechanism by which TLR4 regulates NLRP3 inflammasome‐mediated microglial pyroptosis in response to SCI—providing a novel and promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Jin Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Haiyuan Yang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shun Xu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P. R. China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, P. R. China.,Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
45
|
Li J, Wang Z. A novel NUTM2A-AS1/miR-769–5p axis regulates LPS-evoked damage in human dental pulp cells via the TLR4/MYD88/NF-κB signaling. J Dent Sci 2022. [DOI: 10.1016/j.jds.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
46
|
Xu J, Wang Q, Song YF, Xu XH, Zhu H, Chen PD, Ren YP. Long noncoding RNA X-inactive specific transcript regulates NLR family pyrin domain containing 3/caspase-1-mediated pyroptosis in diabetic nephropathy. World J Diabetes 2022; 13:358-375. [PMID: 35582664 PMCID: PMC9052004 DOI: 10.4239/wjd.v13.i4.358] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND NLRP3-mediated pyroptosis is recognized as an essential modulator of renal disease pathology. Long noncoding RNAs (lncRNAs) are active participators of diabetic nephropathy (DN). X inactive specific transcript (XIST) expression has been reported to be elevated in the serum of DN patients.
AIM To evaluate the mechanism of lncRNA XIST in renal tubular epithelial cell (RTEC) pyroptosis in DN.
METHODS A DN rat model was established through streptozotocin injection, and XIST was knocked down by tail vein injection of the lentivirus LV sh-XIST. Renal metabolic and biochemical indices were detected, and pathological changes in the renal tissue were assessed. The expression of indicators related to inflammation and pyroptosis was also detected. High glucose (HG) was used to treat HK2 cells, and cell viability and lactate dehydrogenase (LDH) activity were detected after silencing XIST. The subcellular localization and downstream mechanism of XIST were investigated. Finally, a rescue experiment was carried out to verify that XIST regulates NLR family pyrin domain containing 3 (NLRP3)/caspase-1-mediated RTEC pyroptosis through the microRNA-15-5p (miR-15b-5p)/Toll-like receptor 4 (TLR4) axis.
RESULTS XIST was highly expressed in the DN models. XIST silencing improved renal metabolism and biochemical indices and mitigated renal injury. The expression of inflammation and pyroptosis indicators was significantly increased in DN rats and HG-treated HK2 cells; cell viability was decreased and LDH activity was increased after HG treatment. Silencing XIST inhibited RTEC pyroptosis by inhibiting NLRP3/caspase-1. Mechanistically, XIST sponged miR-15b-5p to regulate TLR4. Silencing XIST inhibited TLR4 by promoting miR-15b-5p. miR-15b-5p inhibition or TLR4 overexpression averted the inhibitory effect of silencing XIST on HG-induced RTEC pyroptosis.
CONCLUSION Silencing XIST inhibits TLR4 by upregulating miR-15b-5p and ultimately inhibits renal injury in DN by inhibiting NLRP3/caspase-1-mediated RTEC pyroptosis.
Collapse
Affiliation(s)
- Jia Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Qin Wang
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Yi-Fan Song
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Xiao-Hui Xu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - He Zhu
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Pei-Dan Chen
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| | - Ye-Ping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
47
|
Khalifa AA, El Sokkary NH, Elblehi SS, Diab MA, Ali MA. Potential cardioprotective effect of octreotide via NOXs mitigation, mitochondrial biogenesis and MAPK/Erk1/2/STAT3/NF-kβ pathway attenuation in isoproterenol-induced myocardial infarction in rats. Eur J Pharmacol 2022; 925:174978. [DOI: 10.1016/j.ejphar.2022.174978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
|
48
|
Yao Y, Hu S, Zhang C, Zhou Q, Wang H, Yang Y, Liu C, Ding H. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139-5p/FoxO1/Keap1/Nrf2 axis. Int Immunopharmacol 2022; 105:108582. [DOI: 10.1016/j.intimp.2022.108582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
|
49
|
Duan X, Song Y, Li F, Liao Y, Liu W. Metadherin silencing results in the inhibition of pyroptosis in lipopolysaccharide/adenosine triphosphate - stimulated renal tubular epithelial cells. Tissue Cell 2022; 75:101722. [PMID: 35026615 DOI: 10.1016/j.tice.2021.101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Pyroptosis is induced following inflammation via activation of the NLRP3 inflammasome. Lipopolysaccharide (LPS)-induced acute inflammation causes pyroptosis in renal tubular epithelial cells, which aggravates kidney damage and is involved in physiopathological processes in multiple renal diseases. Metadherin (Mtdh) induces inflammation by NLRP3 inflammasome activation. Specifically, it induces inflammatory injury in the kidney by activating the nuclear factor kappa B (NF-κB) signaling pathway, which is involved in NLRP3 inflammasome activation. However, the role of Mtdh in pyroptosis in renal tubular epithelial cells is unclear. Therefore, we investigated whether Mtdh participates in pyroptosis in LPS/adenosine triphosphate (ATP)-treated NRK-52E cells by activating the NLRP3 inflammasome and NF-κB signaling pathway. We induced pyroptosis in NRK-52E cells with LPS/ATP, after which Mtdh was silenced via transfection with small interfering RNA. LPS/ATP upregulated Mtdh expression and induced pyroptosis and NLRP3 inflammasome activation in NRK-52E cells. However, downregulation of Mtdh expression resulted in the alleviation of pyroptosis in LPS/ATP-treated NRK-52E cells. Additionally, activation of the NLRP3 inflammasome and NF-κB signaling pathway was inhibited. This demonstrates that downregulation of Mtdh expression results in the inhibition of pyroptosis in LPS/ATP-treated NRK-52E cells through the suppression of NLRP3 inflammasome activation, which occurs via inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiuping Duan
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Yashan Song
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Fuji Li
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Yunhua Liao
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China.
| | - Wenting Liu
- Department of Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China.
| |
Collapse
|
50
|
Cai Z, Yuan S, Luan X, Feng J, Deng L, Zuo Y, Li J. Pyroptosis-Related Inflammasome Pathway: A New Therapeutic Target for Diabetic Cardiomyopathy. Front Pharmacol 2022; 13:842313. [PMID: 35355717 PMCID: PMC8959892 DOI: 10.3389/fphar.2022.842313] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pyroptosis is a highly specific type of inflammatory programmed cell death that is mediated by Gasdermine (GSDM). It is characterized by inflammasome activation, caspase activation, and cell membrane pore formation. Diabetic cardiomyopathy (DCM) is one of the leading diabetic complications and is a critical cause of fatalities in chronic diabetic patients, it is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as hypertension, significant valvular disease, etc. There are no specific drugs in treating DCM despite decades of basic and clinical investigations. Although the relationship between DCM and pyroptosis is not well established yet, current studies provided the impetus for us to clarify the significance of pyroptosis in DCM. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of DCM and summary the potential use of approaches targeting this pathway which may be future anti-DCM strategies.
Collapse
Affiliation(s)
- Zhengyao Cai
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Suxin Yuan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- *Correspondence: Jian Feng,
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yumei Zuo
- Department of outpatient, The 13th Retired Cadre Recuperation Clinic Of Chengdu, Institute of Cardiovascular Research, Chengdu, China
| | - Jiafu Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|