1
|
Inaudi P, Esposito C, Malandrino M, Favilli L, Giacomino A, Abollino O. Development of a portable method for monitoring and speciation of arsenic in aquatic systems by anodic stripping voltammetry: Applications to real samples. Talanta 2025; 291:127880. [PMID: 40048997 DOI: 10.1016/j.talanta.2025.127880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/24/2025]
Abstract
The aim of this study was to develop a differential pulse anodic stripping voltammetry (DPASV) method for the rapid, sensitive and cost-effective determination and speciation of inorganic arsenic in aquatic environments. The electrochemical determination of arsenite and arsenate was investigated using a rotating solid gold electrode (SGE). As(III) was selectively determined at +0.1 V by ASV after a deposition at -0.3 V. The total As content (As(V) + As(III)) was electrochemically reduced at -1.2 V by nascent hydrogen to As0, and then As(V) was evaluated indirectly by subtraction. Electrochemical reduction of As(V), instead of chemical reduction, was chosen to minimize the consumption of chemical reagents, reduce analysis time and provide a method suitable for on-site analysis. First, the operating parameters were optimized, and the method was characterized in terms of selectivity, sensitivity, linearity, precision and accuracy. A Limit of Detection (LOD) of 0.10 μg L-1 was found for the developed technique for As(tot). The method was then applied to the direct quantitative determination and speciation of inorganic arsenic in real water samples; the results obtained showed satisfactory agreement with those produced by the hydride generation technique coupled with inductively coupled plasma atomic emission spectroscopy (HG-ICP-OES). Subsequently, the voltammetric determination of arsenic was explored with a portable potentiostat to evaluate the reliability of the procedure for on-site detection.
Collapse
Affiliation(s)
- Paolo Inaudi
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Turin, Italy.
| | - Christian Esposito
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Turin, Italy; Department of Chemistry, University of Turin, Via Giuria 7, 10125, Turin, Italy.
| | - Mery Malandrino
- Department of Chemistry, University of Turin, Via Giuria 7, 10125, Turin, Italy.
| | - Laura Favilli
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Turin, Italy.
| | - Agnese Giacomino
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Turin, Italy.
| | - Ornella Abollino
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
2
|
Ullah Q, Khan SA, Arifuddin M, Mohsin M, Kausar S, Fatema N, Ahmer MF. Recent Developments in Colorimetric and Fluorometric Detection Methods of Trivalent Metal Cations (Al 3+, Fe 3+ and Cr 3+) Using Schiff Base Probes: At a Glance. J Fluoresc 2025; 35:543-557. [PMID: 38133749 DOI: 10.1007/s10895-023-03514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
This review basically concerned with the application of different Schiff bases (SB) based fluorimetric (turn-off and turn-on) and colorimetric chemosensors for the detection of heavy metal cations particularly Al(III), Fe(III), and Cr(III) ions. Chemosensors based on Schiff bases have exhibited outstanding performance in the detection of different metal cations due to their facile and in-expensive synthesis, and their excellent coordination ability with almost all metal cations and stabilize them in different oxidation states. Moreover, Schiff bases have also been used as antifungal, anticancer, analgesic, anti-inflammatory, antibacterial, antiviral, antioxidant, and antimalarial etc. The Schiff base also can be used as an intermediate for the formation of various heterocyclic compounds. In this review, we have focused on the research work performed on the development of chemosensors (colorimetric and fluorometric) for rapid detection of trivalent metal cations particularly Al(III), Fe(III), and Cr(III) ions using Schiff base as a ligand during 2020-2022.
Collapse
Affiliation(s)
- Qasim Ullah
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Salman Ahmad Khan
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammed Arifuddin
- Chemistry Department, Directorate of Distance Education (DDE), Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Md Mohsin
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Samrin Kausar
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Nahid Fatema
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Nuh Gurugram University Haryana, Gurugram, India.
| |
Collapse
|
3
|
K N, Shetty AN, Trivedi DR. Colorimetric differentiation of arsenite and arsenate anions using a bithiophene sensor with two binding sites: DFT studies and application in food and water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4960-4970. [PMID: 38973603 DOI: 10.1039/d4ay00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Chemosensor N7R1 with two acidic binding sites was synthesized, and the ability of the sensor to differentiate arsenite and arsenate in the organo-aqueous medium was evaluated using colorimetric sensing methods. N7R1 distinguished arsenite with a peacock blue color and arsenate with a pale green color in a DMSO/H2O (9 : 1, v/v) solvent mixture. The specific selectivity for arsenite was achieved in DMSO/H2O (7 : 3, v/v). The sensor demonstrated stability over a pH range of 5 to 12. The computed high binding constant of 9.3176 × 1011 M-2 and a lower detection limit of 11.48 ppb for arsenite exposed the chemosensor's higher potential for arsenite detection. The binding mechanism with a 1 : 2 binding process is confirmed using UV-Vis and 1H NMR titrations, electrochemical studies, mass spectral analysis and DFT calculations. Practical applications were demonstrated by utilizing test strips and molecular logic gates. Chemosensor N7R1 successfully detected arsenite in real water samples, as well as honey and milk samples.
Collapse
Affiliation(s)
- Nagaraj K
- Department of Chemistry, Material Science Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India
- Department of Chemistry, Supramolecular Chemistry Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India.
| | - A Nityananda Shetty
- Department of Chemistry, Material Science Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India
| | - Darshak R Trivedi
- Department of Chemistry, Supramolecular Chemistry Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India.
| |
Collapse
|
4
|
Mohagheghpour E, Farzin L, Sadjadi S. Alendronate-Functionalized Graphene Quantum Dots as an Effective Fluorescent Sensing Platform for Arsenic Ion Detection. Biol Trace Elem Res 2024; 202:2391-2401. [PMID: 37597070 DOI: 10.1007/s12011-023-03819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Alendronate-functionalized graphene quantum dots (ALEN-GQDs) with a quantum yield of 57% were synthesized via a two-step route: preparation of graphene quantum dots (GQDs) by pyrolysis method using citric acid as the carbon source and post functionalization of GQDs via a hydrothermal method with alendronate sodium. After careful characterization of the obtained ALEN-GQDs, they were successfully employed as sensing materials with superior selectivity and sensitivity for the detection of nanomolar levels of arsenic ions (As(III)). According to the mechanistic investigation, arsenic ions can quench the fluorescence intensity of ALEN-GQDs through metal-ligand interaction between the As(III) ions and the surface functional groups of the fluorescent probe. This probe provided a rapid method to monitor As(III) with a wide detection range (44 nM-1.30 µM) and a low detection limit of 13 nM. Finally, to validate the applicability, this novel fluorescent probe was successfully applied for the quantitative determination of As(III) in rice and water samples.
Collapse
Affiliation(s)
- Elham Mohagheghpour
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Sodeh Sadjadi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| |
Collapse
|
5
|
Kumi S, Adu-Poku D, Attiogbe F. Dynamics of land cover changes and condition of soil and surface water quality in a Mining-Altered landscape, Ghana. Heliyon 2023; 9:e17859. [PMID: 37539219 PMCID: PMC10395293 DOI: 10.1016/j.heliyon.2023.e17859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
This study investigated the dynamics of mining effects on land use land cover changes and the chemical and physical characteristics of soil and surface water in the Ahafo mining area in Ghana. Landsat imagery was used to analyze land use-land cover changes (LULC) using a supervised classification technique. Soil samples were collected within 600 m from active mining operations and at depths of up to 75 cm, as well as surface water samples from upstream and downstream of the mine. Atomic Absorption Spectrometry was used to determine the concentration of heavy metals in the soil and water samples. The results demonstrated a significant loss of forest and other vegetation covers, which decreased from 44% to 31% to 8% and 20%, respectively, with corresponding increases in the mining site, mine water, settlement/bare surface, cropland and plantation. Organic matter, organic carbon, exchangeable bases, cation exchange capacity, available phosphorus, and pH were all moderate in the soil surrounding the mine. Except for As (4.027 mg/kg) and Hg (1 mg/kg), all heavy metals found in the soil were within FAO/WHO guidelines. Total Dissolved Solids (TDS) (416.18 mg/L), Total Suspended Solids (55.08 mg/L), Turbidity (54.49 NTU), Ca (84.49 mg/L), Mg (31.97 mg/L), nitrate (10.23 mg/L), and sulphate (606.83 mg/L) in the downstream water were higher than those in the upstream and USEPA/WHO limits for drinking water except for TDS. Because of the geology of the area, there were high concentrations of iron, manganese, and aluminum in the surface water. The results show that mining induced severe land cover changes and impaired surface water and soil quality in the mine's vicinity. The findings have implications for stakeholder education, appropriate community water interventions, and company-community-regulator participatory monitoring to avoid health risk exposure and further water and soil quality and vegetation degradation.
Collapse
Affiliation(s)
- Samuel Kumi
- Department of Environmental Management, University of Energy and Natural Resources, Sunyani, Ghana
| | - David Adu-Poku
- Department of Chemical Sciences, University of Energy and Natural Resources, Sunyani, Ghana
| | - Francis Attiogbe
- Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana
| |
Collapse
|
6
|
Feng Z, Ning Y, Yang S, Yu J, Ouyang W, Li Y. A novel strategy for arsenic removal from acid wastewater via strong reduction processing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43886-43900. [PMID: 36670226 DOI: 10.1007/s11356-022-24919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Due to the high-acidic arsenic-containing wastewater pollution greatly threatening human health and ecological safety, a simple and efficient method for reducing arsenic was proposed in this paper to solve this problem. By using potassium borohydride (KBH4) as a reducing agent, the soluble arsenic was converted into the gaseous arsine (AsH3) or solid arsenic (As0) to achieve the purpose of removing arsenic in wastewater. By exploring the reaction kinetics of the arsenic removal process, it was found that the fast reaction stage (0-2 min) conformed to pseudo-first-order kinetics. The removal rate of arsenic increased to over 73% in 0.5 min, and reaction equilibrium was reached after 30 min. Various influence factors including arsenic valence, aeration, addition method, concentrations of reducing agent, and hydrogen ion (H+) were investigated. The results showed that As(III) was easier to be removed by reduction than As(V), while adding KBH4 in multiples and aeration were both favorable to the removal of arsenic. Increased concentration of KBH4 also enhanced the removal of arsenic. Appropriate H+ concentration contributed to the arsenic removal, but excessive H+ concentration conversely has an inhibitory effect. The maximum removal rate of arsenic was 95.87%, with the maximum removal capacity of 45.50 mg/g. Based on the XRD and SEM-EDS analysis of residue, amorphous arsenic (As0) with a mass ratio of more than 94.52% was generated after the reduction of soluble arsenic. Our study demonstrated that the reaction mechanism of reductive degradation is soluble arsenic with hydrogen radicals (H•) to form arsenic (As0) and arsine (AsH3) (in the molar ratio of 6:1). Although the generated solid arsenic (As0) is convenient for the soluble arsenic removal from wastewater, attention must be paid to the formation of AsH3, and strategies for AsH3 treatment should be considered.
Collapse
Affiliation(s)
- Zhi Feng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yu Ning
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Jinhao Yu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Weiwei Ouyang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilian Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
7
|
Wanjari VP, Reddy AS, Duttagupta SP, Singh SP. Laser-induced graphene-based electrochemical biosensors for environmental applications: a perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42643-42657. [PMID: 35622288 DOI: 10.1007/s11356-022-21035-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Biosensors are miniaturized devices that provide the advantage of in situ and point-of-care monitoring of analytes of interest. Electrochemical biosensors use the mechanism of oxidation-reduction reactions and measurement of corresponding electron transfer as changes in current, voltage, or other parameters using different electrochemical techniques. The use of electrochemically active materials is critical for the effective functioning of electrochemical biosensors. Laser-induced graphene (LIG) has garnered increasing interest in biosensor development and improvement due to its high electrical conductivity, specific surface area, and simple and scalable fabrication process. The effort of this perspective is to understand the existing classes of analytes and the mechanisms of their detection using LIG-based biosensors. The manuscript has highlighted the potential use of LIG, its modifications, and its use with various receptors for sensing various environmental pollutants. Although the conventional graphene-based sensors effectively detect trace levels for many analytes in different applications, the chemical and energy-intensive fabrication and time-consuming processes make it imperative to explore a low-cost and scalable option such as LIG for biosensors production. The focus of these potential biosensors has been kept on detection analytes of environmental significance such as heavy metals ions, organic and inorganic compounds, fertilizers, pesticides, pathogens, and antibiotics. The use of LIG directly as an electrode, its modifications with nanomaterials and polymers, and its combination with bioreceptors such as aptamers and polymers has been summarized. The strengths, weaknesses, opportunities, and threats analysis has also been done to understand the viability of incorporating LIG-based electrochemical biosensors for environmental applications.
Collapse
Affiliation(s)
- Vikram P Wanjari
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India
| | - A Sudharshan Reddy
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India
- Department of Electrical Engineering, IIT Bombay, Mumbai, India
| | - Swatantra P Singh
- Centre for Research in Nanotechnology and Science, IIT Bombay, Mumbai, India.
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, India.
- Interdisciplinary Program in Climate Studies, IIT Bombay, Mumbai, India.
| |
Collapse
|
8
|
Gahlaut A, Kharewal T, Verma N, Hooda V. Cell-free arsenic biosensors with applied nanomaterials: critical analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:525. [PMID: 35737169 DOI: 10.1007/s10661-022-10127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a ubiquitously found metalloid in our ecosystem because of natural and anthropogenic activities. People exposed to a higher level of arsenic become susceptible to several disorders, including cancer. According to current statistics, the population chronically exposed to arsenic has surpassed 200 million. Therefore, its detection in our environment is of great importance. There are many analytical techniques for the assessment of arsenic in different kinds of environmental samples. Among these techniques, the biosensor is considered a convenient platform and a widely applied analytical device for rapid qualitative and quantitative analysis in the field of environmental monitoring, food safety, and disease diagnosis. Today, there is a trend of including nanomaterials in sensors and biosensors because it empowers researchers to explore new arsenic detection methods and to enhance their analytical capabilities. In this review article, we summarized the latest developments in arsenic biosensors in particular with emphasis on the works based on cell-free approaches that are protein/enzyme-based, DNA-based, and aptamer-based utilizing various transduction platforms. In the meantime, we compared the capabilities that were related to these cell-free arsenic biosensors. This review article also highlights the development and application of novel nanomaterials for arsenic detection.
Collapse
Affiliation(s)
- Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Tannu Kharewal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
9
|
Bonacci ME, Almeida MIGS, Zhang Y, Kolev SD. Speciation of inorganic arsenic in aqueous samples using a novel hydride generation microfluidic paper-based analytical device (µPAD). Mikrochim Acta 2022; 189:243. [PMID: 35657569 PMCID: PMC9166862 DOI: 10.1007/s00604-022-05339-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
The development of the first microfluidic paper-based analytical device (µPAD) for the speciation of inorganic arsenic in environmental aqueous samples as arsenite (As(III)) and arsenate (As(V)) which implements hydride generation on a paper platform is described. The newly developed µPAD has a 3D configuration and uses Au(III) chloride as the detection reagent. Sodium borohydride is used to generate arsine in the device’s sample zone by reducing As(III) in the presence of hydrochloric acid or both As(III) and As(V) (total inorganic As) in the presence of sulfuric acid. Arsine then diffuses across a hydrophobic porous polytetrafluoroethylene membrane into the device’s detection zone where it reduces Au(III) to Au nanoparticles. This results in a color change which can be related to the concentration of As(III) or total inorganic As (i.e., As(III) and As(V)) concentration. Under optimal conditions, the µPAD is characterized by a limit of detection of 0.43 mg L−1 for total inorganic As (As(III) + As(V)) and 0.41 mg L−1 for As(III) and a linear calibration range in both cases of 1.2–8.0 mg As L−1. The newly developed µPAD-based method was validated by applying it to groundwater and freshwater samples and comparing the results with those obtained by conventional atomic spectrometric techniques.
Collapse
Affiliation(s)
- Mason E Bonacci
- School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - M Inês G S Almeida
- School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Yanlin Zhang
- School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Spas D Kolev
- School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
10
|
Sasan S, Chopra T, Gupta A, Tsering D, Kapoor KK, Parkesh R. Fluorescence "Turn-Off" and Colorimetric Sensor for Fe 2+, Fe 3+, and Cu 2+ Ions Based on a 2,5,7-Triarylimidazopyridine Scaffold. ACS OMEGA 2022; 7:11114-11125. [PMID: 35415353 PMCID: PMC8991908 DOI: 10.1021/acsomega.1c07193] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 05/05/2023]
Abstract
Two cyanoimidazopyridine-based sensors (SS1 and SS2) were explored for the colorimetric and fluorometric detection of Fe2+, Fe3+, and Cu2+ ions in the semi-aqueous medium. The "turn-off" fluorescence response of both sensors to these ions was due to the restriction in internal charge transfer. Job's plot and semi-empirical calculations revealed that SS1 and SS2 complexed with Cu2+ ions in a 1:1 ratio and Fe2+/3+ ions in a 2:1 ratio, respectively. The sensors were found to have high binding constant (K a) values and low detection limit values. FMO analysis using the semi-empirical quantum mechanics method revealed the decrease in energy gap after complexation with metal ions. Sensor-coated filter paper strips were prepared and analyzed, where the color changes in the strips could be utilized for the real-time detection of Fe2+, Fe3+, and Cu2+ ions.
Collapse
Affiliation(s)
- Sonakshi Sasan
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Tavishi Chopra
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Annah Gupta
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Dolma Tsering
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Raman Parkesh
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| |
Collapse
|
11
|
Naseh MF, Singh N, Ansari JR, Kumar A, Sarkar T, Datta A. L-cysteine functionalized graphene quantum dots for sub-ppb detection of As (III). NANOTECHNOLOGY 2021; 33:065504. [PMID: 34724651 DOI: 10.1088/1361-6528/ac353b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Here, we report functionalized graphene quantum dots (GQDs) for the optical detection of arsenic at room temperature. GQDs with the fluorescence of three fundamental colors (red, green, and blue) were synthesized and functionally capped with L-cysteine (L-cys) to impart selectively towards As (III) by exploiting the affinity of L-cys towards arsenite. The optical characterization of GQDs was carried out using UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectrometry, and the structural characterizations were performed using transmission electron microscopy. The fluorescence results showed instantaneous quenching in intensity when the GQDs came in contact with As (III) for all test concentrations over a range from 0.025 to 25 ppb, which covers the permissible limit of arsenic in drinking water. The experimental results suggested excellent sensitivity and selectivity towards As (III).
Collapse
Affiliation(s)
- Md Farhan Naseh
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi-110078, India
| | - Neelam Singh
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi-110078, India
| | - Jamilur R Ansari
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi-110078, India
| | - Ashavani Kumar
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana-136119, India
| | - Tapan Sarkar
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi-110078, India
| | - Anindya Datta
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi-110078, India
| |
Collapse
|
12
|
Ma S, Wang M, Liu Y, Yang C, Chi L, Song X. Rovibrational spectroscopic constants and anharmonic force fields of CH3AsH2 and CH2AsH3: An study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Guo C, Lv L, Liu Y, Ji M, Zang E, Liu Q, Zhang M, Li M. Applied Analytical Methods for Detecting Heavy Metals in Medicinal Plants. Crit Rev Anal Chem 2021; 53:339-359. [PMID: 34328385 DOI: 10.1080/10408347.2021.1953371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For thousands of years, medicinal plants (MPs) have been one of the main sources of drugs worldwide. However, recently, heavy metal pollution has seriously affected the quality and safety of MPs. Consuming MPs polluted by heavy metals such as Pb, Hg, and Cu significantly threaten the health of consumers. To manage this situation, the levels of heavy metals in MPs must be controlled. In recent years, this field has attracted significant attention, but few researchers have systematically summarized various analytical methods. Therefore, it is necessary to investigate methods that can accurately and effectively detect the amount of heavy metals in MPs. Herein, some important analytical methods used to detect heavy metals in MPs and their applications have been introduced and summarized in detail. These include atomic absorption spectrometry, atomic fluorescence spectrometry, inductively coupled plasma mass spectrometry, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, neutron activation analysis, and anodic stripping voltammetry. The characteristics of these methods were subsequently compared and analyzed. In addition, high-performance liquid chromatography, ultraviolet spectrophotometry, and disposable electrochemical sensors have also been used for heavy metal detection in MPs. To elucidate the systematic and comprehensive information, these methods have also been briefly introduced in this review.
Collapse
Affiliation(s)
- Chunyan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Lijuan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin, China
| | - Yuchao Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Mingyue Ji
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Erhuan Zang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Qian Liu
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Min Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Minhui Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China.,Department of Pharmacy, Baotou Medical College, Baotou, China.,Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou Medical College, Baotou, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| |
Collapse
|
14
|
Ansari JR, Naseh MF, Singh N, Sarkar T, Datta A. Unique photoluminescence response of MoS 2quantum dots over a wide range of As (III) in aqueous media. NANOTECHNOLOGY 2021; 32:345708. [PMID: 33962407 DOI: 10.1088/1361-6528/abfee8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
We report the solvothermal synthesis of MoS2based quantum dots (QDs) and the performance evaluation of bare QDs for the detection of aqueous As (III) oxidative state at room temperature and neutral pH over a vast range (0.1-1000 ppb). Concentration-dependent photoluminescence (PL) of the QDs enhances up to 50 ppb and then suppresses till 1000 ppb. It shows two distinctive slopes for enhancement and suppression. The enhancement is possibly due to the passivation of trap states or defects. The formation of tiny glassy As2S3particles on the QD surface may be the possible reason for suppression. The pattern of optical absorption of QDs follows the similar patterns of PL. Still, it shows an enhanced absorbance in the near UV range below ≤300 nm, which increases with As (III) concentration up to 50 ppb and then decreases following the PL pattern. The MoS2QDs were characterized by using transmission electron microscopy, x-ray diffraction, UV-Vis, and PL spectroscopy. The enhancement and suppression results were excellently fitted with the modified Stern-Volmer equation. The detection of arsenic is possible using these linear fit equations as calibration curves.
Collapse
Affiliation(s)
- Jamilur R Ansari
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi-110078, India
| | - Md Farhan Naseh
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi-110078, India
| | - Neelam Singh
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi-110078, India
| | - Tapan Sarkar
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi-110078, India
| | - Anindya Datta
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi-110078, India
| |
Collapse
|
15
|
Kaur P, Singh R, Kaur V, Talwar D. Anthranilic Acid Schiff Base as a Fluorescent Probe for the Detection of Arsenite and Selenite: A Detailed Investigation of Analytical Parameters and Mechanism for Interaction. ANAL SCI 2021; 37:553-560. [PMID: 32963201 DOI: 10.2116/analsci.20p102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The exploration of an anthranilic acid based Schiff base SB as a "Turn-ON" fluorescent probe for the detection of highly toxic selenite (SeIV) and arsenite (AsIII) species in an aqueous medium is described. The selectivity of SB towards SeIV and AsIII in the presence of other ions was investigated by some spectrofluorimetric and 1H NMR spectroscopic experiments. The studies revealed the interaction between SB and AsIII via the deprotonation of phenolic -OH, which enhanced the conjugation in phenolate ion and in turn enhanced the emission response. The SB has analytical prospects for the quantification of AsIII and SeIV with good sensitivity (LODs; 5.15 ppb for SeIV and 3.12 ppb for AsIII calculated by S/N = 3σ/K). Furthermore, it can be used to evaluate real and synthetic samples for the presence of SeIV and AsIII species as well as the fabrication of on-spot recognition devices (in the form of silica gels SB@SiO2 and silica coated TLC aluminium strips SB@SiO2@Al).
Collapse
|
16
|
Cheng Y, Wang S, Zhang J, Cao J, Qu Y. A fluorescent molecular sensor based on ESIPT process for rapid detection of arsenic species in hydrophobic system. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
ERTAŞ N, BURGAZ S, BERKKAN A, ALP O. Evaluation of arsenic concentration in poultry and calf meat samples by hydride generation atomic fluorescence spectrometry. GAZI UNIVERSITY JOURNAL OF SCIENCE 2020. [DOI: 10.35378/gujs.765186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Welna M, Szymczycha-Madeja A, Pohl P. Non-chromatographic Speciation of As by HG Technique-Analysis of Samples with Different Matrices. Molecules 2020; 25:molecules25214944. [PMID: 33114574 PMCID: PMC7663061 DOI: 10.3390/molecules25214944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 01/04/2023] Open
Abstract
The applicability of the hydride generation (HG) sample introduction technique combined with different spectrochemical detection methods for non-chromatographic speciation of toxic As species, i.e., As(III), As(V), dimethylarsinate (DMA) and monomethylarsonate (MMA), in waters and other environmental, food and biological matrices is presented as a promising tool to speciate As by obviating chromatographic separation. Different non-chromatographic procedures along with speciation protocols reported in the literature over the past 20 year are summarized. Basic rules ensuring species selective generation of the corresponding hydrides are presented in detail. Common strategies and alternative approaches are highlighted. Aspects of proper sample preparation before analysis and the selection of adequate strategies for speciation purposes are emphasized.
Collapse
|
19
|
Majumder S, Marguí E, Roman-Ross G, Chatterjee D, Hidalgo M. Hollow fiber liquid phase microextraction combined with total reflection X-ray fluorescence spectrometry for the determination of trace level inorganic arsenic species in waters. Talanta 2020; 217:121005. [PMID: 32498873 DOI: 10.1016/j.talanta.2020.121005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/15/2022]
Abstract
In the present study, we investigated the possibilities and drawbacks of hollow fiber liquid phase microextraction (HF-LPME) combined with total reflection X-ray fluorescence (TXRF) spectrometry for the determination of low amounts of inorganic arsenic (As) species in water samples. The obtained results showed that a three-phase HF-LPME system was more suitable to be used in combination with TXRF than the two phase configuration, since lower detection limit and better precision for As determination can be attained. Relevant experimental parameters affecting As extraction (i.e. types of extractant, organic solvent, agitation speed, pH and extraction time) and TXRF analysis (deposition volume and drying mode) were systematically evaluated. It was found that As(III) was more efficiently extracted at pH 13, whereas, optimum pH for As(V) extraction was at pH 8.5. Limits of detection (LOD) achieved using the best analytical conditions meet the requirements of current legislation and allow the determination of inorganic As(V) and As(III) in water. The proposed method was also applied to different spiked environmental water samples for the preconcentration and subsequent determination of trace inorganic As species.
Collapse
Affiliation(s)
- Santanu Majumder
- Department of Chemistry, University of Girona, Campus Montilivi, s/n. 17071, Girona, Spain; Department of Geology & Geophysics, Texas A&M University, College Station, TX, 77843-3115, USA; Departmental of Environmental Management, International Centre for Ecological Engineering, University of Kalyani, Kalyani, 741 235, West Bengal, India; Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Eva Marguí
- Department of Chemistry, University of Girona, Campus Montilivi, s/n. 17071, Girona, Spain
| | - Gabriela Roman-Ross
- AMPHOS 21 Consulting S.L., Passeig de Garcia i Faria 49-51, 08034, Barcelona, Spain
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Manuela Hidalgo
- Department of Chemistry, University of Girona, Campus Montilivi, s/n. 17071, Girona, Spain.
| |
Collapse
|
20
|
Domínguez-Álvarez J. Capillary electrophoresis coupled to electrospray mass spectrometry for the determination of organic and inorganic arsenic compounds in water samples. Talanta 2020; 212:120803. [DOI: 10.1016/j.talanta.2020.120803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
|
21
|
Recent developments in determination and speciation of arsenic in environmental and biological samples by atomic spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104312] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Finšgar M, Govejšek T, Gradišek K. Trace Arsenic Determination in a TiO 2 Pigment Matrix Using Electrothermal Atomic Absorption Spectrometry. SLAS Technol 2019; 25:123-131. [PMID: 31559894 DOI: 10.1177/2472630319877378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This work describes the use of electrothermal atomic absorption spectrometry in combination with a pyrolytic graphite-coated tube with a platform for trace arsenic (As) determination in titanium dioxide (TiO2) pigment. This type of matrix is challenging, as complete digestion in hydrofluoric acid-containing solution is needed. First, closed-vessel microwave digestion was performed for the full-sample decomposition. Next, a temperature program was optimized for drying, pyrolysis, and atomization temperatures. Furthermore, the use of a chemical modifier mixture was proposed that reduced the background contribution and prevented significant analyte loss and therefore improved the analytical procedure. The optimized method was validated for the detection (LOD) and quantification (LOQ) limits, the linear concentration range, accuracy, and precision. Special attention was devoted to the matrix-matching solutions in the calibration procedure. Linearity was confirmed in the 5.0 to 100.0 µg/L concentration range (R2 = 0.999). The average recovery for 16 different real TiO2 pigment samples was 92.0%, and the relative standard deviation value for six replicate measurements was ≤10.4%. Moreover, the LOD and LOQ in terms of the TiO2 pigment mass was determined to be 0.2 µg/(g TiO2) and 0.7 µg/(g TiO2), respectively. The latter complies with Commission Directive 2008/128/EC, which does not allow more than 3 µg As/(g product) as the specific criteria of purity. Finally, based on scanning electron microscopy analysis of unused and several times used pyrolytic graphite-coated tubes, usage of the tube 250 times before replacement is recommended.
Collapse
Affiliation(s)
- Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | | | | |
Collapse
|
23
|
Kayal S, Halder M. A ZnS quantum dot-based super selective fluorescent chemosensor for soluble ppb-level total arsenic [As(iii) + As(v)] in aqueous media: direct assay utilizing aggregation-enhanced emission (AEE) for analytical application. Analyst 2019; 144:3710-3715. [PMID: 31134231 DOI: 10.1039/c9an00516a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study brings out a novel, superselective detection employing thiosalicylic acid-capped ZnS-based quantum dots that display photoluminescence "turn-on" characteristics only in the presence of arsenic in the aquatic medium for the first time. It shows a splendid limit of detection of soluble arsenic down to a few ppb level, much below than the MCL reported value, without being interfered by any other ions.
Collapse
Affiliation(s)
- Saurav Kayal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Mintu Halder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| |
Collapse
|
24
|
Marinho BA, Cristóvão RO, Boaventura RAR, Vilar VJP. As(III) and Cr(VI) oxyanion removal from water by advanced oxidation/reduction processes-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2203-2227. [PMID: 30474808 DOI: 10.1007/s11356-018-3595-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/24/2018] [Indexed: 05/06/2023]
Abstract
Water pollution by human activities is a global environmental problem that requires innovative solutions. Arsenic and chromium oxyanions are toxic compounds, introduced in the environment by both natural and anthropogenic activities. In this review, the speciation diagrams of arsenic and chromium oxyanions in aqueous solutions and the analytical methods used for their detection and quantification are presented. Current and potential treatment methods for As and Cr removal, such as adsorption, coagulation/flocculation, electrochemical, ion exchange, membrane separation, phyto- and bioremediation, biosorption, biofiltration, and oxidative/reductive processes, are presented with discussion of their advantages, drawbacks, and the main recent achievements. In the last years, advanced oxidation processes (AOPs) have been acquiring high relevance for the treatment of water contaminated with organic compounds. However, these processes are also able to deal with inorganic contaminants, mainly by changing metal/metalloid oxidation state, turning these compounds less toxic or soluble. An overview of advanced oxidation/reduction processes (AO/RPs) used for As and Cr removal was carried out, focusing mainly on H2O2/UVC, iron-based and heterogeneous photocatalytic processes. Some aspects related to AO/RP experimental conditions, comparison criteria, redox mechanisms, catalyst immobilization, and process intensification through implementation of innovative reactors designs are also discussed. Nevertheless, further research is needed to assess the effectiveness of those processes in order to improve some existing limitations. On the other hand, the validation of those treatment methods needs to be deepened, namely with the use of real wastewaters for their future full-scale application. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Belisa A Marinho
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465, Porto, Portugal.
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil.
| | - Raquel O Cristóvão
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
25
|
Rabb SA, Le MD, Yu LL. A novel approach to converting alkylated arsenic to arsenic acid for accurate ICP-OES determination of total arsenic in candidate speciation standards. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Kim S, Park CM, Jang M, Son A, Her N, Yu M, Snyder S, Kim DH, Yoon Y. Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: A review. CHEMOSPHERE 2018; 212:1104-1124. [PMID: 30286540 DOI: 10.1016/j.chemosphere.2018.09.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 05/14/2023]
Abstract
Various graphene-based nanoadsorbents, including graphenes, graphene oxides, reduced graphene oxides, and their nanocomposites, have been widely studied as potential adsorbents due to their unique physicochemical properties, such as structural variability, chemical strength, low density, and the possibility of large scale fabrication. Adsorption mechanisms are governed largely by the physicochemical properties of contaminants, the characteristics of nanoadsorbents, and background water quality conditions. This review summarizes recent comprehensive studies on the removal of various inorganic (mainly heavy metals) and organic contaminants by graphene-based nanoadsorbents, and also discusses valuable information for applications of these nanoadsorbents in water and wastewater treatment. In particular, the aqueous removal of various contaminants was reviewed to (i) summarize the general adsorption capacities of various graphene-based nanoadsorbents for the removal of different inorganic and organic contaminants, (ii) evaluate the effects of key water quality parameters such as pH, temperature, background major ions/ionic strength, and natural organic matter on adsorption, (iii) provide a comprehensive discussion of the mechanisms that influence adsorption on these nanoadsorbents, and (iv) discuss the potential regeneration and reusability of nanoadsorbents. In addition, current challenges and future research needs for the removal of contaminants by graphene-based nanoadsorbents in water treatment processes are discussed briefly.
Collapse
Affiliation(s)
- Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-Dong Nowon-Gu, Seoul, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Nauguk Her
- Department of Civil and Environmental Engineering, Korea Army Academy at Young-cheon, 495 Hogook-ro, Kokyungmeon, Young-Cheon, Gyeongbuk 38900, Republic of Korea
| | - Miao Yu
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shane Snyder
- School of Civil & Environmental Engineering, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Do-Hyung Kim
- Korea Environmental Industry & Technology Institute, 215 Jinheungno, Eunpyeong-gu, Seoul, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC 29208, USA.
| |
Collapse
|
28
|
Speciation analysis of inorganic arsenic by magnetic solid phase extraction on-line with inductively coupled mass spectrometry determination. Talanta 2018; 184:251-259. [DOI: 10.1016/j.talanta.2018.03.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 11/23/2022]
|
29
|
Test for arsenic speciation in waters based on a paper-based analytical device with scanometric detection. Anal Chim Acta 2018; 1011:1-10. [DOI: 10.1016/j.aca.2018.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022]
|
30
|
Speciation of inorganic arsenic(III) and arsenic(V) by a facile dual-cloud point extraction coupled with inductively plasma-optical emission spectrometry. Talanta 2018; 181:265-270. [DOI: 10.1016/j.talanta.2017.12.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
|
31
|
López-García I, Marín-Hernández JJ, Hernández-Córdoba M. Magnetic ferrite particles combined with electrothermal atomic absorption spectrometry for the speciation of low concentrations of arsenic. Talanta 2018; 181:6-12. [DOI: 10.1016/j.talanta.2017.12.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/03/2023]
|
32
|
Jung MY. Inorganic arsenic contents in infant rice powders and infant rice snacks marketed in Korea determined by a highly sensitive gas chromatography-tandem mass spectrometry following derivatization with British Anti-Lewisite. Food Sci Biotechnol 2018; 27:617-622. [PMID: 30263787 PMCID: PMC6049629 DOI: 10.1007/s10068-017-0260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022] Open
Abstract
Toxic inorganic arsenic (iAs) has been reported to be present in high quantity in rice and rice-based products. The inorganic arsenic contents in infant foods (n = 59) of ready-to-cook infant rice powders and infant rice snacks marketed in Korea were determined by a highly sensitive gas chromatography-tandem mass spectrometry (GC-MS/MS). The mean iAs contents in the infant rice powder and infant rice snacks were 65.6 and 54.0 μg/kg, respectively. The percentages of rice powders and rice snack containing iAs over the maximum level (100 μg/kg) set by EU for the infant foods were found to be 21, and 6%, respectively. This result clearly suggested that regulation regarding the maximum limit of iAs levels for the baby rice products is urgently needed to be set in Korea. This represents the first report on the iAs levels in ready-to-cook infant rice powder products and infant snacks marketed in Korea.
Collapse
Affiliation(s)
- Mun Yhung Jung
- Department of Food and Biotechnology, Graduate School, Woosuk University, Samnye-Eup, Wanju-Gun, Jeonbuk Province 565-701 Republic of Korea
- Agricultural and Food Product Safety Analysis Center, Woosuk University, Wanju-Gun, Republic of Korea
| |
Collapse
|
33
|
Jung MY, Kang JH, Jung HJ, Ma SY. Inorganic arsenic contents in ready-to-eat rice products and various Korean rice determined by a highly sensitive gas chromatography-tandem mass spectrometry. Food Chem 2017; 240:1179-1183. [PMID: 28946240 DOI: 10.1016/j.foodchem.2017.08.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/03/2017] [Accepted: 08/15/2017] [Indexed: 02/01/2023]
Abstract
Rice and rice products have been reported to contain high contents of toxic inorganic arsenic (iAs). The inorganic arsenic contents in microwavable ready-to-eat rice products (n=30) and different types of Korean rice (n=102) were determined by a gas chromatography-tandem mass spectrometry (GC-MS/MS). The method showed low limit of detection (0.015pg), high intra- and inter-day repeatability (<7.3%, RSD), and recovery rates (90-117%). The mean iAs content in the ready-to-eat rice products was 59μgkg-1 (dry weight basis). The mean iAs contents in polished white, brown, black, and waxy rice were 65, 109, 91, and 66μgkg-1, respectively. The percentages of ready-to-eat rice products, white, brown, black, and waxy rice containing iAs over the maximum level (100μgkg-1) set by EU for the infant foods were 17, 4, 70, 36 and 0%, respectively.
Collapse
Affiliation(s)
- Mun Yhung Jung
- Department of Food and Biotechnology, Graduate School, Woosuk University, Samnye-eup, Wanju-gun, Jeonbuk Province 565-701, Republic of Korea; Agricultural and Food Product Safety Analysis Center, Woosuk University, Republic of Korea.
| | - Ju Hee Kang
- Department of Food and Biotechnology, Graduate School, Woosuk University, Samnye-eup, Wanju-gun, Jeonbuk Province 565-701, Republic of Korea
| | - Hyun Jeong Jung
- Department of Food Science and Biotechnology, College of Food Science, Woosuk University, Samnye-eup, Wanju-gun, Jeonbuk Province 565-701, Republic of Korea
| | - Sang Yong Ma
- Department of Food Science and Biotechnology, College of Food Science, Woosuk University, Samnye-eup, Wanju-gun, Jeonbuk Province 565-701, Republic of Korea; Agricultural and Food Product Safety Analysis Center, Woosuk University, Republic of Korea
| |
Collapse
|
34
|
Welna M, Szymczycha-Madeja A, Pohl P. Critical evaluation of strategies for single and simultaneous determinations of As, Bi, Sb and Se by hydride generation inductively coupled plasma optical emission spectrometry. Talanta 2017; 167:217-226. [PMID: 28340714 DOI: 10.1016/j.talanta.2017.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 02/07/2023]
Abstract
A systematic study of hydride generation (HG) of As, Bi, Sb and Se from solutions containing As(III), As(V), Bi(III), Sb(III), Sb(V), Se(IV) and Se(VI) was presented. Hydrides were generated in a gas-liquid phase separation system using a continuous flow vapor generation accessory (VGA) by mixing acidified aqueous sample, HCl and sodium borohydride reductant (NaBH4) solutions on-line. For detection, a simultaneous axially viewed inductively coupled plasma optical emission spectrometer (ICP-OES) was applied. Effects of the HCl concentration (related to sample and additional acid solutions) and type of the pre-reducing agents used for reduction of As(V), Sb(V) and Se(VI) into As(III), Sb(III) and Se(IV) on the analytical responses of As, Bi, Sb and Se were studied and discussed. Two compromised HG reaction conditions for simultaneous measurements of As+Bi+Sb (CC1) or As+Sb+Se (CC2) were established. It was found that choice of the pre-reductant prior to formation of the hydrides is critical in obtaining the dependable results of the analysis. Accordingly, for a As(III)+As(V)+Bi(III)+Sb(III)+Sb(V) mixture and using CC1, thiourea/thiourea-ascorbic acid interfered in Bi determination and hence, total As+Sb could be measured. If L-cysteine/L-cysteine-ascorbic acid were used, measurements of total Bi+Sb was possible in these HG reaction conditions. For a As(III)+As(V)+Sb(III)+Sb(V)+Se(IV)+Se(VI) mixture and using CC2, thiourea/thiourea-ascorbic acid and L-cysteine/L-cysteine-ascorbic acid influenced HG of Se but ensured total As+Sb determination. In contrast, heating a sample solution with HCl, although did not pre-reduce As(V) and Sb(V), assured quantitative reduction of Se(VI) to Se(IV). Finally, considering all favorable pre-reducing and HG conditions, methodologies for reliable determination of total As, Bi, Sb and Se by HG-ICP-OES were proposed. Strategies for single-, two- and three-element measurements were evaluated and validated, obtaining the detection limits (DLs) below 0.1ngg-1 and precision typically in the range of 1.4-3.9% RSD.
Collapse
Affiliation(s)
- Maja Welna
- Wroclaw University of Technology, Faculty of Chemistry, Division of Analytical Chemistry and Chemical Metallurgy, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Anna Szymczycha-Madeja
- Wroclaw University of Technology, Faculty of Chemistry, Division of Analytical Chemistry and Chemical Metallurgy, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Pawel Pohl
- Wroclaw University of Technology, Faculty of Chemistry, Division of Analytical Chemistry and Chemical Metallurgy, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
35
|
Ko KM, Kim IJ, Go C, Yim YH, Lim Y, Kim TK, Yoon I, Hwang E, Lee KS. Development of an Arsenobetaine Standard Solution with Metrological Traceability to the SI by an Arsenic-specific Mass Balance Method. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kyung-Moon Ko
- Center for Inorganic Analysis, Korea Research Institute of Standards and Science (KRISS); Daejeon 34113 Republic of Korea
- Department of Chemistry; Pusan National University; Busan 46241 Republic of Korea
| | - In Jung Kim
- Center for Inorganic Analysis, Korea Research Institute of Standards and Science (KRISS); Daejeon 34113 Republic of Korea
| | - Cheongah Go
- Center for Inorganic Analysis, Korea Research Institute of Standards and Science (KRISS); Daejeon 34113 Republic of Korea
- Department of Chemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Yong-Hyeon Yim
- Center for Inorganic Analysis, Korea Research Institute of Standards and Science (KRISS); Daejeon 34113 Republic of Korea
| | - Yongran Lim
- Center for Inorganic Analysis, Korea Research Institute of Standards and Science (KRISS); Daejeon 34113 Republic of Korea
| | - Tae Kyu Kim
- Department of Chemistry; Pusan National University; Busan 46241 Republic of Korea
| | - Ilsun Yoon
- Department of Chemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Euijin Hwang
- Center for Inorganic Analysis, Korea Research Institute of Standards and Science (KRISS); Daejeon 34113 Republic of Korea
| | - Kyoung-Seok Lee
- Center for Inorganic Analysis, Korea Research Institute of Standards and Science (KRISS); Daejeon 34113 Republic of Korea
| |
Collapse
|
36
|
Viana RB. Reactivity, vibrational spectroscopy, internal rotation and thermochemical aspects of methylarsine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:383-394. [PMID: 27569771 DOI: 10.1016/j.saa.2016.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/24/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
The aim of this investigation was to perform a characterization of the spectroscopic and thermodynamic properties of methylarsine (CH3AsH2). Post-Hartree-Fock, 29 DFT methods and eight different composite methodologies were employed in these analyses. A comparison between harmonic and anharmonic frequency accuracies in reproducing the observable frequencies was performed here. In addition, the CH3AsH2→CH2AsH3 isomerization barrier energy was estimated in 100kcalmol-1, whereas the H2-release routes barrier heights were in the 45-107kcalmol-1 range. A rate constant of 10-66s-1 was predicted regarding the isomerization route, while the CH2AsH3 hydrogen elimination mechanism is faster than the methylarsine one. The transition state structure of the CH3AsH2 internal rotational barrier energy varied between 1.0 and 1.4kcalmol-1. For the CH2AsH3 internal rotation the estimated barrier heights varied 0.6-2.5kcalmol-1. The adiabatic ionization energy and the heat of formation each structure was also calculated here.
Collapse
Affiliation(s)
- Rommel B Viana
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, USP, São Carlos, SP, Brazil.
| |
Collapse
|
37
|
Llorente-Mirandes T, Rubio R, López-Sánchez JF. Inorganic Arsenic Determination in Food: A Review of Analytical Proposals and Quality Assessment Over the Last Six Years. APPLIED SPECTROSCOPY 2017; 71:25-69. [PMID: 28033722 DOI: 10.1177/0003702816652374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we review recent developments in analytical proposals for the assessment of inorganic arsenic (iAs) content in food products. Interest in the determination of iAs in products for human consumption such as food commodities, wine, and seaweed among others is fueled by the wide recognition of its toxic effects on humans, even at low concentrations. Currently, the need for robust and reliable analytical methods is recognized by various international safety and health agencies, and by organizations in charge of establishing acceptable tolerance levels of iAs in food. This review summarizes the state of the art of analytical methods while highlighting tools for the assessment of quality assessment of the results, such as the production and evaluation of certified reference materials (CRMs) and the availability of specific proficiency testing (PT) programmes. Because the number of studies dedicated to the subject of this review has increased considerably over recent years, the sources consulted and cited here are limited to those from 2010 to the end of 2015.
Collapse
Affiliation(s)
| | - Roser Rubio
- Department of Analytical Chemistry, University of Barcelona, Spain
| | | |
Collapse
|
38
|
|
39
|
Kang JH, Jung HJ, Jung MY. One step derivatization with British Anti-Lewsite in combination with gas chromatography coupled to triple-quadrupole tandem mass spectrometry for the fast and selective analysis of inorganic arsenic in rice. Anal Chim Acta 2016; 934:231-8. [PMID: 27506365 DOI: 10.1016/j.aca.2016.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/22/2016] [Accepted: 05/31/2016] [Indexed: 11/20/2022]
Abstract
We developed a new fast and selective analytical method for the determination of inorganic arsenic (iAs) in rice by a gas chromatography - tandem mass spectrometry (GC-MS/MS) in combination with one step derivatization of inorganic arsenic (iAs) with British Anti-Lewsite (BAL). Two step derivatization of iAs with BAL has been previously performed for the GC-MS analysis. In this paper, the quantitative one step derivatization condition was successfully established. The GC-MS/MS was carried out with a short nonpolar capillary column (0.25 mm × 10 m) under the conditions of fast oven temperature ramp rate (4 °C/s) and high linear velocity (108.8 cm/s) of the carrier gas. The established GC-MS/MS method showed an excellent linearity (r(2) > 0.999) in a tested range (0.2-100.0 μg L(-1)), ultra-low limit of detection (LOD, 0.08 pg), and high precision and accuracy. The GC-MS/MS technique showed far greater selectivity (22.5 fold higher signal to noise ratio in rice sample) on iAs than GC-MS method. The gas chromatographic running time was only 2.5 min with the iAs retention time of 1.98 min. The established method was successfully applied to quantify the iAs contents in polished rice. The mean iAs content in the Korean polished rice (n = 27) was 66.1 μg kg(-1) with the range of 37.5-125.0 μg kg(-1). This represents the first report on the GC-tandem mass spectrometry in combination with the one step derivatization with BAL for the iAs speciation in rice. This GC-MS/MS method would be a simple, useful and reliable measure for the iAs analysis in rice in the laboratories in which the expensive and element specific HPLC-ICP-MS is not available.
Collapse
Affiliation(s)
- Ju Hui Kang
- Department of Food and Biotechnology, College of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 565-701, Republic of Korea
| | - Hyun Jeong Jung
- Department of Food and Biotechnology, College of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 565-701, Republic of Korea
| | - Mun Yhung Jung
- Department of Food and Biotechnology, College of Food Science, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 565-701, Republic of Korea; Agricultural and Food Product Safety Analysis Center, Woosuk University, Samrea-Up, Wanju-Kun, Jeonbuk Province 565-701, Republic of Korea.
| |
Collapse
|
40
|
Wang Z, Cui Z, Xu X. Lysosomal membrane response of the earthworm, Eisenia fetida, to arsenic species exposure in OECD soil. RSC Adv 2016. [DOI: 10.1039/c5ra27725f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The NRRT assay was sensitive for toxicity assessment of inorganic arsenic pollution and it was affected more by As(iii) than by As(v).
Collapse
Affiliation(s)
- Zhifeng Wang
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Zhaojie Cui
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Xiaoming Xu
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- P. R. China
- School of Municipal and Environmental Engineering
| |
Collapse
|
41
|
Hussam A, Hong J. A novel field deployable filter paper based amperometric gas sensor for the measurement of arsenic in water. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Rasmussen M, Minteer SD. Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell. Bioelectrochemistry 2015; 106:207-12. [DOI: 10.1016/j.bioelechem.2015.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/01/2015] [Accepted: 03/16/2015] [Indexed: 11/27/2022]
|
43
|
Boxi SS, Paria S. Fluorometric sensing of ultralow As(III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles. Dalton Trans 2015; 44:20464-74. [PMID: 26541652 DOI: 10.1039/c5dt03958d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arsenic poisoning from drinking water has been an important global issue in recent years. Because of the high level toxicity of arsenic to human health, an easy, inexpensive, low level and highly selective detection technique is of great importance to take any early precautions. This study reports the synthesis of Ag doped hollow CdS/ZnS bi-layer (Ag-h-CdS/ZnS) nanoparticles for the easy fluorometric determination of As(iii) ions in the aqueous phase. The hollow bi-layer structures were synthesized by a sacrificial core method using AgBr as the sacrificial core and the core was removed by dissolution in an ammonium hydroxide solution. The synthesized nanoparticles were characterized using different instrumental techniques. A good linear relationship was obtained between fluorescence quenching intensity and As(iii) concentration in the range of 0.75-22.5 μg L(-1) at neutral pH with a limit of detection as low as 0.226 μg L(-1).
Collapse
Affiliation(s)
- Siddhartha Sankar Boxi
- Interfaces and Nanomaterials Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | | |
Collapse
|
44
|
Pathirathna P, Samaranayake S, Atcherley CW, Parent KL, Heien ML, McElmurry SP, Hashemi P. Fast voltammetry of metals at carbon-fiber microelectrodes: copper adsorption onto activated carbon aids rapid electrochemical analysis. Analyst 2015; 139:4673-80. [PMID: 25051455 DOI: 10.1039/c4an00937a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid, in situ trace metal analysis is essential for understanding many biological and environmental processes. For example, trace metals are thought to act as chemical messengers in the brain. In the environment, some of the most damaging pollution occurs when metals are rapidly mobilized and transported during hydrologic events (storms). Electrochemistry is attractive for in situ analysis, primarily because electrodes are compact, cheap and portable. Electrochemical techniques, however, do not traditionally report trace metals in real-time. In this work, we investigated the fundamental mechanisms of a novel method, based on fast-scan cyclic voltammetry (FSCV), that reports trace metals with sub-second temporal resolution at carbon-fiber microelectrodes (CFMs). Electrochemical methods and geochemical models were employed to find that activated CFMs rapidly adsorb copper, a phenomenon that greatly advances the temporal capabilities of electrochemistry. We established the thermodynamics of surface copper adsorption and the electrochemical nature of copper deposition onto CFMs and hence identified a unique adsorption-controlled electrochemical mechanism for ultra-fast trace metal analysis. This knowledge can be exploited in the future to increase the sensitivity and selectivity of CFMs for fast voltammetry of trace metals in a variety of biological and environmental models.
Collapse
Affiliation(s)
- Pavithra Pathirathna
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Alidadi H, Ramezani A, Davodi M, Peiravi R, Paydar M, Dolatabadi M, Rafe S. Determination of Total Arsenic in Water Resources: A Case Study of Rivash in Kashmar City. HEALTH SCOPE 2015. [DOI: 10.17795/jhealthscope-25424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Gorny J, Lesven L, Billon G, Dumoulin D, Noiriel C, Pirovano C, Madé B. Determination of total arsenic using a novel Zn-ferrite binding gel for DGT techniques: Application to the redox speciation of arsenic in river sediments. Talanta 2015; 144:890-8. [PMID: 26452905 DOI: 10.1016/j.talanta.2015.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 11/18/2022]
Abstract
A new laboratory-made Zn-ferrite (ZnFe2O4) binding gel is fully tested using Diffusive Gradient in Thin films (DGT) probes to measure total As [including inorganic As(III) and As(V), as well as MonoMethyl Arsenic Acid (MMAA(V)) and DiMethyl Arsenic Acid (DMAA(V))] in river waters and sediment pore waters. The synthesis of the binding gel is easy, cheap and its insertion into the acrylamide gel is not problematic. An important series of triplicate tests have been carried out to validate the use of the Zn-ferrite binding gel in routine for several environmental matrixes studies, in order to test: (i) the effect of pH on the accumulation efficiency of inorganic As species; (ii) the reproducibility of the results; (iii) the accumulation efficiency of As species; (iv) the effects of the ionic strength and possible competitive anions; and (v) the uptake and the elution efficiency of As species after accumulation in the binding gel. All experimental conditions have been reproduced using two other existing binding gels for comparison: ferrihydrite and Metsorb® HMRP 50. We clearly demonstrate that the Zn-ferrite binding gel is at least as good as the two other binding gels, especially for pH values higher than 8. In addition, by taking into consideration the diffusion rates of As(III) and As(V) in the gel, combining the 3-mercaptopropyl [accumulating only As(III)] with the Zn-ferrite binding gels allows for performing speciation studies. An environmental study along the Marque River finally illustrates the ability of the new binding gel to be used for field studies.
Collapse
Affiliation(s)
- Josselin Gorny
- Laboratory LASIR, UMR CNRS 8516 - University Lille 1, Villeneuve d'Ascq, France
| | - Ludovic Lesven
- Laboratory LASIR, UMR CNRS 8516 - University Lille 1, Villeneuve d'Ascq, France
| | - Gabriel Billon
- Laboratory LASIR, UMR CNRS 8516 - University Lille 1, Villeneuve d'Ascq, France
| | - David Dumoulin
- Laboratory LASIR, UMR CNRS 8516 - University Lille 1, Villeneuve d'Ascq, France
| | - Catherine Noiriel
- Laboratory Géosciences Environnement Toulouse, Observatoire Midi-Pyrénées, UMR 5563 - University Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Caroline Pirovano
- Laboratory UCCS, UMR CNRS 8012 - University Lille 1, Villeneuve d'Ascq, France
| | - Benoît Madé
- French National Radioactive Waste Management Agency (Andra), Research and Development Division (DRD), Châtenay-Malabry, France
| |
Collapse
|
47
|
Tseng WC, Hsu KC, Shiea CS, Huang YL. Recent trends in nanomaterial-based microanalytical systems for the speciation of trace elements: A critical review. Anal Chim Acta 2015; 884:1-18. [DOI: 10.1016/j.aca.2015.02.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 01/05/2023]
|
48
|
Ungureanu G, Santos S, Boaventura R, Botelho C. Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 151:326-42. [PMID: 25585146 DOI: 10.1016/j.jenvman.2014.12.051] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/20/2014] [Accepted: 12/31/2014] [Indexed: 05/21/2023]
Abstract
Arsenic and antimony are metalloids, naturally present in the environment but also introduced by human activities. Both elements are toxic and carcinogenic, and their removal from water is of unquestionable importance. The present article begins with an overview of As and Sb chemistry, distribution and toxicity, which are relevant aspects to understand and develop remediation techniques. A brief review of the recent results in analytical methods for speciation and quantification was also provided. The most common As and Sb removal techniques (coagulation/flocculation, oxidation, membrane processes, electrochemical methods and phyto and bioremediation) are presented with discussion of their advantages, drawbacks and the main recent achievements. Literature review on adsorption and biosorption were focused in detail. Considering especially the case of developing countries or rural communities, but also the finite energy resources that over the world are still dependent, recent research have focused especially readily available low-cost adsorbents, as minerals, wastes and biosorbents. Many of these alternative sorbents have been presenting promising results and can be even superior when compared to the commercial ones. Sorption capacities were accurately compiled for As(III,V) and Sb(III,V) species in order to provide to the reader an easy but detailed comparison. Some aspects related to experimental conditions, comparison criteria, lack of research studies, economic aspects and adsorption mechanisms were critically discussed.
Collapse
Affiliation(s)
- Gabriela Ungureanu
- LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvia Santos
- LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Rui Boaventura
- LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cidália Botelho
- LSRE - Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
49
|
Direct solid sample analysis with graphite furnace atomic absorption spectrometry—A fast and reliable screening procedure for the determination of inorganic arsenic in fish and seafood. Talanta 2015; 134:224-231. [DOI: 10.1016/j.talanta.2014.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/17/2022]
|
50
|
Jiang C, Chen C, Lu Z, Liu Q, Tang M, Liang A, Jiang Z. A nanogold resonance Rayleigh scattering method for determination of trace As based on the hydride nanoreaction. LUMINESCENCE 2015; 30:847-52. [PMID: 25582819 DOI: 10.1002/bio.2831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 11/12/2022]
Abstract
In H2 SO4 solution, As(III) was reduced to arsine (AsH3 ) by NaBH4 , and was absorbed in HAuCl4 solution to form nanogold particles (NGs) that exhibited a resonance Rayleigh scattering (RRS) effect at 370 nm. Under the selected conditions, when the As(III) concentration increased the RRS peak also increased due to the formation of more NGs. There was a linear correlation between RRS intensity and As(III) concentration in the range 6-1000 ng/mL, with a detection limit of 3 ng/mL. This new hydride generation-nanogold reaction RRS (HG-NG RRS) method was applied to determine trace amounts of As in milk samples, with satisfactory results.
Collapse
Affiliation(s)
- Caina Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, China
| | - Chunqiang Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, China
| | - Zujun Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, China
| | - Qingye Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, China
| | - Meiling Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, China
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|