1
|
Mazzotta E, Di Giulio T, Mariani S, Corsi M, Malitesta C, Barillaro G. Vapor-Phase Synthesis of Molecularly Imprinted Polymers on Nanostructured Materials at Room-Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302274. [PMID: 37222612 DOI: 10.1002/smll.202302274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Molecularly imprinted polymers (MIPs) have recently emerged as robust and versatile artificial receptors. MIP synthesis is carried out in liquid phase and optimized on planar surfaces. Application of MIPs to nanostructured materials is challenging due to diffusion-limited transport of monomers within the nanomaterial recesses, especially when the aspect ratio is >10. Here, the room temperature vapor-phase synthesis of MIPs in nanostructured materials is reported. The vapor phase synthesis leverages a >1000-fold increase in the diffusion coefficient of monomers in vapor phase, compared to liquid phase, to relax diffusion-limited transport and enable the controlled synthesis of MIPs also in nanostructures with high aspect ratio. As proof-of-concept application, pyrrole is used as the functional monomer thanks to its large exploitation in MIP preparation; nanostructured porous silicon oxide (PSiO2 ) is chosen to assess the vapor-phase deposition of PPy-based MIP in nanostructures with aspect ratio >100; human hemoglobin (HHb) is selected as the target molecule for the preparation of a MIP-based PSiO2 optical sensor. High sensitivity and selectivity, low detection limit, high stability and reusability are achieved in label-free optical detection of HHb, also in human plasma and artificial serum. The proposed vapor-phase synthesis of MIPs is immediately transferable to other nanomaterials, transducers, and proteins.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Stefano Mariani
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Martina Corsi
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Barillaro
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| |
Collapse
|
2
|
Beduk D, Beduk T, de Oliveira Filho JI, Ait Lahcen A, Aldemir E, Guler Celik E, Salama KN, Timur S. Smart Multiplex Point-of-Care Platform for Simultaneous Drug Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37247-37258. [PMID: 37499237 PMCID: PMC10416146 DOI: 10.1021/acsami.3c06461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Recently, illicit drug use has become more widespread and is linked to problems with crime and public health. These drugs disrupt consciousness, affecting perceptions and feelings. Combining stimulants and depressants to suppress the effect of drugs has become the most common reason for drug overdose deaths. On-site platforms for illicit-drug detection have gained an important role in dealing, without any excess equipment, long process, and training, with drug abuse and drug trafficking. Consequently, the development of rapid, sensitive, noninvasive, and reliable multiplex drug-detecting platforms has become a major necessity. In this study, a multiplex laser-scribed graphene (LSG) sensing platform with one counter, one reference, and three working electrodes was developed for rapid and sensitive electrochemical detection of amphetamine (AMP), cocaine (COC), and benzodiazepine (BZD) simultaneously in saliva samples. The multidetection sensing system was combined with a custom-made potentiostat to achieve a complete point-of-care (POC) platform. Smartphone integration was achieved by a customized application to operate, display, and send data. To the best of our knowledge, this is the first multiplex LSG-based electrochemical platform designed for illicit-drug detection with a custom-made potentiostat device to build a complete POC platform. Each working electrode was optimized with standard solutions of AMP, COC, and BZD in the concentration range of 1.0 pg/mL-500 ng/mL. The detection limit of each illicit drug was calculated as 4.3 ng/mL for AMP, 9.7 ng/mL for BZD, and 9.0 ng/mL for COC. Healthy and MET (methamphetamine) patient saliva samples were used for the clinical study. The multiplex LSG sensor was able to detect target analytes in real saliva samples successfully. This multiplex detection device serves the role of a practical and affordable alternative to conventional drug-detection methods by combining multiple drug detections in one portable platform.
Collapse
Affiliation(s)
- Duygu Beduk
- Central
Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Tutku Beduk
- Silicon
Austria Labs (SAL) GmbH, Europastraße 12, 9500 Villach, Austria
- Sensors
Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical,
and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - José Ilton de Oliveira Filho
- Sensors
Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical,
and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdellatif Ait Lahcen
- Department
of Radiology, Weill Cornell Medicine, Dalio
Institute for Cardiovascular Imaging, New York, New York 10021, United States
| | - Ebru Aldemir
- Department
of Psychiatry, Faculty of Medicine, Izmir
Tinaztepe University, 35400 Buca, Izmir, Turkey
| | - Emine Guler Celik
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Khaled Nabil Salama
- Sensors
Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical,
and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Suna Timur
- Central
Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Bornova, Izmir, Turkey
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
3
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
4
|
Analysis of drugs and pesticides for forensic purposes using noble metal-modified silica monolith as SALDI-MS substrate. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Chou CH, Chen HP, Hsiao HH. Rapid analysis of ketamine with in-house antibody conjugated boronic acid modified silver chip on MALDI-TOF MS measurement. Talanta 2021; 226:122115. [PMID: 33676671 DOI: 10.1016/j.talanta.2021.122115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 01/28/2023]
Abstract
An antibody conjugated boronic acid modified silver chip (ABAS ship) is fabricated as a simple, rapid, accurate, sensitive and cost-effective sample preparation method for abused drug quantification in human urine. Ketamine, one common abused drug, was applied as proof of concept for ABAS chip with high resolution matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF MS) analysis. The overall testing process required 10 min at part per billion (ppb) sensitivity level, where current drug testing method necessitated several hours with similar sensitivity. The ABAS chip manufacture process started with slide glass by way of silver mirror reaction to form silver conductive glass for further chemical conjugation. Boronic acid functional group was decorated on silver conductive glass through the formation of silver-thiol (Ag-S) bond. Anti-ketamine antibody was covalently conjugated to boronic acid modified silver conductive glass through the formation of cyclic boronate ester between the boronic acid and the cis-diol groups on the glycans of antibody, which maintain the correct orientation to maximally capture its antigen. The resulting ABAS chip were designed to specifically capture ketamine in human urine samples, that could be directly analyzed by addition of MALDI α-Cyano-4-hydroxycinnamic acid (CHCA) matrix solution. The linear dynamic range of concentration in this method was 10-500 ng/mL with coefficient of determination 0.996. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0 and 7.0 ng/mL, respectively. Importantly, the proposed method allows rapid and accurate quantification of ketamine from suspects' urine samples in 10 min and small sample volume of 1 μL was required. The resulting data were consistent with traditional gas chromatography-mass spectrometry (GC-MS) analysis. Our homemade ABAS chip could thus provide a powerful tool not only for forensic science but also for most clinical diagnosis of disease as many expression antibodies for the occurrence of diverse diseases could be simply produced and purchased.
Collapse
Affiliation(s)
- Chien-Hung Chou
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402, Taiwan
| | - Hsin-Ping Chen
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402, Taiwan
| | - He-Hsuan Hsiao
- Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402, Taiwan.
| |
Collapse
|
6
|
Minhas RS, Antunez EE, Guinan TM, Gengenbach TR, Rudd DA, Voelcker NH. Fluorocarbon Plasma Gas Passivation Enhances Performance of Porous Silicon for Desorption/Ionization Mass Spectrometry. ACS Sens 2020; 5:3226-3236. [PMID: 32938190 DOI: 10.1021/acssensors.0c01532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Desorption/ionization on porous silicon mass spectrometry (DIOS-MS) is shown to be a powerful technique for the sensing of low-molecular-weight compounds, including drugs and their metabolites. Surface modification of DIOS surfaces is required to increase analytical performance and ensure stability. However, common wet chemical modification techniques use fluorosilanes, which are less suitable for high-throughput manufacturing and analytical repeatability. Here, we report an alternative, rapid functionalization technique for DIOS surfaces using plasma polymerization (ppDIOS). We demonstrate the detection of drugs, metabolites, pesticides, and doping agents, directly from biological matrices, with molecular confirmation performed using the fragmentation capabilities of a tandem MS instrument. Furthermore, the ppDIOS surfaces were found to be stable over a 162 day period with no loss of reproducibility and sensitivity. This alternative functionalization technique is cost-effective and amenable to upscaling, ensuring avenues for the high-throughput manufacture and detection of hundreds of analytes across various applications while still maintaining the gold-standard clinical technique using mass spectrometry.
Collapse
Affiliation(s)
- Rajpreet Singh Minhas
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - E. Eduardo Antunez
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Taryn M. Guinan
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Leica Microsystems, Mount Waverley, Victoria 3149, Australia
| | - Thomas R. Gengenbach
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - David A. Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Borden SA, Palaty J, Termopoli V, Famiglini G, Cappiello A, Gill CG, Palma P. MASS SPECTROMETRY ANALYSIS OF DRUGS OF ABUSE: CHALLENGES AND EMERGING STRATEGIES. MASS SPECTROMETRY REVIEWS 2020; 39:703-744. [PMID: 32048319 DOI: 10.1002/mas.21624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Mass spectrometry has been the "gold standard" for drugs of abuse (DoA) analysis for many decades because of the selectivity and sensitivity it affords. Recent progress in all aspects of mass spectrometry has seen significant developments in the field of DoA analysis. Mass spectrometry is particularly well suited to address the rapidly proliferating number of very high potency, novel psychoactive substances that are causing an alarming number of fatalities worldwide. This review surveys advancements in the areas of sample preparation, gas and liquid chromatography-mass spectrometry, as well as the rapidly emerging field of ambient ionization mass spectrometry. We have predominantly targeted literature progress over the past ten years and present our outlook for the future. © 2020 Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Scott A Borden
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Jan Palaty
- LifeLabs Medical Laboratories, Burnaby, BC, V3W 1H8, Canada
| | - Veronica Termopoli
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Giorgio Famiglini
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Achille Cappiello
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195
| | - Pierangela Palma
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| |
Collapse
|
8
|
Minhas RS, Rudd DA, Al Hmoud HZ, Guinan TM, Kirkbride KP, Voelcker NH. Rapid Detection of Anabolic and Narcotic Doping Agents in Saliva and Urine By Means of Nanostructured Silicon SALDI Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31195-31204. [PMID: 32551485 DOI: 10.1021/acsami.0c07849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel doping agents and doping strategies are continually entering the market, placing a burden on analytical methods to detect, adapt, and respond to subtle changes in the composition of biological samples. Therefore, there is a growing interest in rapid, adaptable, and ideally confirmatory analytical methods for the fight against doping. Nanostructured silicon (nano-Si)-based surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) can effectively address this need, allowing fast and sensitive detection of prohibited compounds used in sport doping. Here, we demonstrate the detection of growth hormone peptides, anabolic-androgenic steroids, and narcotics at low concentrations directly from biological matrices. Molecular confirmation was performed using the fragmentation data of the structures, obtained with the tandem mass spectrometry capabilities of the SALDI instrument. The obtained data were in excellent agreement with those obtained using leading triple quadrupole liquid chromatography-mass spectrometry instruments. Furthermore, nano-Si SALDI-MS has the capacity for high-throughput analysis of hundreds of biological samples, providing opportunities for real-time MS analysis at sporting events.
Collapse
Affiliation(s)
- Rajpreet Singh Minhas
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - David A Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Hashim Z Al Hmoud
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Taryn M Guinan
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Leica Microsystems, Mount Waverly, Victoria 3149, Australia
| | - K Paul Kirkbride
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, South Australia 5001, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Mikrochim Acta 2019; 186:682. [DOI: 10.1007/s00604-019-3770-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
|
10
|
Mapping insoluble indole metabolites in the gastrointestinal environment of a murine colorectal cancer model using desorption/ionisation on porous silicon imaging. Sci Rep 2019; 9:12342. [PMID: 31451756 PMCID: PMC6710270 DOI: 10.1038/s41598-019-48533-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022] Open
Abstract
Indole derivatives are a structurally diverse group of compounds found in food, toxins, medicines, and produced by commensal microbiota. On contact with acidic stomach conditions, indoles undergo condensation to generate metabolites that vary in solubility, activity and toxicity as they move through the gut. Here, using halogenated ions, we map promising chemo-preventative indoles, i) 6-bromoisatin (6Br), ii) the mixed indole natural extract (NE) 6Br is found in, and iii) the highly insoluble metabolites formed in vivo using desorption/ionisation on porous silicon-mass spectrometry imaging (DIOS-MSI). The functionalised porous silicon architecture allowed insoluble metabolites to be detected that would otherwise evade most analytical platforms, providing direct evidence for identifying the therapeutic component, 6Br, from the mixed indole NE. As a therapeutic lead, 0.025 mg/g 6Br acts as a chemo-preventative compound in a 12 week genotoxic mouse model; at this dose 6Br significantly reduces epithelial cell proliferation, tumour precursors (aberrant crypt foci; ACF); and tumour numbers while having minimal effects on liver, blood biochemistry and weight parameters compared to controls. The same could not be said for the NE where 6Br originates, which significantly increased liver damage markers. DIOS-MSI revealed a large range of previously unknown insoluble metabolites that could contribute to reduced efficacy and increased toxicity.
Collapse
|
11
|
Grabenauer M, Moore KN, Bynum ND, White RM, Mitchell JM, Hayes ED, Flegel R. Development of a Quantitative LC-MS-MS Assay for Codeine, Morphine, 6-Acetylmorphine, Hydrocodone, Hydromorphone, Oxycodone and Oxymorphone in Neat Oral Fluid. J Anal Toxicol 2019; 42:392-399. [PMID: 29554298 DOI: 10.1093/jat/bky021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 11/14/2022] Open
Abstract
Recent advances in analytical capabilities allowing for the identification and quantification of drugs and metabolites in small volumes at low concentrations have made oral fluid a viable matrix for drug testing. Oral fluid is an attractive matrix option due to its relative ease of collection, reduced privacy concerns for observed collections and difficulty to adulterate. The work presented here details the development and validation of a liquid chromatography tandem mass spectrometry (LC-MS-MS) method for the quantification of codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone and oxymorphone in neat oral fluid. The calibration range is 0.4-150 ng/mL for 6-acetylmorphine and 1.5-350 ng/mL for all other analytes. Within-run and between-run precision were <5% for all analytes except for hydrocodone, which had 6.2 %CV between runs. Matrix effects, while evident, could be controlled using matrix-matched controls and calibrators with deuterated internal standards. The assay was developed in accordance with the proposed mandatory guidelines for opioid confirmation in federally regulated workplace drug testing. The use of neat oral fluid, as opposed to a collection device, enables collection of a single sample that can be split into separate specimens.
Collapse
Affiliation(s)
- Megan Grabenauer
- Center for Forensic Sciences, RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC, USA
| | - Katherine N Moore
- Center for Forensic Sciences, RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC, USA
| | | | - Robert M White
- Center for Forensic Sciences, RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC, USA
| | - John M Mitchell
- Center for Forensic Sciences, RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC, USA
| | - Eugene D Hayes
- Substance Abuse and Mental Health Services Administration, 5600 Fishers Lane, Rockville, MD, USA
| | - Ronald Flegel
- Substance Abuse and Mental Health Services Administration, 5600 Fishers Lane, Rockville, MD, USA
| |
Collapse
|
12
|
Abdolmohammad-Zadeh H, Zamani A, Shamsi Z. Preconcentration of morphine and codeine using a magnetite/reduced graphene oxide/silver nano-composite and their determination by high-performance liquid chromatography. J Chromatogr A 2018; 1590:2-9. [PMID: 30606455 DOI: 10.1016/j.chroma.2018.12.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/25/2018] [Accepted: 12/29/2018] [Indexed: 01/09/2023]
Abstract
A novel magnetic solid-phase extraction technique based on a ternary nano-composite, magnetite/reduced graphene oxide/silver, as a nano-sorbent was developed for simultaneous extraction/preconcentration and measurement of morphine and codeine in biological samples by high-performance liquid chromatography. The magnetic ternary nano-composite was synthesized and its functional groups, morphological structure, and magnetic properties were characterized by field emission scanning electron microscopy, vibrating sample magnetometer, powder X-ray diffraction, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The optimizing of the significant variables affecting the extraction process was evaluated by a response surface methodology. In the optimized conditions, the constructed calibration curves for morphine and codeine are linear in the range of 0.01-10 μg L-1 with correlation coefficients of 0.9983 and 0.9976, respectively. The detection limit and enrichment factor for morphine and codeine are 1.8 ng L-1, 1000 and 2.1 ng L-1, 1000, respectively. The presented technique was employed for the monitoring of morphine and codeine in numerous blood and urine samples with relative recoveries between 97.0 and 102.5%, and relative standard deviations of 1.02-5.10% for the spiked samples.
Collapse
Affiliation(s)
- Hossein Abdolmohammad-Zadeh
- Analytical Spectroscopy Research Lab., Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 35 km Tabriz-Marageh Road, P.O. Box 53714-161, Tabriz 5375171379, Iran.
| | - Abbasali Zamani
- Department of Environmental Science, Faculty of Sciences, University of Zanjan, Zanjan 45371-38791, Iran
| | - Zahra Shamsi
- Analytical Spectroscopy Research Lab., Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 35 km Tabriz-Marageh Road, P.O. Box 53714-161, Tabriz 5375171379, Iran
| |
Collapse
|
13
|
Chu HW, Unnikrishnan B, Anand A, Mao JY, Huang CC. Nanoparticle-based laser desorption/ionization mass spectrometric analysis of drugs and metabolites. J Food Drug Anal 2018; 26:1215-1228. [PMID: 30249320 PMCID: PMC9298562 DOI: 10.1016/j.jfda.2018.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022] Open
|
14
|
Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, Urbani A. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics 2018; 15:683-696. [PMID: 30058389 DOI: 10.1080/14789450.2018.1505510] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The development of precision medicine requires advanced technologies to address the multifactorial disease stratification and to support personalized treatments. Among omics techniques, proteomics based on Mass Spectrometry (MS) is becoming increasingly relevant in clinical practice allowing a phenotypic characterization of the dynamic functional status of the organism. From this perspective, Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) MS is a suitable platform for providing a high-throughput support to clinics. Areas covered: This review aims to provide an updated overview of MALDI-TOF MS applications in clinical proteomics. The most relevant features of this analysis have been discussed, highlighting both pre-analytical and analytical factors that are crucial in proteomics studies. Particular emphasis is placed on biofluids proteomics for biomarkers discovery and on recent progresses in clinical microbiology, drug monitoring, and minimal residual disease (MRD). Expert commentary: Despite some analytical limitations, the latest technological advances together with the easiness of use, the low time and low cost consuming and the high throughput are making MALDI-TOF MS instruments very attractive for the clinical practice. These features offer a significant potential for the routine of the clinical laboratory and ultimately for personalized medicine.
Collapse
Affiliation(s)
- Viviana Greco
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| | - Cristian Piras
- c Dipartimento di Medicina Veterinaria , Università degli studi di Milano , Milano , Italy
| | - Luisa Pieroni
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy
| | - Maurizio Ronci
- d Proteomics and Metabonomics Unit , IRCCS-Fondazione Santa Lucia , Rome , Italy.,e Department of Medical, Oral and Biotechnological Sciences , University "G. D'Annunzio" of Chieti-Pescara , Chieti , Italy
| | - Lorenza Putignani
- f Unit of Parasitology Bambino Gesù Children's Hospital , IRCCS , Rome , Italy.,g Unit of Human Microbiome , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Paola Roncada
- h Dipartimento di Scienze della Salute , Università degli studi "Magna Græcia" di Catanzaro , Catanzaro , Italy
| | - Andrea Urbani
- a Institute of Biochemistry and Clinical Biochemistry , Università Cattolica del Sacro Cuore , Rome , Italy.,b Department of Laboratory Diagnostic and Infectious Diseases , Fondazione Policlinico Universitario Agostino Gemelli-IRCCS , Rome , Italy
| |
Collapse
|
15
|
Idkaidek N, Arafat T, Hamadi H, Hamadi S, Al-Adham I. Saliva Versus Plasma Bioequivalence of Azithromycin in Humans: Validation of Class I Drugs of the Salivary Excretion Classification System. Drugs R D 2017; 17:219-224. [PMID: 28074334 PMCID: PMC5318338 DOI: 10.1007/s40268-016-0170-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aim The aim of this study was to compare human pharmacokinetics and bioequivalence metrics in saliva versus plasma for azithromycin as a model class I drug of the Salivary Excretion Classification System (SECS). Methods A pilot, open-label, two-way crossover bioequivalence study was done, and involved a single 500-mg oral dose of azithromycin given to eight healthy subjects under fasting conditions, followed by a 3-week washout period. Blood and unstimulated saliva samples were collected over 72 h and deep frozen until analysis by a validated liquid chromatography with mass spectroscopy method. The pharmacokinetic parameters and bioequivalence metrics of azithromycin were calculated by non-compartment analysis using WinNonlin V5.2. Descriptive statistics and dimensional analysis of the pharmacokinetic parameters of azithromycin were performed using Microsoft Excel. PK-Sim V5.6 was used to estimate the effective intestinal permeability of azithromycin. Results and Discussion No statistical differences were shown in area under the concentration curves to 72 h (AUC0–72), maximum measured concentration (Cmax) and time to maximum concentration (Tmax) between test and reference azithromycin products (P > 0.05) in the saliva matrix and in the plasma matrix. Due to the high intra-subject variability and low sample size of this pilot study, the 90% confidence intervals of AUC0–72 and Cmax did not fall within the acceptance range (80–125%). However, saliva levels were higher than that of plasma, with a longer salivary Tmax. The mean saliva/plasma concentration of test and reference were 2.29 and 2.33, respectively. The mean ± standard deviation ratios of saliva/plasma of AUC0–72, Cmax and Tmax for test were 2.65 ± 1.59, 1.51 ± 0.49 and 1.85 ± 1.4, while for the reference product they were 3.37 ± 2.20, 1.57 ± 0.77 and 2.6 ± 1.27, respectively. A good correlation of R = 0.87 between plasma and saliva concentrations for both test and reference products was also observed. Azithromycin is considered a class I drug based on the SECS, since it has a high permeability and high fraction unbound, and saliva sampling could be used as an alternative to plasma sampling to characterize its pharmacokinetics and bioequivalence in humans when adequate sample size is used.
Collapse
Affiliation(s)
| | - Tawfiq Arafat
- Faculty of Pharmacy, Petra University, Amman, Jordan
| | - Hazim Hamadi
- Faculty of Pharmacy, Petra University, Amman, Jordan
| | - Salim Hamadi
- Faculty of Pharmacy, Petra University, Amman, Jordan
| | | |
Collapse
|
16
|
Hassaneen M, Maron JL. Salivary Diagnostics in Pediatrics: Applicability, Translatability, and Limitations. Front Public Health 2017; 5:83. [PMID: 28473973 PMCID: PMC5397421 DOI: 10.3389/fpubh.2017.00083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
In the last decade, technological advances, combined with an improved appreciation of the ability of saliva to inform caregivers about both oral health and systemic disease, have led to the emergence of salivary diagnostic platforms. However, the majority of these assays have targeted diseases that more commonly affect the adult population, largely neglecting infants and children who arguably could benefit the most from non-invasive assessment tools for health monitoring. Gaining access into development, infection, and disease through comprehensive "omic" analyses of saliva could significantly improve care and enhance health access. In this review, we will highlight novel applications of salivary diagnostics in pediatrics across the "omic" spectrum, including at the genomic, transcriptomic, proteomic, microbiomic, and metabolomic level. The challenges to implementing salivary platforms into care, including the effects of age, diet, and developmental stage on salivary components, will be reviewed. Ultimately, large-scale, multicenter trials must be performed to establish normative biomarker values across the age spectrum to accurately discriminate between health and disease. Only then can salivary diagnostics truly translate into pediatric care.
Collapse
Affiliation(s)
- Mona Hassaneen
- Mother Infant Research Institute at Tufts Medical Center, Boston, MA, USA
| | - Jill L. Maron
- Mother Infant Research Institute at Tufts Medical Center, Boston, MA, USA
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
17
|
Abdelmaksoud HH, Guinan TM, Voelcker NH. Fabrication of Nanostructured Mesoporous Germanium for Application in Laser Desorption Ionization Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5092-5099. [PMID: 28107617 DOI: 10.1021/acsami.6b14362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is a high-throughput analytical technique ideally suited for small-molecule detection from different bodily fluids (e.g., saliva, urine, and blood plasma). Many SALDI-MS substrates require complex fabrication processes and further surface modifications. Furthermore, some substrates show instability upon exposure to ambient conditions and need to be kept under special inert conditions. We have successfully optimized mesoporous germanium (meso-pGe) using bipolar electrochemical etching and efficiently applied meso-pGe as a SALDI-MS substrate for the detection of illicit drugs such as in the context of workplace, roadside, and antiaddictive drug compliance. Argon plasma treatment improved the meso-pGe efficiency as a SALDI-MS substrate and eliminated the need for surface functionalization. The resulting substrate showed a precise surface geometry tuning by altering the etching parameters, and an outstanding performance for illicit drug detection with a limit of detection in Milli-Q water of 1.7 ng/mL and in spiked saliva as low as 5.3 ng/mL for cocaine. The meso-pGe substrate had a demonstrated stability over 56 days stored in ambient conditions. This proof-of-principle study demonstrates that meso-pGe can be reproducibly fabricated and applied as an analytical SALDI-MS substrate which opens the door for further analytical and forensic high-throughput applications.
Collapse
Affiliation(s)
- Hazem H Abdelmaksoud
- Future Industries Institute, University of South Australia , University Boulevard, Mawson Lakes, Adelaide, 5095 South Australia, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide, South Australia 5001, Australia
| | - Taryn M Guinan
- Future Industries Institute, University of South Australia , University Boulevard, Mawson Lakes, Adelaide, 5095 South Australia, Australia
| | - Nicolas H Voelcker
- Future Industries Institute, University of South Australia , University Boulevard, Mawson Lakes, Adelaide, 5095 South Australia, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide, South Australia 5001, Australia
| |
Collapse
|
18
|
Guinan TM, Abdelmaksoud H, Voelcker NH. Rapid detection of nicotine from breath using desorption ionisation on porous silicon. Chem Commun (Camb) 2017; 53:5224-5226. [DOI: 10.1039/c7cc00243b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Desorption ionisation on porous silicon mass spectrometry was used for the detection of nicotine from exhaled breath.
Collapse
Affiliation(s)
- T. M. Guinan
- Future Industries Institute
- University of South Australia
- Adelaide
- Australia
- Monash Institute of Pharmaceutical Sciences
| | - H. Abdelmaksoud
- Future Industries Institute
- University of South Australia
- Adelaide
- Australia
- Monash Institute of Pharmaceutical Sciences
| | - N. H. Voelcker
- Future Industries Institute
- University of South Australia
- Adelaide
- Australia
- Monash Institute of Pharmaceutical Sciences
| |
Collapse
|
19
|
Guinan TM, Neldner D, Stockham P, Kobus H, Della Vedova CB, Voelcker NH. Porous silicon mass spectrometry as an alternative confirmatory assay for compliance testing of methadone. Drug Test Anal 2016; 9:769-777. [PMID: 27364015 DOI: 10.1002/dta.2033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 11/07/2022]
Abstract
Porous silicon based surface-assisted laser desorption ionization mass spectrometry (pSi SALDI-MS) is an analytical technique well suited for high throughput analysis of low molecular weight compounds from biological samples. A potential application of this technology is the compliance monitoring of opioid addiction programmes, where methadone is used as a pharmacological treatment for drugs such as heroin. Here, we present the detection and quantification of methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) from water and clinical samples (saliva, urine, and plasma) from opioid dependent participants using pSi SALDI-MS. A one-step solvent phase extraction using chloroform was developed for the detection of methadone from clinical samples for analysis by pSi SALDI-MS. Liquid chromatography-mass spectrometry (LC-MS) was used as a comparative technique for the quantification of methadone from clinical saliva and plasma samples. In all cases, we obtained a good correlation of pSi SALDI-MS and LC-MS results, suggesting that pSi SALDI-MS may be an alternative procedure for high-throughput screening and quantification for application in opioid compliance testing. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Taryn M Guinan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Declan Neldner
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Peter Stockham
- Forensic Science SA, Adelaide, South Australia, Australia
| | - Hilton Kobus
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia, Australia
| | - Christopher B Della Vedova
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Guinan TM, Kobus H, Lu Y, Sweetman M, McInnes SJP, Kirkbride KP, Voelcker NH. Nanostructured Silicon-Based Fingerprint Dusting Powders for Enhanced Visualization and Detection by Mass Spectrometry. Chempluschem 2016; 81:258-261. [PMID: 31968783 DOI: 10.1002/cplu.201500546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/07/2016] [Indexed: 02/04/2023]
Abstract
Porous silicon microparticles (pSi MPs) functionalized with fluorescent dyes (lissamine and carboxy-5-fluorescein) and intrinsically luminescent pSi MPs were explored as novel fingerprint dusting powders. The versatility of luminescent pSi MPs is demonstrated through time-gated imaging of their long-lived (lifetime>28 μs) near-IR emission, and mass spectrometry analysis of fingerprints dusted with luminescent pSi MPs to provide further information on exogenous small molecules present in latent fingerprints.
Collapse
Affiliation(s)
- Taryn M Guinan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Hilton Kobus
- School of Physical and Chemical Sciences, Flinders University, Bedford Park, SA, 5042, Australia
| | - Yiqing Lu
- Department of Physics and Astronomy, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Martin Sweetman
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Steven J P McInnes
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - K Paul Kirkbride
- School of Physical and Chemical Sciences, Flinders University, Bedford Park, SA, 5042, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| |
Collapse
|
21
|
Peiró MDLN, Armenta S, Garrigues S, de la Guardia M. Determination of 3,4-methylenedioxypyrovalerone (MDPV) in oral and nasal fluids by ion mobility spectrometry. Anal Bioanal Chem 2016; 408:3265-73. [PMID: 26898205 DOI: 10.1007/s00216-016-9395-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 11/26/2022]
Abstract
A fast and sensitive methodology has been developed for the evaluation of the 3,4-methylenedioxypyrovalerone (MDPV) consumed. Based on ion mobility spectrometry (IMS), MDPV was directly determined in nasal fluids with a limit of detection (LOD) in the order of 22 ng mL(-1), which corresponds to an absolute amount of 33 ng of MDPV per swab. MDPV was also determined after liquid-liquid microextraction (LLME) in oral fluids to avoid matrix effects, obtaining a LOD value of 4.4 ng mL(-1) in oral fluid samples. The IMS spectrum for MDPV exhibited a peak with K0 = 1.210 ± 0.005 cm(2)V(-1) s(-1) at a drift time of 14.62 ms, the total analysis time being 4.5 min per oral fluid and 1.5 min per nasal fluid sample. Samples must be analyzed within 24 h following collection and dissolution in 2-propanol, based on the complementary stability studies.
Collapse
Affiliation(s)
- Maria de las Nieves Peiró
- Department of Analytical Chemistry, Research Building, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Sergio Armenta
- Department of Analytical Chemistry, Research Building, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain.
| | - Salvador Garrigues
- Department of Analytical Chemistry, Research Building, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Miguel de la Guardia
- Department of Analytical Chemistry, Research Building, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
22
|
Shi CY, Deng CH. Recent advances in inorganic materials for LDI-MS analysis of small molecules. Analyst 2016; 141:2816-26. [DOI: 10.1039/c6an00220j] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, various inorganic materials were summarized for the analysis of small molecules by laser desorption/ionization mass spectrometry (LDI-MS).
Collapse
Affiliation(s)
- C. Y. Shi
- Department of Chemistry and Institutes of Biomedical Sciences
- Collaborative Innovation Center of Genetics and Development
- Fudan University
- Shanghai 200433
- China
| | - C. H. Deng
- Department of Chemistry and Institutes of Biomedical Sciences
- Collaborative Innovation Center of Genetics and Development
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
23
|
Guinan T, Kirkbride P, Pigou PE, Ronci M, Kobus H, Voelcker NH. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. MASS SPECTROMETRY REVIEWS 2015; 34:627-40. [PMID: 24916100 DOI: 10.1002/mas.21431] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/24/2014] [Accepted: 03/20/2014] [Indexed: 05/20/2023]
Abstract
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques.
Collapse
Affiliation(s)
- Taryn Guinan
- Mawson Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Paul Kirkbride
- School of Physical and Chemical Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Paul E Pigou
- School of Physical and Chemical Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Maurizio Ronci
- Mawson Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Hilton Kobus
- School of Physical and Chemical Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Nicolas H Voelcker
- Mawson Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| |
Collapse
|
24
|
Guinan TM, Gustafsson OJR, McPhee G, Kobus H, Voelcker NH. Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon. Anal Chem 2015; 87:11195-202. [DOI: 10.1021/acs.analchem.5b02567] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Gordon McPhee
- Nextcell
Pty Ltd, Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hilton Kobus
- School
of Chemical and Physical Sciences, Flinders University, General Post Office Box 2100, Adelaide, South Australia 5001, Australia
| | | |
Collapse
|
25
|
Tsao CW, Yang ZJ. High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22630-22637. [PMID: 26393877 DOI: 10.1021/acsami.5b07395] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Desorption/ionization on silicon (DIOS) is a high-performance matrix-free mass spectrometry (MS) analysis method that involves using silicon nanostructures as a matrix for MS desorption/ionization. In this study, gold nanoparticles grafted onto a nanostructured silicon (AuNPs-nSi) surface were demonstrated as a DIOS-MS analysis approach with high sensitivity and high detection specificity for glucose detection. A glucose sample deposited on the AuNPs-nSi surface was directly catalyzed to negatively charged gluconic acid molecules on a single AuNPs-nSi chip for MS analysis. The AuNPs-nSi surface was fabricated using two electroless deposition steps and one electroless etching step. The effects of the electroless fabrication parameters on the glucose detection efficiency were evaluated. Practical application of AuNPs-nSi MS glucose analysis in urine samples was also demonstrated in this study.
Collapse
Affiliation(s)
- Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University , Taoyuan City 32001, Taiwan
| | - Zhi-Jie Yang
- Department of Mechanical Engineering, National Central University , Taoyuan City 32001, Taiwan
| |
Collapse
|
26
|
Rudd D, Ronci M, Johnston MR, Guinan T, Voelcker NH, Benkendorff K. Mass spectrometry imaging reveals new biological roles for choline esters and Tyrian purple precursors in muricid molluscs. Sci Rep 2015; 5:13408. [PMID: 26324173 PMCID: PMC4555103 DOI: 10.1038/srep13408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022] Open
Abstract
Despite significant advances in chemical ecology, the biodistribution, temporal changes and ecological function of most marine secondary metabolites remain unknown. One such example is the association between choline esters and Tyrian purple precursors in muricid molluscs. Mass spectrometry imaging (MSI) on nano-structured surfaces has emerged as a sophisticated platform for spatial analysis of low molecular mass metabolites in heterogeneous tissues, ideal for low abundant secondary metabolites. Here we applied desorption-ionisation on porous silicon (DIOS) to examine in situ changes in biodistribution over the reproductive cycle. DIOS-MSI showed muscle-relaxing choline ester murexine to co-localise with tyrindoxyl sulfate in the biosynthetic hypobranchial glands. But during egg-laying, murexine was transferred to the capsule gland, and then to the egg capsules, where chemical ripening resulted in Tyrian purple formation. Murexine was found to tranquilise the larvae and may relax the reproductive tract. This study shows that DIOS-MSI is a powerful tool that can provide new insights into marine chemo-ecology.
Collapse
Affiliation(s)
- David Rudd
- School of Biological Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Maurizio Ronci
- Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.,Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio, Chieti-Pescara, Italy
| | - Martin R Johnston
- Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Taryn Guinan
- Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Nicolas H Voelcker
- Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
| |
Collapse
|
27
|
Rudd D, Benkendorff K, Voelcker NH. Solvent separating secondary metabolites directly from biosynthetic tissue for surface-assisted laser desorption ionisation mass spectrometry. Mar Drugs 2015; 13:1410-31. [PMID: 25786067 PMCID: PMC4377991 DOI: 10.3390/md13031410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Marine bioactive metabolites are often heterogeneously expressed in tissues both spatially and over time. Therefore, traditional solvent extraction methods benefit from an understanding of the in situ sites of biosynthesis and storage to deal with heterogeneity and maximize yield. Recently, surface-assisted mass spectrometry (MS) methods namely nanostructure-assisted laser desorption ionisation (NALDI) and desorption ionisation on porous silicon (DIOS) surfaces have been developed to enable the direct detection of low molecular weight metabolites. Since direct tissue NALDI-MS or DIOS-MS produce complex spectra due to the wide variety of other metabolites and fragments present in the low mass range, we report here the use of "on surface" solvent separation directly from mollusc tissue onto nanostructured surfaces for MS analysis, as a mechanism for simplifying data annotation and detecting possible artefacts from compound delocalization during the preparative steps. Water, ethanol, chloroform and hexane selectively extracted a range of choline esters, brominated indoles and lipids from Dicathais orbita hypobranchial tissue imprints. These compounds could be quantified on the nanostructured surfaces by comparison to standard curves generated from the pure compounds. Surface-assisted MS could have broad utility for detecting a broad range of secondary metabolites in complex marine tissue samples.
Collapse
Affiliation(s)
- David Rudd
- Biological Sciences, Faculty of Science and Engineering, Flinders University of South Australia, PO Box 2100, Adelaide, SA 5001, Australia.
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Nicolas H Voelcker
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
28
|
Guinan T, Della Vedova C, Kobus H, Voelcker NH. Mass spectrometry imaging of fingerprint sweat on nanostructured silicon. Chem Commun (Camb) 2015; 51:6088-91. [DOI: 10.1039/c4cc08762c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Desorption ionisation on porous silicon mass spectrometry imaging (DIOS-MSI) was used on fingerprints to map the distribution of exogenous and endogenous molecules present in sweat.
Collapse
Affiliation(s)
- T. Guinan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- Australia
| | - C. Della Vedova
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide
- Australia
| | - H. Kobus
- School of Physical and Chemical Sciences
- Flinders University
- Bedford Park
- Australia
| | - N. H. Voelcker
- School of Physical and Chemical Sciences
- Flinders University
- Bedford Park
- Australia
| |
Collapse
|
29
|
Guinan TM, Kirkbride P, Della Vedova CB, Kershaw SG, Kobus H, Voelcker NH. Direct detection of illicit drugs from biological fluids by desorption/ionization mass spectrometry with nanoporous silicon microparticles. Analyst 2015; 140:7926-33. [DOI: 10.1039/c5an01754h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) with porous silicon microparticles was used for the all-in-one extraction and detection of illicit drugs from saliva, urine and plasma.
Collapse
Affiliation(s)
- T. M. Guinan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- Australia
| | - P. Kirkbride
- School of Physical and Chemical Sciences
- Flinders University
- Bedford Park
- Australia
| | - C. B. Della Vedova
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide
- Australia
| | - S. G. Kershaw
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide
- Australia
| | - H. Kobus
- School of Physical and Chemical Sciences
- Flinders University
- Bedford Park
- Australia
| | - N. H. Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- Australia
| |
Collapse
|
30
|
Guinan T, Ronci M, Vasani R, Kobus H, Voelcker N. Comparison of the performance of different silicon-based SALDI substrates for illicit drug detection. Talanta 2015; 132:494-502. [DOI: 10.1016/j.talanta.2014.09.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
|
31
|
Montesano C, Sergi M, Perez G, Curini R, Compagnone D, Mascini M. Bio-inspired solid phase extraction sorbent material for cocaine: A cross reactivity study. Talanta 2014; 130:382-7. [DOI: 10.1016/j.talanta.2014.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 01/08/2023]
|
32
|
Alhmoud HZ, Guinan TM, Elnathan R, Kobus H, Voelcker NH. Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays. Analyst 2014; 139:5999-6009. [DOI: 10.1039/c4an01391c] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Salivary diagnostics: a brief review. ISRN DENTISTRY 2014; 2014:158786. [PMID: 24616813 PMCID: PMC3926256 DOI: 10.1155/2014/158786] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022]
Abstract
Early detection of disease plays a crucial role for treatment planning and prognosis. Saliva has great potential as a diagnostic fluid and offers advantage over serum and other biological fluids by an economic and noninvasive collection method for monitoring of systemic health and disease progression. The plethora of components in this fluid can act as biomarkers for diagnosis of various systemic and local diseases. In this review paper, we have emphasized the role of salivary biomarkers as diagnostic tools.
Collapse
|
34
|
Rodriguez GA, Lonai JD, Mernaugh RL, Weiss SM. Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules. NANOSCALE RESEARCH LETTERS 2014; 9:383. [PMID: 25136285 PMCID: PMC4128542 DOI: 10.1186/1556-276x-9-383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/18/2014] [Indexed: 05/07/2023]
Abstract
A porous silicon (PSi) Bloch surface wave (BSW) and Bloch sub-surface wave (BSSW) composite biosensor is designed and used for the size-selective detection of both small and large molecules. The BSW/BSSW structure consists of a periodic stack of high and low refractive index PSi layers and a reduced optical thickness surface layer that gives rise to a BSW with an evanescent tail that extends above the surface to enable the detection of large surface-bound molecules. Small molecules were detected in the sensor by the BSSW, which is a large electric field intensity spatially localized to a desired region of the Bragg mirror and is generated by the implementation of a step or gradient refractive index profile within the Bragg mirror. The step and gradient BSW/BSSW sensors are designed to maximize both resonance reflectance intensity and sensitivity to large molecules. Size-selective detection of large molecules including latex nanospheres and the M13KO7 bacteriophage as well as small chemical linker molecules is reported.
Collapse
Affiliation(s)
- Gilberto A Rodriguez
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - John D Lonai
- Department of Physics, Northwest Nazarene University, Nampa, ID 83686, USA
| | - Raymond L Mernaugh
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Sharon M Weiss
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
35
|
Zhang W, Tang Y, Du D, Smith J, Timchalk C, Liu D, Lin Y. Direct analysis of trichloropyridinol in human saliva using an Au nanoparticles-based immunochromatographic test strip for biomonitoring of exposure to chlorpyrifos. Talanta 2013; 114:261-7. [DOI: 10.1016/j.talanta.2013.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
|