1
|
Fan J, Pu Y, Wang Y, Cui Y, Wang C. Active site-inspired multicopper laccase-like nanozymes for detection of phenolic and catecholamine compounds. Anal Chim Acta 2025; 1336:343529. [PMID: 39788681 DOI: 10.1016/j.aca.2024.343529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/31/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
Phenolic compounds are typical organic pollutants which cause severe human health problems due to their teratogenesis, carcinogenesis, neurotoxicity, immunotoxicity and endocrine disruption. Natural laccase is a multicopper oxidase existing in bacteria, plants, and insects, which can accelerate the transformation of phenolic compounds to their less hazardous oxidized products under mild conditions without harmful byproducts. Despite eco-environmentally friendly property of laccase, it still faces constraints of widespread application attribute to its high cost, complex preparation, and vulnerability. Therefore, exploring laccase mimics with high catalytic activity attracts a lot of attention and endeavors. In this research, copper-based nanozymes were prepared with coordination of copper ions and imidazole for mimicking the active sites of natural laccase via solvothermal method. The obtained Cu-based (Cu-Im) nanozymes exhibited multiple redox valence states of Cu and laccase-mimicking coordination structures, which endow Cu-Im with high laccase-like activity. During the process of catalytic oxidation reactions, singlet oxygen and superoxide anions generated from oxygen. Encouraged by the catalytic property, Cu-Im was utilized in degradation and detection of phenolic and catecholamine compounds. The catalytic degradation of compounds by Cu-Im showed good conversion and substrate versatility, which can be used as a kind of potential materials for phenolic pollutant degradation and remediation. Simultaneously, colorimetric sensors of phenols and catecholamines based on Cu-Im in solution system and POCT pad platform were constructed which indicated wide linear range and low limit of detection for both detection strategies. The Cu-Im-based sensor was a promising method for sensitive, fast, convenient, and qualitative-quantitative colorimetric analysis of phenols and catecholamines. The outcomes of this research elucidate Cu-Im is a satisfactory substitute for natural laccase, which will have broad application prospects in laccase-related fields, such as environmental recovery, pollution monitoring, and diagnosis of neurological diseases etc.
Collapse
Affiliation(s)
- Jinmeng Fan
- School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Yanjie Pu
- School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Yuedong Wang
- School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Yong Cui
- School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Chao Wang
- School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
2
|
Verma S, Thakur D, Pandey CM, Kumar D. Recent Prospects of Carbonaceous Nanomaterials-Based Laccase Biosensor for Electrochemical Detection of Phenolic Compounds. BIOSENSORS 2023; 13:305. [PMID: 36979517 PMCID: PMC10046707 DOI: 10.3390/bios13030305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Phenolic compounds (PhCs) are ubiquitously distributed phytochemicals found in many plants, body fluids, food items, medicines, pesticides, dyes, etc. Many PhCs are priority pollutants that are highly toxic, teratogenic, and carcinogenic. Some of these are present in body fluids and affect metabolism, while others possess numerous bioactive properties such as retaining antioxidant and antimicrobial activity in plants and food products. Therefore, there is an urgency for developing an effective, rapid, sensitive, and reliable tool for the analysis of these PhCs to address their environmental and health concern. In this context, carbonaceous nanomaterials have emerged as a promising material for the fabrication of electrochemical biosensors as they provide remarkable characteristics such as lightweight, high surface: volume, excellent conductivity, extraordinary tensile strength, and biocompatibility. This review outlines the current status of the applications of carbonaceous nanomaterials (CNTs, graphene, etc.) based enzymatic electrochemical biosensors for the detection of PhCs. Efforts have also been made to discuss the mechanism of action of the laccase enzyme for the detection of PhCs. The limitations, advanced emerging carbon-based material, current state of artificial intelligence in PhCs detection, and future scopes have also been summarized.
Collapse
Affiliation(s)
- Sakshi Verma
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Deeksha Thakur
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| | - Chandra Mouli Pandey
- Department of Chemistry, Faculty of Science, SGT University, Gurugram 122505, India
| | - Devendra Kumar
- Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
| |
Collapse
|
3
|
Biosensors Based on Phenol Oxidases (Laccase, Tyrosinase, and Their Mixture) for Estimating the Total Phenolic Index in Food-Related Samples. Life (Basel) 2023; 13:life13020291. [PMID: 36836650 PMCID: PMC9964280 DOI: 10.3390/life13020291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Plant phenolic compounds demonstrate bioactive properties in vitro and/or in vivo, which creates demand for their precise determination in life sciences and industry. Measuring the concentration of individual phenolic compounds is a complex task, since approximately 9000 plant phenolic substances have been identified so far. The determination of the total phenolic content (TPC) is less laborious and is used for the qualimetric evaluation of complex multicomponent samples in routine analyses. Biosensors based on phenol oxidases (POs) have been proposed as alternative analytical devices for detecting phenolic compounds; however, their effectiveness in the analysis of food and vegetal matrices has not been addressed in detail. This review describes catalytic properties of laccase and tyrosinase and reports on the enzymatic and bienzymatic sensors based on laccase and tyrosinase for estimating the total phenolic index (TPI) in food-related samples (FRSs). The review presents the classification of biosensors, POs immobilization, the functions of nanomaterials, the biosensing catalytic cycle, interference, validation, and some other aspects related to TPI assessment. Nanomaterials are involved in the processes of immobilization, electron transfer, signal formation, and amplification, and they improve the performance of PO-based biosensors. Possible strategies for reducing interference in PO-based biosensors are discussed, namely the removal of ascorbic acid and the use of highly purified enzymes.
Collapse
|
4
|
Munteanu IG, Grădinaru VR, Apetrei C. Sensitive Detection of Rosmarinic Acid Using Peptide-Modified Graphene Oxide Screen-Printed Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193292. [PMID: 36234420 PMCID: PMC9565883 DOI: 10.3390/nano12193292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 05/15/2023]
Abstract
Peptides have been used as components in biological analysis and fabrication of novel sensors due to several reasons, including well-known synthesis protocols, diverse structures, and acting as highly selective substrates for enzymes. Bio-conjugation strategies can provide a simple and efficient way to convert peptide-analyte interaction information into a measurable signal, which can be further used for the manufacture of new peptide-based biosensors. This paper describes the sensitive properties of a peptide-modified graphene oxide screen-printed carbon electrode for accurate and sensitive detection of a natural polyphenol antioxidant compound, namely rosmarinic acid. Glutaraldehyde was chosen as the cross-linking agent because it is able to bind nonspecifically to the peptide. We demonstrated that the strong interaction between the immobilized peptide on the surface of the sensor and rosmarinic acid favors the addition of rosmarinic acid on the surface of the electrode, leading to an efficient preconcentration that determines a high sensitivity of the sensor for the detection of rosmarinic acid. The experimental conditions were optimized using different pH values and different amounts of peptide to modify the sensor surface, so that its analytical performances were optimal for rosmarinic acid detection. By using cyclic voltammetry (CV) as a detection method, a very low detection limit (0.0966 μM) and a vast linearity domain, ranging from 0.1 µM to 3.20 µM, were obtained. The novelty of this work is the development of a novel peptide-based sensor with improved performance characteristics for the quantification of rosmarinic acid in cosmetic products of complex composition. The FTIR method was used to validate the voltammetric method results.
Collapse
Affiliation(s)
- Irina Georgiana Munteanu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
| | | | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
- Correspondence: ; Tel.: +40-727-580-914
| |
Collapse
|
5
|
Magerusan L, Pogacean F, Pruneanu S. Eco-friendly synthesis of sulphur-doped graphenes with applicability in caffeic acid electrochemical assay. Bioelectrochemistry 2022; 148:108228. [PMID: 35970121 DOI: 10.1016/j.bioelechem.2022.108228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
A new electrode based on glassy carbon modified with a sulphur-doped graphene material was successfully developed and applied for caffeic acid (CA) voltammetric detection and quantification. The structural features of sulphur-doped graphene (exfGR-S) characterized by different physicochemical and analytical techniques are presented. Cyclic voltammetry (CV) technique was employed to evaluate the electrochemical behavior of both bare glassy carbon (GCE) and modified GCE/exfGr-S electrodes towards CA oxidation. The study revealed that the modified electrode exhibits superior electrochemical performances compared to the bare electrode, with a broad CA detecting range (from 0.1 to 100.0 µM), a low detection limit 3.03 × 10-8 M), excellent anti-interference capabilities, as well as good stability and repeatability. The developed electrochemical sensor appears to be a promising candidate for real sample quality control analysis since it successfully displayed its ability to directly detect CA in commercially available coffee product without any pretreatment.
Collapse
Affiliation(s)
- Lidia Magerusan
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania.
| | - Florina Pogacean
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania
| | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Rashtbari S, Dehghan G, Amini M, Khorram S, Khataee A. A sensitive colori/fluorimetric nanoprobe for detection of polyphenols using peroxidase-mimic plasma-modified MoO 3 nanoparticles. CHEMOSPHERE 2022; 295:133747. [PMID: 35120949 DOI: 10.1016/j.chemosphere.2022.133747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/09/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Herein, MoO3 nanoparticles were synthesized and modified using Argon cold plasma treatment (Ar-MoO3NPs) for the first time. Various characterization studies were performed using various methods, including SEM, XRD, and FTIR techniques. The catalytic activity of MoO3NPs before and after modification was investigated using fluorometric and colorimetric experiments. The results indicated that the enzyme-mimic activity of MoO3NPs increased after plasma-surface modification (1.5 fold). Also, a fluorometric method based on the oxidation of a non-fluorescent terephthalic acid by Ar-MoO3NPs in the presence of H2O2 and the production of a compound with a high emission was designed for polyphenols detection. Quercetin was used as a polyphenol standard for the optimization of the proposed system. Under the optimum conditions, the dynamic ranges of the calibration graphs and the detection limits were calculated for different polyphenols (μmol/L): quercetin (2-232, 12.22), resveratrol (2-270, 61.89), curcumin (39-400, 38.89), gallic acid (2-309, 21.5) and ellagic acid (39-309, 16.25). Also, the precision of the method, which was expressed as RSD%, was in the range of 0.286-1.19%. The proposed system could detect individual polyphenols and total polyphenols in three different fruit extracts (apple, orange, and grapes) with high sensitivity. The obtained total concentrations of polyphenols in real samples were comparable to those calculated by the spectrophotometric method. So, a novel and sensitive optical nanosensor for the detection of polyphenols was reported as an alternative to the routine Folin-Ciocalteu spectrophotometric technique.
Collapse
Affiliation(s)
- Samaneh Rashtbari
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sirous Khorram
- Faculty of Physics, University of Tabriz, Tabriz, 51666-16471, Iran; Plasma Research Group, Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz, 51666-16471, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
7
|
Recent Advances in the Development of Laccase-Based Biosensors via Nano-Immobilization Techniques. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monitoring phenolic compounds is critical in the environmental, food, and medical sectors. Among many recent advanced detection platforms, laccase-based biosensing platforms gave very rapid, effective, online, and in situ sensing of phenolic compounds. In laccase-based biosensors, laccase immobilization techniques have a vital role. However, a detailing of the advancements in laccase immobilization techniques employed in laccase-based biosensors is lacking in the literature. Thus, in this review, we assessed how the nano-immobilization techniques shaped the laccase biosensing platforms. We discussed novel developments in laccase immobilization techniques such as entrapment, adsorption, cross-linking, and covalent over new nanocomposites in laccase biosensors. We made a comprehensive assessment based on the current literature for future perspectives of nano-immobilized laccase biosensors. We found the important key areas toward which future laccase biosensor research seems to be heading. These include 1. A focus on the development of multi-layer laccase over electrode surface, 2. The need to utilize more covalent immobilization routes, as they change the laccase specificity toward phenolic compounds, 3. The advancement in polymeric matrices with electroconductive properties, and 4. novel entrapment techniques like biomineralization using laccase molecules. Thus, in this review, we provided a detailed account of immobilization in laccase biosensors and their feasibility in the future for the development of highly specific laccase biosensors in industrial, medicinal, food, and environmental applications.
Collapse
|
8
|
Shao J, Wang C, Shen Y, Shi J, Ding D. Electrochemical Sensors and Biosensors for the Analysis of Tea Components: A Bibliometric Review. Front Chem 2022; 9:818461. [PMID: 35096777 PMCID: PMC8795770 DOI: 10.3389/fchem.2021.818461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Tea is a popular beverage all around the world. Tea composition, quality monitoring, and tea identification have all been the subject of extensive research due to concerns about the nutritional value and safety of tea intake. In the last 2 decades, research into tea employing electrochemical biosensing technologies has received a lot of interest. Despite the fact that electrochemical biosensing is not yet the most widely utilized approach for tea analysis, it has emerged as a promising technology due to its high sensitivity, speed, and low cost. Through bibliometric analysis, we give a systematic survey of the literature on electrochemical analysis of tea from 1994 to 2021 in this study. Electrochemical analysis in the study of tea can be split into three distinct stages, according to the bibliometric analysis. After chromatographic separation of materials, electrochemical techniques were initially used only as a detection tool. Many key components of tea, including as tea polyphenols, gallic acid, caffeic acid, and others, have electrochemical activity, and their electrochemical behavior is being investigated. High-performance electrochemical sensors have steadily become a hot research issue as materials science, particularly nanomaterials, and has progressed. This review not only highlights these processes, but also analyzes and contrasts the relevant literature. This evaluation also provides future views in this area based on the bibliometric findings.
Collapse
Affiliation(s)
- Jinhua Shao
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Chao Wang
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Yiling Shen
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jinlei Shi
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Dongqing Ding
- School of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
9
|
Esfanjani L, Farhadyar N, Shahbazi HR, Fathi F. Development of a method for cadmium ion removal from the water using nano γ-alumina/β-cyclodextrin. Toxicol Rep 2021; 8:1877-1882. [PMID: 34900603 PMCID: PMC8639390 DOI: 10.1016/j.toxrep.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 12/07/2022] Open
Abstract
Cadmium is one of the heavy metals, which is harmful to humans and animals. The toxicity of this metal in the body has caused many studies to remove it in water and soil. Because according to WHO, the maximum concentration of cadmium in drinking water is 3 μg/L. In this study, trace amount of Cd ion or Cd(II) in water and in the industrial effluent sample were determined via the solid phase extraction approach based on the γ-Alumina/β-Cyclodextrin as a sorbent followed by flame atomic absorption spectrometry. The effects of various parameters such as pH, the Cd(II) concentration, amount of sorbent, and type and concentration of the eluting agents were determined on the removal efficiency. Maximum removal of Cd(II) was obtained at pH 7. The limit of detection (LOD) and repeatability (RSD%) values (0.389) obtained were found to be in the ranges of 6.77-6.81 μg/L. The results showed adsorbed cadmium ions are recovered on the nano γ- alumina/β-cyclodextrin surface with an optimum amount of 16 mL of 0.3 M nitric acid as eluting agent at pH 7.
Collapse
Affiliation(s)
- L Esfanjani
- Department of Chemistry, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran
| | - N Farhadyar
- Department of Chemistry, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran
| | - H R Shahbazi
- Department of Chemistry, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran
| | - F Fathi
- Department of Medicinal Chemistry, Pharmacy Faculty, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Bounegru AV, Apetrei C. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids. Int J Mol Sci 2021; 22:4811. [PMID: 34062799 PMCID: PMC8125614 DOI: 10.3390/ijms22094811] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, researchers have focused on developing simple and efficient methods based on electrochemical biosensors to determine hydroxycinnamic acids from various real samples (wine, beer, propolis, tea, and coffee). Enzymatic biosensors represent a promising, low-cost technology for the direct monitoring of these biologically important compounds, which implies a fast response and simple sample processing procedures. The present review aims at highlighting the structural features of this class of compounds and the importance of hydroxycinnamic acids for the human body, as well as presenting a series of enzymatic biosensors commonly used to quantify these phenolic compounds. Enzyme immobilization techniques on support electrodes are very important for their stability and for obtaining adequate results. The following sections of this review will briefly describe some of the laccase (Lac) and tyrosinase (Tyr) biosensors used for determining the main hydroxycinnamic acids of interest in the food or cosmetics industry. Considering relevant studies in the field, the fact has been noticed that there is a greater number of studies on laccase-based biosensors as compared to those based on tyrosinase for the detection of hydroxycinnamic acids. Significant progress has been made in relation to using the synergy of nanomaterials and nanocomposites for more stable and efficient enzyme immobilization. These nanomaterials are mainly carbon- and/or polymer-based nanostructures and metallic nanoparticles which provide a suitable environment for maintaining the biocatalytic activity of the enzyme and for increasing the rate of electron transport.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania;
| |
Collapse
|
11
|
Bounegru AV, Apetrei C. Voltamperometric Sensors and Biosensors Based on Carbon Nanomaterials Used for Detecting Caffeic Acid-A Review. Int J Mol Sci 2020; 21:E9275. [PMID: 33291758 PMCID: PMC7730703 DOI: 10.3390/ijms21239275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Caffeic acid is one of the most important hydroxycinnamic acids found in various foods and plant products. It has multiple beneficial effects in the human body such as antioxidant, antibacterial, anti-inflammatory, and antineoplastic. Since overdoses of caffeic acid may have negative effects, the quality and quantity of this acid in foods, pharmaceuticals, food supplements, etc., needs to be accurately determined. The present paper analyzes the most representative scientific papers published mostly in the last 10 years which describe the development and characterization of voltamperometric sensors or biosensors based on carbon nanomaterials and/or enzyme commonly used for detecting caffeic acid and a series of methods which may improve the performance characteristics of such sensors.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania;
| |
Collapse
|
12
|
Bensana A, Achi F. Analytical performance of functional nanostructured biointerfaces for sensing phenolic compounds. Colloids Surf B Biointerfaces 2020; 196:111344. [PMID: 32877829 DOI: 10.1016/j.colsurfb.2020.111344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
Electrochemical biointerfaces are constructed with a wide range of nanomaterials and conducting polymers that strongly affect the analytical performance of biosensors. The analysis of progress toward electrochemical sensing platforms offers opportunities to provide devices for commercial use. The investigation of different methods for the synthesis of phenol biointerfaces leads to design challenges in the field of monitoring phenolic compounds. This paper review the innovative strategies and feature techniques in the construction of phenolic compound biosensors. The focus was made on the preparation methods of nanostructures and nanomaterials design for catalytic improvements of sensing interfaces. The paper also provides a comprehensive overview in the field of enzyme immobilization approaches at solid supports and technical formation of polymer nanocomposites, as well as applications of hybrid organic-inorganic nanocomposites in phenolic biosensors. This review also highlights the recent progress in the electrochemical detection of phenolic compounds and summarizes analytical performance parameters including sensitivity, storage stability, limit of detection, linear range, and Michaelis-Menten kinetic analysis. It also emphasizes advances from the past decade including technical challenges for the construction of suitable biointerfaces for monitoring phenolic compounds.
Collapse
Affiliation(s)
- Amira Bensana
- Departement of Process Engineering, Laboratoire de Génie des Procédés Chimiques (LGPC), Faculty of Technology, Ferhat Abbas University Sétif-1-, Setif, 19000, Algeria
| | - Fethi Achi
- Laboratory of Valorisation and Promotion of Saharian Ressources (VPSR), Kasdi Merbah University, Ouargla, 30000, Algeria.
| |
Collapse
|
13
|
Dalkıran B, Kaçar C, Can E, Erden PE, Kılıç E. Disposable biosensors based on platinum nanoparticle-modified screen-printed carbon electrodes for the determination of biogenic amines. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Abstract
Rosmarinic acid (RA) is an important bioactive phenolic acid with significant biochemical activities, including the antioxidant one. It is widely found in plants of the families Lamiaceae and Boraginaceae and has many uses in the food, pharmaceutical and cosmetics industries. RA is an electroactive species owing to the presence of the two catechol groups in its structure. Due to their inherent characteristics, such as sensitivity, selectivity, ease of operation and not too high costs, electrochemical methods of analysis are interesting tools for the assessment of redox-active compounds. Moreover, there is a good correlation between the redox potential of the analyte and its capability to donate electrons and, consequently, its antioxidant activity. Therefore, this paper presents a detailed overview of the electrochemical (bio)sensors and methods, in both stationary and dynamic systems, applied for RA investigation under different aspects. These comprise its antioxidant activity, its interaction with biological important molecules and the quantification of RA or total polyphenolic content in different samples.
Collapse
|
15
|
Raymundo-Pereira PA, Silva TA, Caetano FR, Ribovski L, Zapp E, Brondani D, Bergamini MF, Marcolino LH, Banks CE, Oliveira ON, Janegitz BC, Fatibello-Filho O. Polyphenol oxidase-based electrochemical biosensors: A review. Anal Chim Acta 2020; 1139:198-221. [PMID: 33190704 DOI: 10.1016/j.aca.2020.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The detection of phenolic compounds is relevant not only for their possible benefits to human health but also for their role as chemical pollutants, including as endocrine disruptors. The required monitoring of such compounds on-site or in field analysis can be performed with electrochemical biosensors made with polyphenol oxidases (PPO). In this review, we describe biosensors containing the oxidases tyrosinase and laccase, in addition to crude extracts and tissues from plants as enzyme sources. From the survey in the literature, we found that significant advances to obtain sensitive, robust biosensors arise from the synergy reached with a diversity of nanomaterials employed in the matrix. These nanomaterials are mostly metallic nanoparticles and carbon nanostructures, which offer a suitable environment to preserve the activity of the enzymes and enhance electron transport. Besides presenting a summary of contributions to electrochemical biosensors containing PPOs in the last five years, we discuss the trends and challenges to take these biosensors to the market, especially for biomedical applications.
Collapse
Affiliation(s)
| | - Tiago A Silva
- Departamento de Metalurgia e Química, Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), 35180-008, Timóteo, MG, Brazil
| | - Fábio R Caetano
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Laís Ribovski
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Eduardo Zapp
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-256, Brazil
| | - Daniela Brondani
- Department of Exact Sciences and Education, Federal University of Santa Catarina, 89036-256, Brazil
| | - Marcio F Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Luiz H Marcolino
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal Do Paraná (UFPR), 81.531-980, Curitiba, PR, Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Bruno C Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, SP, Brazil.
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
16
|
Calitri G, Bollella P, Ciogli L, Tortolini C, Mazzei F, Antiochia R, Favero G. Evaluation of different storage processes of passion fruit (Passiflora edulis Sims) using a new dual biosensor platform based on a conducting polymer. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Kurbanoglu S, Erkmen C, Uslu B. Frontiers in electrochemical enzyme based biosensors for food and drug analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115809] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Almeida L, Correia R, Squillaci G, Morana A, La Cara F, Correia J, Viana A. Electrochemical deposition of bio-inspired laccase-polydopamine films for phenolic sensors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Badea M, di Modugno F, Floroian L, Tit DM, Restani P, Bungau S, Iovan C, Badea GE, Aleya L. Electrochemical strategies for gallic acid detection: Potential for application in clinical, food or environmental analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:129-140. [PMID: 30954811 DOI: 10.1016/j.scitotenv.2019.03.404] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/10/2019] [Accepted: 03/25/2019] [Indexed: 04/15/2023]
Abstract
Polyphenols are important to human health thus making it interesting and necessary to identify and assess methods for their detection. Gallic acid (GA) is a well-known antioxidant compound, found in tea leaves, various fruits, fruit seeds and in fruit-derived foods and beverages. In this study, to electrochemically detect this compound and assess the potential for GA detection, different analytical conditions at pH values of 5.8, 7 and 8 were tried. Two types of device were used for GA detection: (1) Lazar ORP-146C reduction-oxidation microsensors, coupled with a Jenco device, for estimation of antioxidant capacities of different electroactive media, and (2) screen-printed carbon sensors coupled with a mobile PalmSens device using differential pulse voltammetry (qualitative and quantitative GA determination). These proposed methods were validated by analysing some real samples: wine, green tea, apple juice and serum fortified with GA. Detection was evaluated in terms of specific calibration curves, with low limit of detection (LOD) and limit of quantification (LOQ), low response time, and high sensitivities. The analytical characteristics obtained recommend these methods to be tested on more other types of real samples. Our proposed methods, used in the established conditions of pH, may have further application in other clinical, food or environmental samples analyses in which the results of total antioxidants contents are usually expressed in GA equivalents.
Collapse
Affiliation(s)
- Mihaela Badea
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Brasov 500039, Romania.
| | - Federico di Modugno
- Department of Pharmacological and Biomolecular Sciences, Faculty of Pharmacology Science, Universita Degli Studi di Milano, Milan 20133, Italy.
| | - Laura Floroian
- Department of Automation and Information Technology, Faculty of Electrical Engineering and Computer Sciences, Transylvania University of Brasov, Brasov 500039, Romania.
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Patrizia Restani
- Department of Pharmacological and Biomolecular Sciences, Faculty of Pharmacology Science, Universita Degli Studi di Milano, Milan 20133, Italy.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| | - Ciprian Iovan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania.
| | - Gabriela Elena Badea
- Department of Chemistry, Faculty of Sciences, University of Oradea, Oradea 410087, Romania.
| | - Lotfi Aleya
- Laboratoire Chrono-environnement, Université de Franche-Comté, Besançon, France.
| |
Collapse
|
20
|
Development of a Novel Biosensor Based on Tyrosinase/Platinum Nanoparticles/Chitosan/Graphene Nanostructured Layer with Applicability in Bioanalysis. MATERIALS 2019; 12:ma12071009. [PMID: 30934702 PMCID: PMC6480429 DOI: 10.3390/ma12071009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 12/16/2022]
Abstract
The present paper describes the preparation and characterization of a graphene, chitosan, platinum nanoparticles and tyrosinase-based bionanocomposite film deposited on the surface of a screen-printed carbon electrode for the detection of L-tyrosine by voltammetry. The redox process on the biosensor surface is associated with the enzymatic oxidation of L-tyrosine, which is favoured by graphene and platinum nanoparticles that increase electrical conductivity and the electron transfer rate. Chitosan ensures the biocompatibility between the tyrosinase enzyme and the solid matrix, as well as a series of complex interactions for an efficient immobilization of the biocatalyst. Experimental conditions were optimized so that the analytical performances of the biosensor were maximal for L-tyrosine detection. By using square wave voltammetry as the detection method, a very low detection limit (4.75 × 10−8 M), a vast linearity domain (0.1–100 μM) and a high affinity of the enzyme for the substrate (KMapp is 53.4 μM) were obtained. The repeatability of the voltammetric response, the stability, and the reduced interference of the chemical species present in the sample prove that this biosensor is an excellent tool to be used in bioanalysis. L-tyrosine detection in medical and pharmaceutical samples was performed with very good results, the analytical recovery values obtained being between 99.5% and 101%. The analytical method based on biosensor was validated by the standard method of analysis, the differences observed being statistically insignificant at the 99% confidence level.
Collapse
|
21
|
Development of a biosensing platform based on a laccase-hydrophobin chimera. Appl Microbiol Biotechnol 2019; 103:3061-3071. [PMID: 30783720 DOI: 10.1007/s00253-019-09678-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/13/2023]
Abstract
A simple and stable immobilization of a laccase from Pleurotus ostreatus was obtained through genetic fusion with a self-assembling and adhesive class I hydrophobin. The chimera protein was expressed in Pichia pastoris and secreted into the culture medium. The crude culture supernatant was directly used for coatings of polystyrene multi-well plates without additional treatments, a procedure that resulted in a less time-consuming and chemicals reduction. Furthermore, the gene fusion yielded a positive effect with respect to the wild-type recombinant enzyme in terms of both immobilization and stability. The multi-well plate with the immobilized chimera was used to develop an optical biosensor to monitor two phenolic compounds: L-DOPA ((S)-2-amino-3-(3,4-dihydroxyphenyl) propanoic acid) and caffeic acid (3-(3,4-dihydroxyphenyl)-2-propenoic acid); the estimation of which is a matter of interest in the pharmaceutics and food field. The method was based on the use of the analytes as competing inhibitors of the laccase-mediated ABTS oxidation. The main advantages of the developed biosensor are the ease of preparation, the use of small sample volumes, and the simultaneous analysis of multiple samples on a single platform.
Collapse
|
22
|
Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: recent advances and electrochemical aspects. Appl Microbiol Biotechnol 2018; 102:10409-10423. [PMID: 30327832 DOI: 10.1007/s00253-018-9421-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
Abstract
Laccases exhibit a wide range of applications, especially in the electrochemical field, where they are regarded as a potential biotic component. Laccase-based biosensors have immense practical applications in the food, environmental, and medical fields. The application of laccases as biocathodes in enzymatic biofuel cells has promising potential in the preparation of implantable equipment. Extensive studies have been directed towards the potential role of fungal laccases as biotic components of electrochemical equipment. In contrast, the potential of prokaryotic laccases in electrochemistry has been not fully understood. However, there has been recent and rapid progress in the discovery and characterization of new types of prokaryotic laccases. In this review, we have comprehensively discussed the application of different sources of laccases as a biocatalytic component in various fields of application. Further, we described the potential of different types of laccases in bioelectrochemical applications.
Collapse
|
23
|
Della Pelle F, Compagnone D. Nanomaterial-Based Sensing and Biosensing of Phenolic Compounds and Related Antioxidant Capacity in Food. SENSORS 2018; 18:s18020462. [PMID: 29401719 PMCID: PMC5854963 DOI: 10.3390/s18020462] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
Polyphenolic compounds (PCs) have received exceptional attention at the end of the past millennium and as much at the beginning of the new one. Undoubtedly, these compounds in foodstuffs provide added value for their well-known health benefits, for their technological role and also marketing. Many efforts have been made to provide simple, effective and user friendly analytical methods for the determination and antioxidant capacity (AOC) evaluation of food polyphenols. In a parallel track, over the last twenty years, nanomaterials (NMs) have made their entry in the analytical chemistry domain; NMs have, in fact, opened new paths for the development of analytical methods with the common aim to improve analytical performance and sustainability, becoming new tools in quality assurance of food and beverages. The aim of this review is to provide information on the most recent developments of new NMs-based tools and strategies for total polyphenols (TP) determination and AOC evaluation in food. In this review optical, electrochemical and bioelectrochemical approaches have been reviewed. The use of nanoparticles, quantum dots, carbon nanomaterials and hybrid materials for the detection of polyphenols is the main subject of the works reported. However, particular attention has been paid to the success of the application in real samples, in addition to the NMs. In particular, the discussion has been focused on methods/devices presenting, in the opinion of the authors, clear advancement in the fields, in terms of simplicity, rapidity and usability. This review aims to demonstrate how the NM-based approaches represent valid alternatives to classical methods for polyphenols analysis, and are mature to be integrated for the rapid quality assessment of food quality in lab or directly in the field.
Collapse
Affiliation(s)
- Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023 Teramo, Italy.
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023 Teramo, Italy.
| |
Collapse
|
24
|
Kushwaha A, Maurya S, Pathak RK, Agarwal S, Chaurasia PK, Singh MP. Laccase From White Rot Fungi Having Significant Role in Food, Pharma, and Other Industries. RESEARCH ADVANCEMENTS IN PHARMACEUTICAL, NUTRITIONAL, AND INDUSTRIAL ENZYMOLOGY 2018. [DOI: 10.4018/978-1-5225-5237-6.ch011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Laccases (E.C. 1.10.3.2 benzenediol: oxygen oxidoreductase) are an interesting group of N glycosylated multicopper blue oxidase enzymes and the widely studied enzyme having a broad range of substrate specificity of both phenolic and non-phenolic compounds. They are widely found in fungi, bacteria plant, insects, and in lichen. They catalyze the oxidation of various phenolic and non-phenolic compounds, with the concomitant reduction of molecular oxygen to water. They could increase productivity, efficiency, and quality of products without a costly investment. This chapter depicts the applications of laccase enzyme from white rot fungi, having various industrial (such as textile dye bleaching, paper and pulp bleaching, food includes the baking, it also utilized in fruit juice industry to improve the quality and stabilization of some perishable products having plant oils), pharmaceutical (as it has potential for the synthesis of several useful drugs such anticancerous, antioxidants, synthesis of hormone derivatives because of their high value of oxidation potential) significance.
Collapse
|
25
|
Li G, Sun K, Li D, Lv P, Wang Q, Huang F, Wei Q. Biosensor based on bacterial cellulose-Au nanoparticles electrode modified with laccase for hydroquinone detection. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Pansare AV, Kulal DK, Shedge AA, Patil VR. Green synthesis of anticancerous honeycomb PtNPs clusters: Their alteration effect on BSA and HsDNA using fluorescence probe. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:473-485. [DOI: 10.1016/j.jphotobiol.2016.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
27
|
David IG, Buleandră M, Popa DE, Bîzgan AMC, Moldovan Z, Badea IA, Iorgulescu EE, Tekiner TA, Basaga H. Voltammetric determination of polyphenolic content as rosmarinic acid equivalent in tea samples using pencil graphite electrodes. Journal of Food Science and Technology 2016; 53:2589-96. [PMID: 27478214 DOI: 10.1007/s13197-016-2223-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/04/2016] [Accepted: 04/01/2016] [Indexed: 02/02/2023]
Abstract
The quasi-reversible, diffusion controlled behavior of rosmarinic acid (RA) on a disposable pencil graphite electrode (PGE) was established by cyclic voltammetry. Using the anodic oxidation peak presented by RA on the PGE a differential pulse voltammetric (DPV) method was developed for the quantitative determination of RA. The linear range was 10(-8) - 10(-5) M RA and the detection and quantification limits were 7.93 × 10(-9) M and 2.64 × 10(-8) M RA, respectively. The applicability of the developed method was tested by recovery studies and by the assessment of the total polyphenolic contents (TPCDPV) of green, white and black Turkish teas, which were found to be 40.74, 30.04 and 23.97 mg rosmarinic acid equivalent/g dry tea, respectively. These results were in good agreement with those obtained by the Folin-Ciocalteu method. The developed method is a sensitive and cheap tool for the rapid and precise evaluation of TPCDPV of tea samples.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Mihaela Buleandră
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Dana Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Ana-Maria Cristina Bîzgan
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Zenovia Moldovan
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Irinel-Adriana Badea
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Av. District 3, 030018 Bucharest, Romania
| | - Tuğçe Ayça Tekiner
- Molecular Biology Genetics and Bioengineering Program, Sabanci University, Orhanlı-Tuzla, 34956 Istanbul, Turkey
| | - Huveyda Basaga
- Molecular Biology Genetics and Bioengineering Program, Sabanci University, Orhanlı-Tuzla, 34956 Istanbul, Turkey
| |
Collapse
|
28
|
Li D, Zang J, Zhang J, Ao K, Wang Q, Dong Q, Wei Q. Sol-Gel Synthesis of Carbon Xerogel-ZnO Composite for Detection of Catechol. MATERIALS 2016; 9:ma9040282. [PMID: 28773407 PMCID: PMC5502975 DOI: 10.3390/ma9040282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 12/05/2022]
Abstract
Carbon xerogel-zinc oxide (CXZnO) composites were synthesized by a simple method of sol-gel condensation polymerization of formaldehyde and resorcinol solution containing zinc salt followed by drying and thermal treatment. ZnO nanoparticles were observed to be evenly dispersed on the surfaces of the carbon xerogel microspheres. The as-prepared CXZnO composites were mixed with laccase (Lac) and Nafion to obtain a mixture solution, which was further modified on an electrode surface to construct a novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect the environmental pollutant, catechol. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards catechol with high sensitivity (31.2 µA·mM−1), a low detection limit (2.17 µM), and a wide linear range (6.91–453 µM). Moreover, the biosensor also displayed favorable repeatability, reproducibility, selectivity, and stability besides being successfully used in the trace detection of catechol existing in lake water environments.
Collapse
Affiliation(s)
- Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jun Zang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jin Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Kelong Ao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Quanfeng Dong
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
29
|
Sarika C, Shivakumar MS, Shivakumara C, Krishnamurthy G, Narasimha Murthy B, Lekshmi IC. A novel amperometric catechol biosensor based on α-Fe2O3 nanocrystals-modified carbon paste electrode. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:625-634. [DOI: 10.3109/21691401.2016.1167702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- C. Sarika
- Department of Chemistry, CMR Institute of Technology, Bangalore, India
| | - M. S. Shivakumar
- Department of Chemistry, ACS College of Engineering, Bangalore, India
| | - C. Shivakumara
- Solid State & Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - G. Krishnamurthy
- Department of Studies in Chemistry, Bangalore University, Bangalore, India
| | | | - I. C. Lekshmi
- Department of Chemistry, CMR Institute of Technology, Bangalore, India
| |
Collapse
|
30
|
Othman A, Karimi A, Andreescu S. Functional nanostructures for enzyme based biosensors: properties, fabrication and applications. J Mater Chem B 2016; 4:7178-7203. [DOI: 10.1039/c6tb02009g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A review describing functional nanostructures for portable and printable enzyme biosensors. Specific physicochemical and surface properties of nanoparticles used as carriers and sensing components and their assembly are discussed with an overview of current and emerging techniques enabling large scale roll-to-roll fabrication and miniaturization. Their integration in flexible, wearable and inexpensive point-of-use devices, and implementation challenges are also provided with examples of applications.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Anahita Karimi
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
31
|
|
32
|
Sarika C, Rekha K, Narasimha Murthy B. Studies on enhancing operational stability of a reusable laccase-based biosensor probe for detection of ortho-substituted phenolic derivatives. 3 Biotech 2015; 5:911-924. [PMID: 28324391 PMCID: PMC4624137 DOI: 10.1007/s13205-015-0292-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/22/2015] [Indexed: 11/24/2022] Open
Abstract
An amperometric principle-based biosensor containing immobilized enzyme laccase from Trametes versicolor was developed for detection of ortho-substituted phenolic derivatives. Different immobilization methods for Trametes versicolor laccase enzyme on cellophane membrane and the enhancement of operational stability of the immobilized enzyme electrode using various protein-based stabilizing agents were studied. Among tested methods of immobilization, co-cross-linking method with bovine serum albumin was superior to the other methods in terms of sensitivity, limit of detection, response time, and operating and thermal stability. Biosensor response reached steady state within 3 min and exhibited maximum activity at 45 °C and pH 6.8. The sensitivity of the ortho-substituted phenols for the test biosensor developed with co-cross-linking method of immobilization using bovine serum albumin as the protein-based stabilizing agent was in the order: 2-aminophenol > guaiacol(2-methoxyphenol) > catechol(2-hydroxyphenol) > cresol(2-methyl phenol) > 2-chlorophenol. Validation of the newly developed biosensor by comparison with HPLC showed good agreement in the results. A newly developed biosensor was applied for quantification of ortho-substituted phenols in simulated effluent samples.
Collapse
Affiliation(s)
- C Sarika
- Department of Biotechnology Engineering, CMR Institute of Technology, Bangalore, 560 037, India
| | - K Rekha
- Department of Biotechnology Engineering, CMR Institute of Technology, Bangalore, 560 037, India.
| | - B Narasimha Murthy
- Department of Chemistry, CMR Institute of Technology, Bangalore, 560 037, India
| |
Collapse
|
33
|
Sarika C, Rekha K, Narasimha Murthy B. Immobilized laccase-based biosensor for the detection of disubstituted methyl and methoxy phenols – application of Box–Behnken design with response surface methodology for modeling and optimization of performance parameters. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1741-52. [DOI: 10.3109/21691401.2015.1096793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Natale A, Nardiello D, Palermo C, Muscarella M, Quinto M, Centonze D. Development of an analytical method for the determination of polyphenolic compounds in vegetable origin samples by liquid chromatography and pulsed amperometric detection at a glassy carbon electrode. J Chromatogr A 2015; 1420:66-73. [PMID: 26456515 DOI: 10.1016/j.chroma.2015.09.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/17/2023]
Abstract
A sensitive and accurate method for the determination of polyphenolic compounds in artichoke bract extracts and olive mill wastewaters by liquid chromatography coupled with pulsed amperometric detection at a glassy carbon working electrode was developed. Preliminary experiments were carried out by cyclic voltammetry to investigate the electrochemical behavior of polyphenols under different mobile phase compositions, and to test the detection and cleaning electrode potentials. Chromatographic separations were performed by using a core-shell C18 column, eluted with acetic acid and acetonitrile, by combined concave-linear binary gradients. Under the optimized experimental conditions, a good column efficiency and peak symmetry were observed, also for stereo and positional isomeric compounds. The developed three-step potential waveform for pulsed amperometric detection was successfully applied for the sensitive chromatographic determination of polyphenols in artichoke extracts and olive mill wastewaters. Linearity, precision and sensitivity of the proposed method have been evaluated. A wide linear range of response (up to 20 mg/L) has been obtained for all the investigated compounds. Detection and quantification limits in the vegetable origin sample extracts were in the range 0.004-0.6 mg/L and 0.01-2mg/L, respectively, while the injection-to-injection repeatability (n=6) ranged from 5 to 13%. The obtained results confirmed the excellent sensitivity of the electrochemical detection, and its suitability for the determination of electroactive polyphenolic compounds at low concentration levels.
Collapse
Affiliation(s)
- Anna Natale
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente and CSRA - Centro Servizi di Ricerca Applicata, Università degli Studi di Foggia, Via Napoli, 25, 71100 Foggia, Italy
| | - Donatella Nardiello
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente and CSRA - Centro Servizi di Ricerca Applicata, Università degli Studi di Foggia, Via Napoli, 25, 71100 Foggia, Italy.
| | - Carmen Palermo
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente and CSRA - Centro Servizi di Ricerca Applicata, Università degli Studi di Foggia, Via Napoli, 25, 71100 Foggia, Italy
| | - Marilena Muscarella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71100 Foggia, Italy
| | - Maurizio Quinto
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente and CSRA - Centro Servizi di Ricerca Applicata, Università degli Studi di Foggia, Via Napoli, 25, 71100 Foggia, Italy
| | - Diego Centonze
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente and CSRA - Centro Servizi di Ricerca Applicata, Università degli Studi di Foggia, Via Napoli, 25, 71100 Foggia, Italy
| |
Collapse
|
35
|
Vasilescu I, Eremia SAV, Kusko M, Radoi A, Vasile E, Radu GL. Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor. Biosens Bioelectron 2015; 75:232-7. [PMID: 26319166 DOI: 10.1016/j.bios.2015.08.051] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
A nanocomposite formed from molybdenum disulphide (MoS2) and graphene quantum dots (GQDs) was proposed as a novel and suitable support for enzyme immobilisation displaying interesting electrochemical properties. The conductivity of the carbon based screen-printed electrodes was highly improved after modification with MoS2 nanoflakes and GQDs, the nanocomposite also providing compatible matrix for laccase immobilisation. The influence of different modification steps on the final electroanalytical performances of the modified electrode were evaluated by UV-vis absorption and fluorescence spectroscopy, scanning electron microscopy, transmission electron microscopy, X ray diffraction, electrochemical impedance spectroscopy and cyclic voltammetry. The developed laccase biosensor has responded efficiently to caffeic acid over a concentration range of 0.38-100µM, had a detection limit of 0.32µM and a sensitivity of 17.92nAµM(-1). The proposed analytical tool was successfully applied for the determination of total polyphenolic content from red wine samples.
Collapse
Affiliation(s)
- Ioana Vasilescu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Sandra A V Eremia
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania.
| | - Mihaela Kusko
- National Institute for Research and Development in Microtechnologies (IMT-Bucharest), 126A Erou Iancu Nicolae, 077190 Bucharest, Romania
| | - Antonio Radoi
- National Institute for Research and Development in Microtechnologies (IMT-Bucharest), 126A Erou Iancu Nicolae, 077190 Bucharest, Romania.
| | - Eugeniu Vasile
- Department of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, No. 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Gabriel-Lucian Radu
- Centre of Bioanalysis, National Institute of Research and Development for Biological Sciences, Bucharest, 296 Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
36
|
Penu R, Obreja A, Patroi D, Diaconu M, Radu GL. Graphene and gold nanoparticles based reagentless biodevice for phenolic endocrine disruptors monitoring. Microchem J 2015. [DOI: 10.1016/j.microc.2015.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Pezzella C, Guarino L, Piscitelli A. How to enjoy laccases. Cell Mol Life Sci 2015; 72:923-40. [PMID: 25577278 PMCID: PMC11113763 DOI: 10.1007/s00018-014-1823-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 01/08/2023]
Abstract
An analysis of the scientific literature published in the last 10 years reveals a constant growth of laccase applicative research in several industrial fields followed by the publication of a great number of patents. The Green Chemistry journal devoted the cover of its September 2014 issue to a laccase as greener alternative for chemical oxidation. This indicates that laccase "never-ending story" has found a new promising trend within the constant search for efficient (bio)catalysts able to meet the 12 green chemistry principles. A survey of ancient and cutting-edge uses of laccase in different industrial sectors is offered in this review with the aim both to underline their potential and to provide inspiration for new ones. Applications in textile and food fields have been deeply described, as well as examples concerning polymer synthesis and laccase-catalysed grafting. Recent applications in pharmaceutical and cosmetic industry have also been reviewed.
Collapse
Affiliation(s)
- Cinzia Pezzella
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126, Naples, Italy,
| | | | | |
Collapse
|
38
|
Qu J, Lou T, Wang Y, Dong Y, Xing H. Determination of Catechol by a Novel Laccase Biosensor Based on Zinc-Oxide Sol-Gel. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.1003427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Vasilescu I, Eremia SAV, Penu R, Albu C, Radoi A, Litescu SC, Radu GL. Disposable dual sensor array for simultaneous determination of chlorogenic acid and caffeine from coffee. RSC Adv 2015. [DOI: 10.1039/c4ra14464c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of the developed disposable dual sensor array.
Collapse
Affiliation(s)
- Ioana Vasilescu
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| | - Sandra A. V. Eremia
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| | - Ramona Penu
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| | - Camelia Albu
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| | - Antonio Radoi
- National Institute for Research and Development in Microtechnology (IMT-Bucharest)
- 077190 Bucharest
- Romania
| | - Simona C. Litescu
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| | - Gabriel-Lucian Radu
- Centre of Bioanalysis
- National Institute of Research and Development for Biological Sciences
- 060031 Bucharest
- Romania
| |
Collapse
|
40
|
Zhang Y, Chu M, Yang L, Tan Y, Deng W, Ma M, Su X, Xie Q. Three-dimensional graphene networks as a new substrate for immobilization of laccase and dopamine and its application in glucose/O2 biofuel cell. ACS APPLIED MATERIALS & INTERFACES 2014; 6:12808-12814. [PMID: 25019407 DOI: 10.1021/am502791h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report here three-dimensional graphene networks (3D-GNs) as a novel substrate for the immobilization of laccase (Lac) and dopamine (DA) and its application in glucose/O2 biofuel cell. 3D-GNs were synthesized with an Ni(2+)-exchange/KOH activation combination method using a 732-type sulfonic acid ion-exchange resin as the carbon precursor. The 3D-GNs exhibited an interconnected network structure and a high specific surface area. DA was noncovalently functionalized on the surface of 3D-GNs with 3,4,9,10-perylene tetracarboxylic acid (PTCA) as a bridge and used as a novel immobilized mediating system for Lac-based bioelectrocatalytic reduction of oxygen. The 3D-GNs-PTCA-DA nanocomposite modified glassy carbon electrode (GCE) showed stable and well-defined redox current peaks for the catechol/o-quinone redox couple. Due to the mediated electron transfer by the 3D-GNs-PTCA-DA nanocomposite, the Nafion/Lac/3D-GNs-PTCA-DA/GCE exhibited high catalytic activity for oxygen reduction. The 3D-GNs are proven to be a better substrate for Lac and its mediator immobilization than 2D graphene nanosheets (2D-GNs) due to the interconnected network structure and high specific surface area of 3D-GNs. A glucose/O2 fuel cell using Nafion/Lac/3D-GNs-PTCA-DA/GCE as the cathode and Nafion/glucose oxidase/ferrocence/3D-GNs/GCE as the anode can output a maximum power density of 112 μW cm(-2) and a short-circuit current density of 0.96 mA cm(-2). This work may be helpful for exploiting the popular 3D-GNs as an efficient electrode material for many other biotechnology applications.
Collapse
Affiliation(s)
- Yijia Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Laccase biosensors based on different enzyme immobilization strategies for phenolic compounds determination. Talanta 2013; 115:401-8. [PMID: 24054609 DOI: 10.1016/j.talanta.2013.05.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 11/23/2022]
Abstract
Different enzyme immobilization approaches of Trametes versicolor laccase (TvL) onto gold surfaces and their influence on the performance of the final bioanalytical platforms are described. The laccase immobilization methods include: (i) direct adsorption onto gold electrodes (TvL/Au), (ii) covalent attachment to a gold surface modified with a bifunctional reagent, 3,3'-Dithiodipropionic acid di (N-succinimidyl ester) (DTSP), and (iii) integration of the enzyme into a sol-gel 3D polymeric network derived from (3-mercaptopropyl)-trimethoxysilane (MPTS) previously formed onto a gold surface (TvL/MPTS/Au). The characterization and applicability of these biosensors are described. Characterization is performed in aqueous acetate buffer solutions using atomic force microscopy (AFM), providing valuable information concerning morphological data at the nanoscale level. The response of the three biosensing platforms developed, TvL/Au, TvL/DTSP/Au and TvL/MPTS/Au, is evaluated in the presence of hydroquinone (HQ), used as a phenolic enzymatic substrate. All systems exhibit a clear electrocatalytic activity and HQ can be amperometrically determined at -0.10 V versus Ag/AgCl. However, the performance of biosensors - evaluated in terms of sensitivity, detection limit, linear response range, reproducibility and stability - depends clearly on the enzyme immobilization strategy, which allows establishing its influence on the enzyme catalytic activity.
Collapse
|