1
|
Cheng M, Xu Y, Xu X, Yan B, Zhang X, Borijihan G, Wang Y, Li Y. Quick separation and enrichment of chlorogenic acid and its analogues by a high-efficient molecularly imprinted nanoparticles and evaluation of antioxidant and hypoglycemic activities. Food Chem 2025; 480:143902. [PMID: 40120308 DOI: 10.1016/j.foodchem.2025.143902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Multiple interaction strategy to target was tried to use in the design of surface imprinting polymer. To validate this, active chlorogenic acid, a representative phenolic acid compound existing in many natural products, was selected as the template molecule and a magnetic molecularly imprinted nanoparticles (CGA-MMIPs) was synthesized. The characterizations indicated CGA-MMIPs was 20-50 nm, stable below 229.56 °C and had a saturation magnetic intensity of 17.90 emu/g. The prepared CGA-MMIPs exhibited high adsorption capacity (441.81 mg/g) and fast adsorption equilibrium for chlorogenic acid. It also was easy separation, high selectivity and good reusability, which was successfully used in quick separation of chlorogenic acid from Orthosiphon aristatus and Taraxacum mongolicum and Salvia miltiorrhiza. Moreover, the isolated substances possessed great antioxidant and hypoglycemic activities. These verified the strategy was useful and had huge prospects in the quick separation of chlorogenic acid or other phenolic acid compounds from natural products.
Collapse
Affiliation(s)
- Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanmei Xu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.; Hebei Institute for Drug and Medical Device Control, Hebei 050033, China
| | - Xinyu Xu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Bangqi Yan
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Guirong Borijihan
- Department of Chemistry and Environment, Hohhot Minzu College, Hohhot, Inner Mongolia 010051, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China..
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.; Neurocritical Care Medicine Innovation Center, Ministry of Education, Tianjin University, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, China.
| |
Collapse
|
2
|
Gao SW, Li N, Cui YY, Yang CX. Modification of hollow microporous organic network with polyethyleneimine for efficient enrichment of phenolic acids from fruit juice samples. J Chromatogr A 2024; 1736:465419. [PMID: 39378621 DOI: 10.1016/j.chroma.2024.465419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Owning to the hydrophobic characteristics of microporous organic networks (MONs), their utilizations still largely limited in non- and weak-polar analytes. To expend their applications, here we reported the synthesis of a novel hollowed H-MON-PEI1800-2 composite via sacrifice template method and subsequent modification with polyethyleneimine (PEI) for efficient solid phase extraction of polar and ionic phenolic acid (PAs) from fruit juice samples. H-MON-PEI1800-2 exhibits large surface area, rapid extraction kinetics, remarkable chemical and thermal stabilities, and provides synergistic electrostatic, π-π, hydrogen bonding, and hydrophobic interaction sites for PAs. The developed method owns low limit of detection, wide linear range, large enrichment factors, and good reusability. The recoveries of H-MON-PEI1800-2 for PAs are 1-3 orders of magnitude higher than those of commercial adsorbents like activated carbon, C18 and Oasis HLB. This work highlights the prospects of functional H-MONs for enriching polar and ionic targets from complex sample matrices.
Collapse
Affiliation(s)
- Shuo-Wen Gao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Na Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
3
|
Saheed IO, Azeez SO, Suah FBM. Imidazolium based ionic liquids modified polysaccharides for adsorption and solid-phase extraction applications: A review. Carbohydr Polym 2022; 298:120138. [DOI: 10.1016/j.carbpol.2022.120138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
|
4
|
|
5
|
Chandrasekaram K, Alias Y, Mohamad S. Sporopollenin supported methylimidazolium ionic liquids based mixed matrix membrane for dispersive membrane micro-extraction of nitro and chloro-substituted phenols from various matrices. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Bouyahya A, Sembo-Backonly BS, Favrelle-Huret A, Balieu S, Guillen F, Mesnage V, Karakasyan-Dia C, Lahcini M, Le Cerf D, Gouhier G. New ternary water-soluble support from self-assembly of β-cyclodextrin-ionic liquid and an anionic polymer for a dialysis device. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:271-283. [PMID: 34523096 DOI: 10.1007/s11356-021-16374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
We developed a new hybrid material resulting from an innovative supramolecular tripartite association between an ionic liquid covalently immobilized on primary β-cyclodextrins rim and an anionic water-soluble polymer. Two hydrophilic ternary complexes based on native and permethylated β-cyclodextrins substituted with an ionic liquid and immobilized on poly(styrene sulfonate) (CD-IL+PSS- and CD(OMe)IL+PSS-) were obtained by simple dialysis with a cyclodextrin maximal grafting rate of 25% and 20% on the polymer, respectively. These polyelectrolytes are based on electrostatic interactions between the opposite charges of the imidazolium cation of the ionic liquid and the poly(styrene sulfonate) anion. The inclusion properties of the free cavities of the cyclodextrins and the synergic effect of the polymeric matrix were studied with three reference guests such as phenolphthalein, p-nitrophenol, and 2-anilinonaphthalene-6-sulfonic acid using UV-visible, fluorescent, and NMR spectroscopies. The support has been applied successfully in dialysis device to extract and concentrated aromatic model molecule. This simple and flexible synthetic strategy opens the way to new hybrid materials useful for fast and low-cost ecofriendly extraction techniques relevant for green analytical chemistry.
Collapse
Affiliation(s)
- Asmaa Bouyahya
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France
- IMED-Lab, Faculty of Sciences and Techniques, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P 549, 40000, Marrakech, Morocco
| | - Berthe-Sandra Sembo-Backonly
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France
| | - Audrey Favrelle-Huret
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France
- Normandie Univ, PBS UMR 6270, UNIROUEN, INSA Rouen, CNRS, 76821, Mont-Saint-Aignan, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Sébastien Balieu
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France
| | - Frédéric Guillen
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France
- Université Toulouse III - Paul Sabatier, SPCMIB UMR CNRS 5068, 118 route de Narbonne, 31062 Cedex 9, Toulouse, France
| | - Valérie Mesnage
- Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000, Rouen, France
| | - Carole Karakasyan-Dia
- Normandie Univ, PBS UMR 6270, UNIROUEN, INSA Rouen, CNRS, 76821, Mont-Saint-Aignan, France
| | - Mohammed Lahcini
- IMED-Lab, Faculty of Sciences and Techniques, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P 549, 40000, Marrakech, Morocco
- Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Didier Le Cerf
- Normandie Univ, PBS UMR 6270, UNIROUEN, INSA Rouen, CNRS, 76821, Mont-Saint-Aignan, France
| | - Géraldine Gouhier
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France.
| |
Collapse
|
7
|
Xu L, Huang Y, Zhao B, Ren L, Long T. Determination of 2, 4-Dichlorophenol, 2, 4-Dinitrophenol, and Bisphenol a in River Water by Magnetic Solid-Phase Extraction (MSPE) Using β-Cyclodextrin Modified Magnetic Ferrite Microspheres and High-Performance Liquid Chromatography – Diode Array Detection (HPLC-DAD). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1932977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lanying Xu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Yingying Huang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Bingshan Zhao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Limin Ren
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Tao Long
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| |
Collapse
|
8
|
Wu Y, Jia Z, Bo C, Dai X. Preparation of magnetic β-cyclodextrin ionic liquid composite material with different ionic liquid functional group substitution contents and evaluation of adsorption performance for anionic dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Wang Y, Liu L. [Research progress in application of immobilized ionic liquid materials to separation by solid-phase extraction]. Se Pu 2021; 39:241-259. [PMID: 34227306 PMCID: PMC9403816 DOI: 10.3724/sp.j.1123.2020.08002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/25/2022] Open
Abstract
Ionic liquids are low-temperature molten salts with almost no vapor pressure, and they are composed of organic cations and inorganic anions. Ionic liquids are characterized by the properties of good chemical stability, high solubility, designable structure, high conductivity and so on. The physicochemical properties of an ionic liquid depend on the nature and size of the cation and anion, which confer unique characteristics; hence, these reagents are also termed "designed extractants." As a new class of green solvents, ionic liquids are potential replacements to traditional volatile organic solvents used for extraction; for this reason, ionic liquids have attracted the attention of scientists. Research on the methods of preparation and applications of ionic liquids is being diversified, and they are extensively used in catalytic chemistry, photoelectron chemistry, materials chemistry, analytical chemistry, etc. By functional guiding design, the structures of ionic liquids, especially the imidazole ring cations, can be easily grafted with active groups such as hydroxyl, amino, carboxyl, and cyano groups, so that interactions between the ionic liquids and target molecules can be promoted via the formation of π-π bonds, hydrogen bonds, ionic bonds, and van der Waals forces. In addition, ionic liquids can be readily immobilized on solid carriers by physical or chemical means in order to obtain a new solid material with ionic liquids embedded internally or decorated on the surface. Furthermore, ionic liquids could be converted into ionic liquid-immobilized composite materials by impregnation, grafting, etc. The resulting composites not only suffer minimal loss of ionic liquids but also retain the typical characteristics of the ionic liquids and solid materials, thus showing improved mass transfer performance and better adsorption performance. Immobilized materials are characterized by high enrichment efficiency, high adsorption capacity, good stability, and strong extraction selectivity, as well as the presence of numerous recognition sites and high utilization rate of ionic liquids. In recent years, they have been widely used as solid-phase extraction adsorption materials for the separation of small organic molecules. This review introduces common immobilization methods and the characteristics of ionic liquid-immobilized materials, as well as their application in solid-phase extraction. In this paper, methods for the immobilization of ionic liquids with solid carriers such as silica gel, molecular sieves, molecularly imprinted polymers, graphene oxide, and magnetic nanomaterials are summarized, and the application of ionic liquid-immobilized materials in solid-phase extraction is reviewed. The target substances include alkaloids, flavonoids, polyphenols, and other natural active components as well as common drug molecules, organic pesticides, and other organic small molecular compounds. The properties, applications, and separation mechanisms of ionic liquids immobilized with various carriers are systematically introduced. Literature survey shows that the distribution of the binding active sites of ionic liquid-immobilized materials to the target molecules is more uniform, which increases the adsorption capacity of the materials. The adsorption efficiency of ionic liquid-immobilized materials is related to the type of ionic liquid, amount of adsorption material, concentration of the sample solution, adsorption temperature, solution pH, flow rate of the eluent, and type and amount of the eluting solvent. The existing disadvantages of ionic liquids, such as simple structures, insufficient basic theoretical research, and unsatisfactory extraction degree in complex matrixes would also be discussed. The corresponding solutions would be presented with the aim of providing guidance for the application of ionic liquid-immobilized materials in the separation and analysis of targets in complex matrices, thus paving the way for a new direction in the field of extraction and separation.
Collapse
Affiliation(s)
- Yicong Wang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China
| | - Leilei Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China
| |
Collapse
|
10
|
Cyclodextrins as a Key Piece in Nanostructured Materials: Quantitation and Remediation of Pollutants. NANOMATERIALS 2020; 11:nano11010007. [PMID: 33374502 PMCID: PMC7822197 DOI: 10.3390/nano11010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Separation and pre-concentration of trace pollutants from their matrix by reversible formation of inclusion complexes has turned into a widely studied field, especially for the benefits provided to different areas. Cyclodextrins are non-toxic oligosaccharides that are well known for their host–guest chemistry, low prices, and negligible environmental impact. Therefore, they have been widely used as chiral selectors and delivery systems in the pharmaceutical and food industry over time. However, their use for extraction purposes is hampered by their high solubility in water. This difficulty is being overcome with a variety of investigations in materials science. The setting-up of novel solid sorbents with improved properties thanks to the presence of cyclodextrins at their structure is still an open research area. Some properties they can offer, such as an increased selectivity or a good distribution along the surface of a solid support, which provides better accessibility for guest molecules, are characteristics of great interest. This systematic review reports the most significant uses of cyclodextrins for the adsorption of pollutants in different-origin samples based on the works reported in the literature in the last years. The study has been carried out indistinctly for quantitation and remediation purposes.
Collapse
|
11
|
Hui BY, Zain NNM, Mohamad S, Prabu S, Osman H, Raoov M. A comprehensive molecular insight into host-guest interaction of Phenanthrene with native and ionic liquid modified β-cyclodextrins: Preparation and characterization in aqueous medium and solid state. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Cheng G, Yu W, Yang C, Li S, Wang X, Wang P, Zhang K, Li X, Zhu G. Highly selective removal of 2,4‐dinitrophenol by a surface imprinted sol–gel polymer. J Appl Polym Sci 2020. [DOI: 10.1002/app.49236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guohao Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Wenna Yu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education Henan Normal University Xinxiang Henan China
- Zhengzhou Sewage Purification Co., Ltd. Zhengzhou Henan China
| | - Can Yang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Shiying Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Xiaoyue Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Peiyun Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education Henan Normal University Xinxiang Henan China
- Zhengzhou Sewage Purification Co., Ltd. Zhengzhou Henan China
| | - Kaige Zhang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Xiang Li
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education Henan Normal University Xinxiang Henan China
| |
Collapse
|
13
|
Li X, Cui YY, Yang CX, Yan XP. Synthesis of carboxyl functionalized microporous organic network for solid phase extraction coupled with high-performance liquid chromatography for the determination of phenols in water samples. Talanta 2020; 208:120434. [DOI: 10.1016/j.talanta.2019.120434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
|
14
|
Tang L, Zhu Z, Xie M, Cao L, Yu XL, Zhang R, Ou Z, Shan W, Zhang Z. Effects of β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin Inclusions on the Degradation of Magnolol by Intestinal Bacteria. AAPS PharmSciTech 2019; 20:244. [PMID: 31286296 DOI: 10.1208/s12249-019-1397-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
Cyclodextrin (CD) inclusions are generally used to increase the solubility of poorly soluble drugs. In this study, magnolol (MAG) was used as a model drug for exploring the effects of CD on the degradation of pharmaceutical drugs by intestinal microflora. MAG/β-cyclodextrin (β-CD) and MAG/hydroxypropyl-β-CD (HP-β-CD) inclusion complexes were successfully prepared by the saturated aqueous solution and freeze-drying methods, respectively. Structural characterisation along with analyses of solubility, residual water content and drug content of the inclusion complexes was performed. The intestinal microflora of male rats was used to study MAG degradation in vitro. At three concentrations, the degradation of both the inclusion complexes was slower than that of the MAG monomer, MAG and CD mixtures and the MAG-poloxamer 188 micelle. There were no statistically significant differences in the degradation of the MAG/β-CD and MAG/HP-β-CD inclusion complexes. A simulation first-order equation of the degradation parameters revealed that the degradation of the inclusion complexes was slower and pronounced, judging by slope. The experimental findings were verified by molecular docking for predicting the stable molecular structure of the inclusion complexes. In conclusion, the inclusion complexes partially protected MAG from degradation by the intestinal bacteria.
Collapse
|
15
|
Al'Abri AM, Mohamad S, Abdul Halim SN, Abu Bakar NK. Development of magnetic porous coordination polymer adsorbent for the removal and preconcentration of Pb(II) from environmental water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11410-11426. [PMID: 30805837 DOI: 10.1007/s11356-019-04467-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
A novel porous coordination polymer adsorbent (BTCA-P-Cu-CP) based on a piperazine(P) as a ligand and 1,2,4,5-benzenetetracarboxylic acid (BTCA) as a linker was synthesized and magnetized to form magnetic porous coordination polymer (BTCA-P-Cu-MCP). Fourier transform infrared (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscope(FESEM), energy-dispersive X-ray spectroscopy(EDS), CHN, and Brunauer-Emmett-Teller(BET) analysis were used to characterize the synthesized adsorbent. BTCA-P-Cu-MCP was used for removal and preconcentration of Pb(II) ions from environmental water samples prior to flame atomic absorption spectrometry(FAAS) analysis. The maximum adsorption capacity of BTCA-P-Cu-MCP was 582 mg g-1. Adsorption isotherm, kinetic, and thermodynamic parameters were investigated for Pb(II) ions adsorption. Magnetic solid phase extraction (MSPE) method was used for preconcentration of Pb(II) ions and the parameters influencing the preconcentration process have been examined. The linearity range of proposed method was 0.1-100 μg L-1 with a preconcentration factor of 100. The limits of detection and limits of quantification for lead were 0.03 μg L-1 and 0.11 μg L-1, respectively. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations (RSDs) were 1.54 and 3.43% respectively. The recoveries from 94.75 ± 4 to 100.93 ± 1.9% were obtained for rapid extraction of trace levels of Pb(II) ions in different water samples. The results showed that the BTCA-P-Cu-MCP was steady and effective adsorbent for the decontamination and preconcentration of lead ions from the aqueous environment.
Collapse
Affiliation(s)
- Aisha Mohammed Al'Abri
- Department of Chemistry, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia
- Ministry of Education Sultanate of Oman, Muscat, Oman
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia.
- University Malaya Centre for Ionic Liquids (UMCiL), University Malaya Kuala Lumpur, 50603, Kuala Lumpur, Malaysia.
| | - Siti Nadiah Abdul Halim
- Department of Chemistry, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Tian M, Fang L, Yan X, Xiao W, Row KH. Determination of Heavy Metal Ions and Organic Pollutants in Water Samples Using Ionic Liquids and Ionic Liquid-Modified Sorbents. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:1948965. [PMID: 31781471 PMCID: PMC6875364 DOI: 10.1155/2019/1948965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 05/03/2023]
Abstract
Water pollution, especially by inorganic and organic substances, is considered as a critical problem worldwide. Several governmental agencies are listing an increasing number of compounds as serious problems in water because of their toxicity, bioaccumulation, and persistence. In recent decades, there has been considerable research on developing analytical methods of heavy metal ions and organic pollutants from water. Ionic liquids, as the environment-friendly solvents, have been applied in the analytical process owing to their unique physicochemical properties. This review summarizes the applications of ionic liquids in the determination of heavy metal ions and organic pollutants in water samples. In addition, some sorbents that were modified physically or chemically by ionic liquids were applied in the adsorption of pollutants. According to the results in all references, the application of new designed ionic liquids and related sorbents is expected to increase in the future.
Collapse
Affiliation(s)
- Minglei Tian
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Luwei Fang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Xuemin Yan
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Wei Xiao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 402751, Republic of Korea
| |
Collapse
|
17
|
Md Yusoff M, Yahaya N, Md Saleh N, Raoov M. A study on the removal of propyl, butyl, and benzyl parabens via newly synthesised ionic liquid loaded magnetically confined polymeric mesoporous adsorbent. RSC Adv 2018; 8:25617-25635. [PMID: 35539765 PMCID: PMC9082765 DOI: 10.1039/c8ra03408g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/30/2018] [Indexed: 01/12/2023] Open
Abstract
This study investigated the effectiveness of ionic liquids (ILs) loaded onto the surface of a polymeric adsorbent (βCD-TDI) grafted with modified magnetic nanoparticles (MNPs) via an analysis of water treatment, which resulted in high removal of selected endocrine-disrupting chemicals (parabens). The syntheses of MNPs, MNP-βCD-TDI, and IL-MNP-βCD-TDI were characterised and compared using Fourier transform infrared (FT-IR) spectroscopy, carbon-hydrogen-nitrogen (CHN) analysis, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The results of SEM and TEM indicated that the pore size distribution exhibited mesoporous characteristics with a small surface area (BET analysis: 42.95 m2 g-1). Furthermore, a preliminary sorption experiment demonstrated the ability of IL-MNP-βCD-TDI to enhance not only the sorption capacity, but also the removal of propyl paraben (PP), butyl paraben (BP), and benzyl paraben (ArP). The adsorption process appeared to be pH-dependent, and hence the optimum pH of 6 was selected for a subsequent batch adsorption study of all the studied parabens with an equilibrium time of 80 min. Next, in an attempt to investigate the interactions that occur between the adsorbent and the adsorbates, adsorption kinetics and isotherm studies were performed. All the studied parabens were found to best fit pseudo-second-order kinetics and the Freundlich isotherm with R 2 > 0.98 at room temperature (298 K). The interaction of the host-guest inclusion complex and the π-π interaction between βCD and a selected paraben compound (ArP) were identified by performing 1H nuclear magnetic resonance (NMR), together with ultraviolet-visible (UV-vis) spectroscopic analysis. Finally, the adsorption efficiency of the developed material was practically tested on tap water, drain water, and industrial wastewater, which revealed a significant removal of parabens of up to 60-90% in comparison with a prior analysis.
Collapse
Affiliation(s)
- Masrudin Md Yusoff
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia
| | - Noorashikin Md Saleh
- Research Centre For Sustainable Process Technology, Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia 43600 UKM Bangi Selangor Malaysia
| | - Muggundha Raoov
- University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
- Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
18
|
|
19
|
Hui BY, Raoov M, Zain NNM, Mohamad S, Osman H. Combination of Cyclodextrin and Ionic Liquid in Analytical Chemistry: Current and Future Perspectives. Crit Rev Anal Chem 2017; 47:454-467. [DOI: 10.1080/10408347.2017.1320936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Boon Yih Hui
- Integrative Medicine Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Muggundha Raoov
- Integrative Medicine Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Universiti Malaya Centre for Ionic Liquids (UMCiL), Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hasnah Osman
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
20
|
El Idrissi M, Molina Bacca AE, Frascari D, Corvini PFX, Shahgaldian P. Cyclodextrin-based polymeric materials for the specific recovery of polyphenolic compounds through supramolecular host–guest interactions. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0708-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Deng J, Zhang P, Jin T, Zhou H, Cheng J. Graphene oxide/β-cyclodextrin composite as fiber coating for high efficiency headspace solid phase microextraction of organophosphate ester flame retardants in environmental water. RSC Adv 2017. [DOI: 10.1039/c7ra07903f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The preparation of a GO/β-CD sol–gel stainless steel fiber coating and its application for HS-SPME of OPFR.
Collapse
Affiliation(s)
- Jiali Deng
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Institute of Environmental Chemistry
- College of Chemistry
- Central China Normal University
| | - Pengcheng Zhang
- Department of Biological Science and Technology
- School of Environmental Studies
- China University of Geosciences
- Wuhan 430074
- China
| | - Tingting Jin
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Institute of Environmental Chemistry
- College of Chemistry
- Central China Normal University
| | - Hongbin Zhou
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Institute of Environmental Chemistry
- College of Chemistry
- Central China Normal University
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- Institute of Environmental Chemistry
- College of Chemistry
- Central China Normal University
| |
Collapse
|
22
|
Md Yusoff M, Raoov M, Yahaya N, Md Salleh N. An ionic liquid loaded magnetically confined polymeric mesoporous adsorbent for extraction of parabens from environmental and cosmetic samples. RSC Adv 2017. [DOI: 10.1039/c7ra06682a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of MSPE procedure for paraben analysis using a new ionic liquid loaded magnetically confined polymeric mesoporous material.
Collapse
Affiliation(s)
- Masrudin Md Yusoff
- Integrative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - Muggundha Raoov
- Integrative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - Noorashikin Md Salleh
- Department of Chemical and Process Engineering
- Faculty of Engineering and Built Environment
- Universiti Kebangsaan Malaysia
- Malaysia
| |
Collapse
|
23
|
Ismail NA, Bakhshaei S, Kamboh MA, Abdul Manan NS, Mohamad S, Yilmaz M. Adsorption of phenols from contaminated water through titania-silica mixed imidazolium based ionic liquid: Equilibrium, kinetic and thermodynamic modeling studies. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2016. [DOI: 10.1080/10601325.2016.1212309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Affiliation(s)
- Xingxiu Qin
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Xiashi Zhu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
25
|
Baharin SNA, Muhamad Sarih N, Mohamad S. Novel Functionalized Polythiophene-Coated Fe₃O₄ Nanoparticles for Magnetic Solid-Phase Extraction of Phthalates. Polymers (Basel) 2016; 8:E117. [PMID: 30979266 PMCID: PMC6431896 DOI: 10.3390/polym8050117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
Poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)-amine) (P3TArH) was successfully synthesized and coated on the surface of Fe₃O₄ magnetic nanoparticles (MNPs). The nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, analyzer transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). P3TArH-coated MNPs (MNP@P3TArH) showed higher capabilities for the extraction of commonly-used phthalates and were optimized for the magnetic-solid phase extraction (MSPE) of environmental samples. Separation and determination of the extracted phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), dicyclohexyl phthalate (DCP), di-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), were conducted by a gas chromatography-flame ionization detector (GC-FID). The best working conditions were as follows; sample at pH 7, 30 min extraction time, ethyl acetate as the elution solvent, 500-µL elution solvent volumes, 10 min desorption time, 10-mg adsorbent dosage, 20-mL sample loading volume and 15 g·L-1 concentration of NaCl. Under the optimized conditions, the analytical performances were determined with a linear range of 0.1⁻50 µg·L-1 and a limit of detection at 0.08⁻0.468 µg·L-1 for all of the analytes studied. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations (RSD%) of three replicates were each demonstrated in the range of 3.7⁻4.9 and 3.0⁻5.0, respectively. The steadiness and reusability studies suggested that the MNP@P3TArH could be used up to five cycles. The proposed method was executed for the analysis of real water samples, namely commercial bottled mineral water and bottled fresh milk, whereby recoveries in the range of 68%⁻101% and RSD% lower than 7.7 were attained.
Collapse
Affiliation(s)
- Siti Nor Atika Baharin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia.
| | | | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- University of Malaya Centre for Ionic Liquids, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Bakhshaei S, Kamboh MA, Mohamad S, Md Zain S, Ma'amor A. A novel cyano functionalized silica-titania oxide sol–gel based ionic liquid for the extraction of hazardous chlorophenols from aqueous environments. RSC Adv 2016. [DOI: 10.1039/c6ra08337d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extraction of chlorophenols on Si-Ti@CN/IL is highly pH dependent and significant percent extraction was achieved at pH = 2.
Collapse
Affiliation(s)
- Shabnam Bakhshaei
- Department of Chemistry
- Faculty of Science
- University of Malaya
- Kuala Lumpur
- Malaysia
| | | | - Sharifah Mohamad
- Department of Chemistry
- Faculty of Science
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Sharifuddin Md Zain
- Department of Chemistry
- Faculty of Science
- University of Malaya
- Kuala Lumpur
- Malaysia
| | - Azman Ma'amor
- Department of Chemistry
- Faculty of Science
- University of Malaya
- Kuala Lumpur
- Malaysia
| |
Collapse
|
27
|
Ye C, Wu Y, Wang Z. Modification of cellulose paper with polydopamine as a thin film microextraction phase for detection of nitrophenols in oil samples. RSC Adv 2016. [DOI: 10.1039/c5ra23232e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polydopamine cellulose paper was used as a novel extraction phase to detect nitrophenols in oil samples.
Collapse
Affiliation(s)
- Cunling Ye
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Yujun Wu
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
- China
| | - Zhike Wang
- School of Environment
- Henan Key Laboratory for Environmental Pollution Control
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Normal University
| |
Collapse
|
28
|
Qin X, Zhu X. Determination of Allura Red in Food by Ionic Liquid ß-Cyclodextrin-Cross-Linked Polymer Solid Phase Extraction and High-Performance Liquid Chromatography. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1065880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Olorundare OF, Msagati TAM, Krause RWM, Okonkwo JO, Mamba BB. Preparation and use of maize tassels' activated carbon for the adsorption of phenolic compounds in environmental waste water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5780-5792. [PMID: 25354435 DOI: 10.1007/s11356-014-3742-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
The determination and remediation of three phenolic compounds bisphenol A (BPA), ortho-nitrophenol (o-NTP), parachlorophenol (PCP) in wastewater is reported. The analysis of these molecules in wastewater was done using gas chromatography (GC) × GC time-of-flight mass spectrometry while activated carbon derived from maize tassel was used as an adsorbent. During the experimental procedures, the effect of various parameters such as initial concentration, pH of sample solution, eluent volume, and sample volume on the removal efficiency with respect to the three phenolic compounds was studied. The results showed that maize tassel produced activated carbon (MTAC) cartridge packed solid-phase extraction (SPE) system was able to remove the phenolic compounds effectively (90.84-98.49%, 80.75-97.11%, and 78.27-97.08% for BPA, o-NTP, and PCP, respectively). The MTAC cartridge packed SPE sorbent performance was compared to commercially produced C18 SPE cartridges and found to be comparable. All the parameters investigated were found to have a notable influence on the adsorption efficiency of the phenolic compounds from wastewaters at different magnitudes.
Collapse
Affiliation(s)
- O F Olorundare
- Nanotechnology for Water Sustainability Research Unit, UNISA Science Campus, University of South Africa, Florida 1709, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
30
|
Hou X, Wang L, Tang X, Xiong C, Guo Y, Liu X. Application of a β-cyclodextrin/graphene oxide-modified fiber for solid-phase microextraction of six fragrance allergens in personal products. Analyst 2015; 140:6727-35. [DOI: 10.1039/c5an01030f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel β-cyclodextrin/graphene oxide-coated SPME fiber was prepared and used for extraction of fragrance allergens in personal products.
Collapse
Affiliation(s)
- Xiudan Hou
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Licheng Wang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xiaofen Tang
- Key Laboratory of Oil & Gas Production
- China National Petroleum Corporation
- Research Institute of Petroleum Exploration and Development
- Beijing 100083
- China
| | - Chunming Xiong
- Key Laboratory of Oil & Gas Production
- China National Petroleum Corporation
- Research Institute of Petroleum Exploration and Development
- Beijing 100083
- China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Xia Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
31
|
Sambasevam KP, Mohamad S, Phang SW. Enhancement of polyaniline properties by different polymerization temperatures in hydrazine detection. J Appl Polym Sci 2014. [DOI: 10.1002/app.41746] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Sook-Wai Phang
- Department of Chemistry, Faculty of Science; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|