1
|
Jahanban-Esfahlan A, Amarowicz R. Optical sensing of albumin in human serum and urine-A historical review of the transition from classical dye-binding assays to advanced technologies. Int J Biol Macromol 2025; 287:138593. [PMID: 39662564 DOI: 10.1016/j.ijbiomac.2024.138593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/23/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Human serum albumin (HSA) is the most abundant protein in human plasma playing essential roles in transporting various biomolecules, metal ions, therapeutic agents, and metabolites. Additionally, it is crucial for maintaining oncotic pressure, scavenging free radicals, and preventing protein aggregation. Accurate quantification of HSA is vital for diagnosing various conditions, including hypertension, diabetes mellitus (DM), liver disorders, and renal diseases. While prevalent in clinical laboratories, traditional dye-binding methods have notable limitations: they can be time-consuming, lack sensitivity, and may suffer from interference from other serum components. These methods often require complex sample preparation and do not readily lend themselves to rapid or point-of-care testing (POCT). Consequently, there is a pressing need for innovative techniques that are rapid, cost-effective, and user-friendly. This review explores various dyes utilized for HSA determination, categorized into groups such as sulfonphthaleins, phenolphthaleins, azo dyes, etc., and provides a historical overview of the limitations of these methods. We critically assess the pros and cons of traditional dye-binding assays and emphasize the potential of emerging technologies, including microfluidic systems, smartphone-based detection, and nanopaper sensors, to address these gaps and enhance the efficiency and accessibility of HSA quantification in clinical settings.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
2
|
Mehrzad A, Verdian A, Sarabi-Jamab M. Smart nano-inks based on natural food colorant for screen-printing of dynamic shelf life of shrimp. Food Chem 2024; 447:138963. [PMID: 38492301 DOI: 10.1016/j.foodchem.2024.138963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Intelligent packaging embedded with food freshness indicators can monitor food quality and be deployed for food safety and cutting food waste. The innovative nano-inks for dynamic shelf-life printing based on natural food colorant with application in real-time monitoring of shrimp freshness were prepared. Co-assembly of saffron petal anthocyanin (SPA) with hydrophobic curcumin (Cur) into chitin nano-scaffold (particle sizes around 26 ± 8 nm) could deliver hindering SPA leaching, confirmed by FT-IR, FE-SEM, AFM, and color stability test. The best response to pH-sensitivity was found in a ratio of (1:4) Cur/SPA (30% (v/w) in ChNFs that was correlated with the chemical and microbial changes of shrimp during shrimp freshness. However, smart screen-printed inks signified higher responsiveness to pH changes than FFI films. Therefore, smart-printed indicators introduced the excellent potential for a short response time, easy, cost-effective, eco-friendly, co-assembly, great color stabilities, and lifetime for nondestructively freshness monitoring foods and supplements.
Collapse
Affiliation(s)
- Atiyeh Mehrzad
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran; Department of Food Microbiology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Mahboobe Sarabi-Jamab
- Department of Food Microbiology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
3
|
Cerqueira R, Domingues C, Veiga F, Jarak I, Figueiras A. Development and Characterization of Curcumin-Loaded TPGS/F127/P123 Polymeric Micelles as a Potential Therapy for Colorectal Cancer. Int J Mol Sci 2024; 25:7577. [PMID: 39062820 PMCID: PMC11276776 DOI: 10.3390/ijms25147577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prominent cancer worldwide, and the second leading cause of cancer death. Poor outcomes and limitations of current treatments fuel the search for new therapeutic options. Curcumin (CUR) is often presented as a safer alternative for cancer treatment with a staggering number of molecular targets involved in tumor initiation, promotion, and progression. Despite being promising, its therapeutic potential is hindered due to its hydrophobic nature. Hence, the ongoing development of optimal delivery strategies based on nanotechnology, such as polymeric micelles (PMs), to overcome issues in CUR solubilization and delivery to tumor cells. In this sense, this study aimed to optimize the development and stability of CUR-loaded P123:F127:TPGS PMs (PFT:CUR) based on the thin-film approach and evaluate their therapeutic potential in CRC. Overall, the results revealed that the solubility of CUR was improved when room temperature was used to hydrate the film. The PFT-CUR hydrated at room temperature presents an average hydrodynamic diameter of 15.9 ± 0.3 nm with a polydispersity index (PDI) of 0.251 ± 0.103 and a zeta potential of -1.5 ± 1.9 mV, and a 35.083 ± 1.144 encapsulation efficiency (EE%) and 3.217 ± 0.091 drug loading (DL%) were observed. To ensure the stability of the optimized PFT-CUR nanosystems, different lyophilization protocols were tested, the use of 1% of glycine (GLY) being the most promising protocol. Regarding the critical micellar concentration (CMC), it was shown that the cryoprotectant and the lyophilization process could impact it, with an increase from 0.064 mg/mL to 0.119 mg/mL. In vitro results showed greater cytotoxic effects when CUR was encapsulated compared to its free form, yet further analysis revealed the heightened cytotoxicity could be attributed to the system itself. Despite challenges, the developed CUR-loaded PM shows potential as an effective therapeutic agent for CRC. Nonetheless, the system must undergo refinements to enhance drug entrapment as well as improve overall stability.
Collapse
Affiliation(s)
- Rita Cerqueira
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
| | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CI MAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
4
|
Golmohammadi H, Parnianchi F, Sharifi AR, Naghdi T, Tabatabaee RS, Peyravian M, Kashanian S. Spicy Recipe for At-Home Diagnostics: Smart Salivary Sensors for Point-of-Care Diagnosis of Jaundice. ACS Sens 2024; 9:3455-3464. [PMID: 38875528 DOI: 10.1021/acssensors.4c01066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Even though significant advances have been made, there is still a lack of reliable sensors capable of noninvasively monitoring bilirubin and diagnosing jaundice as the most common neonatal disease, particularly at the point-of-care (POC) where blood sampling from infants is accompanied by serious challenges and concerns. Herein, for the first time, using an easy-to-fabricate/use assay, we demonstrate the capability of curcumin embedded within paper for noninvasive optical monitoring of bilirubin in saliva. The highly selective sensing of the developed sensor toward bilirubin is attributed to bilirubin photoisomerization under blue light exposure, which can selectively restore the bilirubin-induced quenched fluorescence of curcumin. We also fabricated an IoT-enabled hand-held optoelectronic reader to measure and quantify the fluorescence and color signals of our sensor. Clinical analysis on the saliva of 18 jaundiced infants by using our developed smart salivary sensor proved that it is amenable to be widely exploited in POC applications for bilirubin monitoring as there are good correlations between its results with those of reference methods in saliva and blood. Meeting all WHO's REASSURED criteria by our developed sensor makes it a highly promising sensor for smart noninvasive diagnosis and therapeutic monitoring of jaundice, hepatitis, and other bilirubin-induced neurologic diseases at the POC.
Collapse
Affiliation(s)
- Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK─Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Fatemeh Parnianchi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Amir Reza Sharifi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- IMTEK─Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
| | - Raziyeh Sadat Tabatabaee
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Mohammad Peyravian
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Razi University, Kermanshah 6714414971, Iran
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran
| |
Collapse
|
5
|
Sun Y, Qian X, Gou Y, Zheng C, Zhang F. A Cellulose-Based Dual-Crosslinked Framework with Sensitive Shape and Color Changes in Acid/Alkaline Vapors. Polymers (Basel) 2024; 16:1547. [PMID: 38891492 PMCID: PMC11174363 DOI: 10.3390/polym16111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Cellulose detectors, as green sensors, are some of the defensive mechanisms of plants which combat environmental stresses. However, extracted cellulose struggles to fulfil these functionalities due to its rigid physical/chemical properties. In this study, a novel cellulose dual-crosslinked framework (CDCF) is proposed. This comprises a denser temporary physical crosslinking bond (hydrogen bonding) and a looser covalent crosslinking bond (N,N-methylenebisacrylamide), which create deformable spaces between the two crosslinking sites. Abundant pH-sensitive carboxyl groups and ultralight, highly porous structures make CDCF response very sensitive in acid/alkaline vapor environments. Hence, a significant shrinkage of CDCF was observed following exposure to vapors. Moreover, a curcumin-incorporated CDCF exhibited dual shape and color changes when exposed to acid/alkaline vapors, demonstrating great potential for the multi-detection of acid/alkaline vapors.
Collapse
Affiliation(s)
| | | | | | - Chunling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China; (Y.S.)
| | - Fang Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China; (Y.S.)
| |
Collapse
|
6
|
Yu D, Cheng S, Li Y, Su W, Tan M. Recent advances on natural colorants-based intelligent colorimetric food freshness indicators: fabrication, multifunctional applications and optimization strategies. Crit Rev Food Sci Nutr 2023; 64:12448-12472. [PMID: 37655606 DOI: 10.1080/10408398.2023.2252904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
With the increasing concerns of food safety and public health, tremendous efforts have been concentrated on the development of effective, reliable, nondestructive methods to evaluate the freshness level of different kinds of food. Natural colorants-based intelligent colorimetric indicators which are typically constructed with natural colorants and polymer matrices has been regarded as an innovative approach to notify the customers and retailers of the food quality during the storage and transportation procedure in real-time. This review briefly elucidates the mechanism of natural colorants used for intelligent colorimetric indicators and fabrication methodologies of natural colorants-based food freshness indicators. Subsequently, their multifunctional applications in intelligent food packaging systems like antioxidant packaging, antimicrobial packaging, biodegradable packaging, UV-blocking packaging and inkless packaging are well introduced. This paper also summarizes several optimizing strategies for the practical application of this advanced technology from different perspectives. Strategies like adopting a hydrophobic matrix, constructing double-layer film and encapsulation have been developed to improve the stability of the indicators. Co-pigmentation, metal ion complexation, pigment-mixing and using substrates with high surface area are proved to be effective to enhance the sensitivity of the indicators. Approaches include multi-index evaluation, machine learning and smartphone-assisted evaluation have been proven to improve the accuracy of the intelligent food freshness indicators. Finally, future research opportunities and challenges are proposed. Based on the fundamental understanding of natural colorants-based intelligent colorimetric food freshness indicators, and the latest research and findings from literature, this review article will help to develop better, lower cost and more reliable food freshness evaluation technique for modern food industry.
Collapse
Affiliation(s)
- Deyang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Yakub G, Manolova NE, Rashkov IB, Markova N, Toshkova R, Georgieva A, Mincheva R, Toncheva A, Raquez JM, Dubois P. Pegylated Curcumin Derivative: Water-Soluble Conjugates with Antitumor and Antibacterial Activity. ACS OMEGA 2022; 7:36403-36414. [PMID: 36278048 PMCID: PMC9583079 DOI: 10.1021/acsomega.2c04173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
During the past years, the synthesis of polymer prodrug structures, based on natural phytochemical compounds with a great range of valuable biological properties, has become a promising solution in cancer prevention, imaging, and detection. Curcumin (Curc) remains one of the most studied natural products, due to the impressive palette of biological properties and the possibility to be easily loaded in various micro- and nanostructures and chemically modified. In this study, pegylated curcumin derivatives were prepared by a direct esterification reaction between poly(ethylene glycol)diacid (PEG of 600 g/mol molar mass, PEG600) and Curc in the presence of N,N'-dicyclohexylcarbodiimide (PEG600-Curc). The successful reaction resulted in a water-soluble stable product that was characterized by infrared spectroscopy (Fourier transform infrared (FT-IR)) and proton (1H) and carbon (13C) NMR. The effect of the pH values of buffer solutions on PEG600-Curc spectral properties (absorption and photoluminescence) was investigated by UV-vis and fluorescence spectrophotometry. Based on the biological tests, it was confirmed that PEG600-Curc exhibits cytotoxic activity against Graffi cell lines, as a function of the Curc concentration in the conjugate and the incubation time. PEG600-Curc antibacterial activity was validated in microbiological tests against pathogenic microorganisms such as Staphylococcus aureus. Most importantly, despite the covalent attachment of Curc to PEG and the slight reduction in the therapeutic index of the conjugate, both the anticancer and antimicrobial activities remain the highest reported, thus opening the gate for further, more clinically oriented studies.
Collapse
Affiliation(s)
- Guldjan Yakub
- Laboratory
of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
| | - Nevena E. Manolova
- Laboratory
of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
| | - Iliya B. Rashkov
- Laboratory
of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113Sofia, Bulgaria
| | - Nadya Markova
- Institute
of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 26, BG-1113Sofia, Bulgaria
| | - Reneta Toshkova
- Institute
of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, 1113Sofia, Bulgaria
| | - Ani Georgieva
- Institute
of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, 1113Sofia, Bulgaria
| | - Rosica Mincheva
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| | - Antoniya Toncheva
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| | - Jean-Marie Raquez
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| | - Philippe Dubois
- Service
des Matériaux Polymères et Composites (SMPC), Université de Mons, Place du Parc 20, B7000Mons, Belgium
| |
Collapse
|
8
|
Rozman M, Alif M, Bren U, Lukšič M. Electrochromic Device Demonstrator from Household Materials. JOURNAL OF CHEMICAL EDUCATION 2022; 99:3595-3600. [PMID: 36246424 PMCID: PMC9558367 DOI: 10.1021/acs.jchemed.2c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Electrochromism encompasses reversible changes of material's optical properties (color, opacity) under the influence of an external electric current or applied voltage. The effect has been known for decades, but its importance continues to grow due to the rapid development of smart systems and the accompanying demand to build devices that consume less power. Most commercial electrochromic devices (ECDs) require sophisticated chemicals and advanced material preparation techniques. Also, the demonstration of electrochromism in chemistry classes mainly uses expensive WO3 films, intrinsically conductive polymers, and/or optically transparent electrodes (OTEs). The aim of this article is to present a simple and fast educational method to build ECDs from household materials without the need for OTEs: unsharpened kitchen knives are used as electrodes, curcumin from turmeric is used as the electrochromic dye, and baking soda is used as the electrolyte. The laboratory experiments presented will help students gain a deeper understanding of the fundamentals of electrochemistry (electrolysis, pH change) and electrochromism (in our case, color changes due to pH-induced keto-enol tautomerism of curcumin).
Collapse
Affiliation(s)
- Martin Rozman
- Centre
for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, SK-91150 Trenčín, Slovakia
- Faculty
of Chemistry and Chemical Technology, University
of Maribor, Smetanova
ulica 17, SI-2000 Maribor, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Mojca Alif
- First
High School in Celje, Kajuhova ulica 2, SI-3000 Celje, Slovenia
| | - Urban Bren
- Faculty
of Chemistry and Chemical Technology, University
of Maribor, Smetanova
ulica 17, SI-2000 Maribor, Slovenia
| | - Miha Lukšič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Mohseni-Shahri F, Mehrzad A, Khoshbin Z, Sarabi-Jamab M, Khanmohamadi F, Verdian A. Polyphenol-loaded bacterial cellulose nanofiber as a green indicator for fish spoilage. Int J Biol Macromol 2022; 224:1174-1182. [DOI: 10.1016/j.ijbiomac.2022.10.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
10
|
rasouli Z, ghavami R. Fading of nanocurcumin-based configured biosensor array for differentiation of carrier proteins in biological fluids. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Zong S, Liu Y, Park HJ, Ye M, Li J. Curcumin solid dispersion based on three model acrylic polymers: formulation and release properties. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e18946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Shuai Zong
- Hefei University of Technology, PR China; Yangzhou University, PR China
| | - Yuting Liu
- Hefei University of Technology, PR China
| | | | - Ming Ye
- Hefei University of Technology, PR China
| | - Jinglei Li
- Hefei University of Technology, PR China
| |
Collapse
|
12
|
Comparative Study of Chitosan and Oligochitosan Coatings on Mucoadhesion of Curcumin Nanosuspensions. Pharmaceutics 2021; 13:pharmaceutics13122154. [PMID: 34959433 PMCID: PMC8703452 DOI: 10.3390/pharmaceutics13122154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Curcumin nanosuspensions (Cur-NSs), chitosan-coated Cur-NSs (CS-Cur-NSs), and oligochitosan-coated Cur-NSs (OCS-Cur-NSs) were prepared by using an ultrasonic homogenization technique. The mean particle size of Cur-NSs was 210.9 nm and significantly (p < 0.05) increased to 368.8 nm by CS coating and decreased to 172.8 nm by OCS coating. Encapsulation efficiencies of Cur-NSs, CS-Cur-NSs, and OCS-Cur-NSs were 80.6%, 91.4%, and 88.5%, respectively. The mucin adsorption of Cur-NSs was steeply increased about 3–4 times by CS and OCS coating. Morphological changes of these NSs were studied using circular dichroism spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and transmission electron microscopy (TEM). Thus, CS-Cur-NSs and OCS-Cur-NSs showed great potential as mucoadhesive nano-carriers for the efficient delivery of water insoluble compounds like curcumin to the gastrointestinal system.
Collapse
|
13
|
|
14
|
Zou X, Ji Y, Li H, Wang Z, Shi L, Zhang S, Wang T, Gong Z. Recent advances of environmental pollutants detection via paper-based sensing strategy. LUMINESCENCE 2021; 36:1818-1836. [PMID: 34342392 DOI: 10.1002/bio.4130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/22/2022]
Abstract
Paper has become one of the most promising substrates for building low-cost and powerful sensing platforms due to its self-pumping ability and compatibility with multiple patterning methods. Paper-based sensors have been greatly developed in the field of environmental monitoring. In this review, we introduced the research and application of paper-based sensors in environmental monitoring, focusing on the deposition and patterning methods of building paper-based sensors, and summarized the applications of detecting environmental pollutants, including metal ions, anions, explosives, neurotoxins, volatile organic compounds, and small molecules. In addition, the development prospects and challenges of promoting paper-based sensors are also discussed. The current review will provide references for the construction of portable paper-based sensors, and has implications for the field of on-site real-time detection of the environment.
Collapse
Affiliation(s)
- Xue Zou
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yayun Ji
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hangzhou Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhaoli Wang
- Chengdu Academy of Environmental Sciences, Chengdu, China
| | - Linhong Shi
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Shengli Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tengfei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.,State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Li Y, Wang Y, Chen S, Wang Z, Feng L. Inkjet-printed paper-based sensor array for highly accurate pH sensing. Anal Chim Acta 2021; 1154:338275. [PMID: 33736797 DOI: 10.1016/j.aca.2021.338275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
In this work, a novel paper-based colorimetric sensor array was developed by inkjet printing method with polyethylene glycol (PEG) immobilization system. Eight commercially available pH indicators with sequential pH segments in nearly whole pH range were dissolved in nine mixed inks to fabricate the 3 × 3 sensor array on mixed cellulose ester (MCE) paper. Based on homogeneous deposition of inkjet printing, the eight pH indicators were sufficiently immobilized on MCE paper with the assistance of PEG-400, which guaranteed pH detection of aqueous samples on sensor array without hydrophobic barriers. Besides, the indicating range of each indicator obtained an extension through the addition of PEG 400, which remarkably enriched the distinguishable capability of sensor array and benefited for high resolution of pH detection. As such, the as-fabricated paper-based sensor array exhibited an excellent discrimination ability in pH range of 1.00-13.60 with a high resolution of 0.20 pH unit, not only for standard pH buffer solutions but for real aqueous samples.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Shuqin Chen
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhenming Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
16
|
Yildiz E, Sumnu G, Kahyaoglu LN. Monitoring freshness of chicken breast by using natural halochromic curcumin loaded chitosan/PEO nanofibers as an intelligent package. Int J Biol Macromol 2020; 170:437-446. [PMID: 33383083 DOI: 10.1016/j.ijbiomac.2020.12.160] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023]
Abstract
Intelligent packaging is important to get information about real time quality of foods. The objective of this study was to develop an electrospun nanofiber halochromic pH sensor film using curcumin, chitosan (CS) and polyethylene oxide (PEO) to monitor chicken freshness. Conductivity and rheological behavior of CS/PEO/curcumin solutions were measured to understand the effect of solution properties on the morphology of the fibers. The morphological characteristics of nanofiber films were investigated by Field Emission Scanning Electron Microscopy (FESEM). Average diameter of the fibers was found to be between 283 ± 27 nm and 338 ± 35 nm. It was concluded that increasing CS amount in nanofibers decreased the diameter of the fibers. Thermal analysis and water vapor permeability features of the pH sensor were also examined. Color changes of curcumin loaded CS/PEO nanofiber film was evaluated on chicken breast package at 4 °C. The color of nanofiber film changed from bright yellow to reddish color which provided an opportunity to detect color changes by even the naked eyes of the untrained consumer. As a quality indicator, surface pH changes of the chicken breast and TVB-N (total volatile basic nitrogen) were measured. At the end of the day 5, pH value of 6.53 ±0.08 and TVB-N concentration of 23.45 ±3.35 mg/100 g indicated that food was at the edge of the acceptance level. As a result, curcumin loaded nanofiber satisfied the expectation and gave an opportunity to visualize real time monitoring of chicken spoilage.
Collapse
Affiliation(s)
- Eda Yildiz
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey.
| | - Gulum Sumnu
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey.
| | | |
Collapse
|
17
|
Naghdi T, Faham S, Mahmoudi T, Pourreza N, Ghavami R, Golmohammadi H. Phytochemicals toward Green (Bio)sensing. ACS Sens 2020; 5:3770-3805. [PMID: 33301670 DOI: 10.1021/acssensors.0c02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because of numerous inherent and unique characteristics of phytochemicals as bioactive compounds derived from plants, they have been widely used as one of the most interesting nature-based compounds in a myriad of fields. Moreover, a wide variety of phytochemicals offer a plethora of fascinating optical and electrochemical features that pave the way toward their development as optical and electrochemical (bio)sensors for clinical/health diagnostics, environmental monitoring, food quality control, and bioimaging. In the current review, we highlight how phytochemicals have been tailored and used for a wide variety of optical and electrochemical (bio)sensing and bioimaging applications, after classifying and introducing them according to their chemical structures. Finally, the current challenges and future directions/perspective on the optical and electrochemical (bio)sensing applications of phytochemicals are discussed with the goal of further expanding their potential applications in (bio)sensing technology. Regarding the advantageous features of phytochemicals as highly promising and potential biomaterials, we envisage that many of the existing chemical-based (bio)sensors will be replaced by phytochemical-based ones in the near future.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| | - Shadab Faham
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, Tehran 14335-186, Iran
| |
Collapse
|
18
|
Extruded low density polyethylene-curcumin film: A hydrophobic ammonia sensor for intelligent food packaging. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100595] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Pourreza N, Sharifi H, Golmohammadi H. A Green Chemosensor for Colorimetric Determination of Phosphate Ion in Soil, Bone, and Water Samples Using Curcumin Nanoparticles. ANAL SCI 2020; 36:1297-1302. [PMID: 32507834 DOI: 10.2116/analsci.20p101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article presents a sensitive and straightforward colorimetric chemosensor for the determination of phosphate ion utilizing curcumin nanoparticles (CUNPs) as the sensing system. The color of as-prepared CUNPs can be changed from yellow to orange upon adding iron(III) ions due to the formation of a complex with CUNPs. However, in the presence of phosphate ions, iron(III) ions prefer to bind to phosphate ions and, subsequently the color of CUNPs is selectively recovered because of releasing the iron(III) ions from the CUNPs-iron(III) complex. Therefore, in this work the selective color changing of the CUNPs-iron(III) system upon the addition of phosphate ions was used for the quantitative sensing of phosphate ions. Various factors, such as the pH, concentration of iron(III) and volume of CUNPs, were examined and the optimum conditions were established. A linear calibration graph over the range of 10 - 400 ng mL-1 for phosphate (r = 0.9995) was achieved using the optimal conditions. The limit of detection (LOD) of the proposed method for phosphate was 7.1 ng mL-1 and the relative standard deviation (RSD) for measuring 50 ng mL-1 of phosphate was 3.7% (n = 8). The developed method was applied for the measurement of phosphate in water, soil, and bone samples. Satisfactory results were obtained.
Collapse
Affiliation(s)
- Nahid Pourreza
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz
| | - Hoda Sharifi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz
| | | |
Collapse
|
20
|
Kumar R, Uppal S, Kaur K, Mehta S. Curcumin nanoemulsion as a biocompatible medium to study the metal ion imbalance in a biological system. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
|
22
|
Curcumin-loaded electrospun nonwoven as a colorimetric indicator for volatile amines. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109493] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Naghdi T, Golmohammadi H, Yousefi H, Hosseinifard M, Kostiv U, Horák D, Merkoçi A. Chitin Nanofiber Paper toward Optical (Bio)sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15538-15552. [PMID: 32148018 DOI: 10.1021/acsami.9b23487] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Because of numerous inherent and unrivaled features of nanofibers made of chitin, the second most plentiful natural-based polymer (after cellulose), including affordability, abundant nature, biodegradability, biocompatibility, commercial availability, flexibility, transparency, and extraordinary mechanical and physicochemical properties, chitin nanofibers (ChNFs) are being applied as one of the most appealing bionanomaterials in a myriad of fields. Herein, we exploited the beneficial properties offered by the ChNF paper to fabricate transparent, efficient, biocompatible, flexible, and miniaturized optical sensing bioplatforms via embedding/immobilizing various plasmonic nanoparticles (silver and gold nanoparticles), photoluminescent nanoparticles (CdTe quantum dots, carbon dots, and NaYF4:Yb3+@Er3+&SiO2 upconversion nanoparticles) along with colorimetric reagents (curcumin, dithizone, etc.) in the 3D nanonetwork scaffold of the ChNF paper. Several configurations, including 2D multi-wall and 2D cuvette patterns with hydrophobic barriers/walls and hydrophilic test zones/channels, were easily printed using laser printing technology or punched as spot patterns on the dried ChNF paper-based nanocomposites to fabricate the (bio)sensing platforms. A variety of (bio)chemicals as model analytes were used to confirm the efficiency and applicability of the fabricated ChNF paper-based sensing bioplatforms. The developed (bio)sensors were also coupled with smartphone technology to take the advantages of smartphone-based monitoring/sensing devices along with the Internet of Nano Things (IoNT)/the Internet of Medical Things (IoMT) concepts for easy-to-use sensing applications. Building upon the unrivaled and inherent features of ChNF as a very promising bionanomaterial, we foresee that the ChNF paper-based sensing bioplatforms will emerge new opportunities for the development of innovative strategies to fabricate cost-effective, simple, smart, transparent, biodegradable, miniaturized, flexible, portable, and easy-to-use (bio)sensing/monitoring devices.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
- ICN2 - Nanobioelectronics & Biosensors Group, Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Hamed Golmohammadi
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Hossein Yousefi
- Laboratory of Sustainable Nanomaterials, Department of Wood Engineering and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Mohammad Hosseinifard
- Nanosensor Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran, Iran
| | - Uliana Kostiv
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského Sq. 2, Prague 6 162 06, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského Sq. 2, Prague 6 162 06, Czech Republic
| | - Arben Merkoçi
- ICN2 - Nanobioelectronics & Biosensors Group, Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, Bellaterra, Barcelona 08193, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
24
|
Rasouli Z, Ghavami R. Simultaneous optical detection of human serum albumin and transferrin in body fluids. Mikrochim Acta 2020; 187:208. [DOI: 10.1007/s00604-020-4178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
|
25
|
Boonkanon C, Phatthanawiwat K, Wongniramaikul W, Choodum A. Curcumin nanoparticle doped starch thin film as a green colorimetric sensor for detection of boron. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117351. [PMID: 31336322 DOI: 10.1016/j.saa.2019.117351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/16/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
A tapioca starch film doped with curcumin nanoparticles was successfully fabricated and applied as a novel green colorimetric sensor for detection of boron in wastewater. Curcumin nanoparticles (curn, 30-90 nm) extracted from turmeric powder were used as a green probe, while tapioca starch was used as a natural support substrate. A yellow thin film (51 μm thick) fabricated on a used plastic spoon turned red-brown after immersion in boron solution (pH 9) for 15 min with excellent selectivity. The film costs only 0.0007 USD, while the cost of the sensor (curn-film on new plastic spoon) was 0.004 USD. After use the film could be completely washed from the plastic, it being biodegradable, while the used plastic spoon could be re-used to fabricate a new sensor at least 10 times. The good 1.52%RSD precision was obtained across three lots fabricated. When the curn-film was used in conjunction with digital image colorimetry (DIC), a simple and rapid quantification of boron was achieved. The green color layer in reflected light image of the red-brown product (IG) provided the highest sensitivity (64 ± 1 a.u. L mg-1) and the lowest detection limit of 0.052 ± 0.001 mg L-1. The intra-day testing (9 films) had 2.41 to 4.34%RSD, while the inter-day testing had 2.29 to 5.66%RSD (15 films, 5 days). Accuracy in terms of relative error for control samples (0.40 mg L-1) was +3.63%. Wastewater samples from Para-rubber wood processing plant were quantified by curn-film and DIC, giving 4248 ± 391 mg L-1 boron concentration with no significant difference to ICP determination at 95% confidence level. The sensors after storage in a desiccator for a year gave readings changed by only +3.5% and -2.1% relative to freshly prepared sensors.
Collapse
Affiliation(s)
- Chanita Boonkanon
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Kharittha Phatthanawiwat
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Worawit Wongniramaikul
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Aree Choodum
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand.
| |
Collapse
|
26
|
Akar Z, Burnaz NA. A new colorimetric method for CUPRAC assay with using of TLC plate. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Rahbar M, Wheeler AR, Paull B, Macka M. Ion-Exchange Based Immobilization of Chromogenic Reagents on Microfluidic Paper Analytical Devices. Anal Chem 2019; 91:8756-8761. [DOI: 10.1021/acs.analchem.9b01288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohammad Rahbar
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
| | - Mirek Macka
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
28
|
A paper-based optical probe for chromium by using gold nanoparticles modified with 2,2′-thiodiacetic acid and smartphone camera readout. Mikrochim Acta 2018; 185:374. [DOI: 10.1007/s00604-018-2875-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/17/2018] [Indexed: 01/20/2023]
|
29
|
Umerska A, Gaucher C, Oyarzun-Ampuero F, Fries-Raeth I, Colin F, Villamizar-Sarmiento MG, Maincent P, Sapin-Minet A. Polymeric Nanoparticles for Increasing Oral Bioavailability of Curcumin. Antioxidants (Basel) 2018; 7:antiox7040046. [PMID: 29587350 PMCID: PMC5946112 DOI: 10.3390/antiox7040046] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Despite the promising biological and antioxidant properties of curcumin, its medical applications are limited due to poor solubility in water and low bioavailability. Polymeric nanoparticles (NPs) adapted to oral delivery may overcome these drawbacks. Properties such as particle size, zeta potential, morphology and encapsulation efficiency were assessed. Then, the possibility of storing these NPs in a solid-state form obtained by freeze-drying, in vitro curcumin dissolution and cytocompatibility towards intestinal cells were evaluated. Curcumin-loaded Eudragit® RLPO (ERL) NPs showed smaller particle diameters (245 ± 2 nm) and better redispersibility after freeze-drying than either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) NPs. The former NPs showed lower curcumin encapsulation efficiency (62%) than either PLGA or PCL NPs (90% and 99%, respectively). Nevertheless, ERL NPs showed rapid curcumin release with 91 ± 5% released over 1 h. The three curcumin-loaded NPs proposed in this work were also compatible with intestinal cells. Overall, ERL NPs are the most promising vehicles for increasing the oral bioavailability of curcumin.
Collapse
Affiliation(s)
- Anita Umerska
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; (A.U.); (I.F.-R.); (F.C.); (P.M.); (A.S.-M.)
| | - Caroline Gaucher
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; (A.U.); (I.F.-R.); (F.C.); (P.M.); (A.S.-M.)
- Correspondence: ; Tel.: +33-3-72-74-73-49
| | - Felipe Oyarzun-Ampuero
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 758-0150 Santiago, Chile; (F.O.-A.); (M.G.V.-S.)
| | - Isabelle Fries-Raeth
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; (A.U.); (I.F.-R.); (F.C.); (P.M.); (A.S.-M.)
| | - Florence Colin
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; (A.U.); (I.F.-R.); (F.C.); (P.M.); (A.S.-M.)
| | - María Gabriela Villamizar-Sarmiento
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 758-0150 Santiago, Chile; (F.O.-A.); (M.G.V.-S.)
| | - Philippe Maincent
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; (A.U.); (I.F.-R.); (F.C.); (P.M.); (A.S.-M.)
| | - Anne Sapin-Minet
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France; (A.U.); (I.F.-R.); (F.C.); (P.M.); (A.S.-M.)
| |
Collapse
|
30
|
Rauytanapanit M, Sukmanee T, Wongravee K, Praneenararat T. Paper-based chemical reaction arrays as an effective tool for geographical indication of turmerics. RSC Adv 2018; 8:41950-41955. [PMID: 35558761 PMCID: PMC9092153 DOI: 10.1039/c8ra09248f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/08/2018] [Indexed: 11/21/2022] Open
Abstract
Geographical indications have gained increasing importance as a powerful marketing tool for highly valuable products especially foods. In this study, a unique and synergistic combination of chemical reaction arrays on paper and chemometric analysis was used to uncover geographical indication of turmerics, an important food ingredient in several cultures. The key to effective differentiation was based on the subtle differences in the compositions of compounds found in each sample, mainly curcumin and derivatives. When these compounds reacted with various reagents in the form of paper arrays, different optical and fluorescence profiles were generated, which can then be exploited by chemometrics. As a result, our strategy could provide up to 94% prediction accuracy without the need for any sophisticated instruments. Paper-based chemical arrays and chemometrics uncovered clear geographical indications of turmeric samples from various origins.![]()
Collapse
Affiliation(s)
| | - Thanyada Sukmanee
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok
- Thailand
| | - Kanet Wongravee
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok
- Thailand
| | - Thanit Praneenararat
- Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok
- Thailand
| |
Collapse
|
31
|
Almeida MIG, Jayawardane BM, Kolev SD, McKelvie ID. Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta 2018; 177:176-190. [DOI: 10.1016/j.talanta.2017.08.072] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/27/2022]
|
32
|
Akar Z, Küçük M, Doğan H. A new colorimetric DPPH • scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J Enzyme Inhib Med Chem 2017; 32:640-647. [PMID: 28262029 PMCID: PMC6009954 DOI: 10.1080/14756366.2017.1284068] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,2-Diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging, the most commonly used antioxidant method with more than seventeen thousand articles cited, is very practical; however, as with most assays, it has the major disadvantage of dependence on a spectrophotometer. To overcome this drawback, the colorimetric determination of the antioxidant activity using a scanner and freely available Image J software was developed. In this new method, the mixtures of solutions of DPPH• and standard antioxidants or extracts of common medicinal herbs were dropped onto TLC plates, after an incubation period. The spot images were evaluated with Image J software to determine CSC50 values, the sample concentrations providing 50% colour reduction, which were very similar with the SC50 values obtained with spectrophotometric method. The advantages of the new method are the use of lower amounts of reagents and solvents, no need for costly spectrophotometers, and thus significantly lowered costs, and convenient implementation in any environment and situation.
Collapse
Affiliation(s)
- Zeynep Akar
- a Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences , Gumushane University , Gumushane , Turkey
| | - Murat Küçük
- b Department of Chemistry, Faculty of Sciences , Karadeniz Technical University , Trabzon , Turkey.,c Faculty of Engineering and Natural Sciences , Gumushane University , Gumushane , Turkey
| | - Hacer Doğan
- b Department of Chemistry, Faculty of Sciences , Karadeniz Technical University , Trabzon , Turkey
| |
Collapse
|
33
|
Stanić Z. Curcumin, a Compound from Natural Sources, a True Scientific Challenge - A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:1-12. [PMID: 27995378 DOI: 10.1007/s11130-016-0590-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Curcumin, a plant-derived polyphenolic compound, naturally present in turmeric (Curcuma longa), has been the subject of intensive investigations on account of its various activities. The implementation of safe, beneficial and highly functional compounds from natural sources in human nutrition/prevention/therapy requires some modifications in order to achieve their multi-functionality, improve their bioavailability and delivery strategies, with the main aim to enhance their effectiveness. The low aqueous solubility of curcumin, its rapid metabolism and elimination from the body, and consequently, poor bioavailability, constitute major obstacles to its application. The main objectives of this review are related to reported strategies to overcome these limitations and, thereby, improve the solubility, stability and bioavailability of curcumin. The effectiveness of curcumin could be greatly improved by using nanoparticle-based carriers. The significance of the quality of a substance delivery system is reflected in the fact that carrying curcumin as a food additive/nutrition also means carrying the active biological product/drug. This review summarizes the state of the art, and highlights some examples and the most significant advances in the field of curcumin research.
Collapse
Affiliation(s)
- Zorka Stanić
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, Kragujevac, 34000, Serbia.
| |
Collapse
|
34
|
Enhancement of bioactivity and bioavailability of curcumin with chitosan based materials. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0243-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Cunningham JC, DeGregory PR, Crooks RM. New Functionalities for Paper-Based Sensors Lead to Simplified User Operation, Lower Limits of Detection, and New Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:183-202. [PMID: 27049635 DOI: 10.1146/annurev-anchem-071015-041605] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the last decade, paper analytical devices (PADs) have evolved into sophisticated yet simple sensors with biological and environmental applications in the developed and developing world. The focus of this review is the technological improvements that have over the past five years increased the applicability of PADs to real-world problems. Specifically, this review reports on advances in sample processing, fluid flow control, signal amplification, and component integration. Throughout, we have sought to emphasize advances that retain the main virtues of PADs: low cost, portability, and simplicity.
Collapse
Affiliation(s)
| | - Paul R DeGregory
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224;
| | - Richard M Crooks
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224;
| |
Collapse
|
36
|
Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1841-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens Bioelectron 2016; 77:774-89. [DOI: 10.1016/j.bios.2015.10.032] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/27/2015] [Accepted: 10/10/2015] [Indexed: 01/06/2023]
|
38
|
Figueredo F, Garcia PT, Cortón E, Coltro WKT. Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11-15. [PMID: 26693736 DOI: 10.1021/acsami.5b10027] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Spheres, tubes, and planar-shaped nanomaterials as Fe3O4 nanoparticles (MNPs), multiwalled carbon nanotubes (MWCNT), and graphene oxide (GO) were used for the first time to treat microfluidic paper-based analytical devices (μPADs) and create a biocompatible layer with high catalytic surface. Once glucose measurements are critical for diabetes or glycosuria detection and monitoring, the analytical performance of the proposed devices was studied by using bienzymatic colorimetric detection of this carbohydrate. The limit of detection values achieved for glucose with μPADs treated with MNPs, MWCNT, and GO were 43, 62, and 18 μM, respectively. The paper surface modification solves problems associated with the lack of homogeneity on color measurements that compromise the sensitivity and detectability levels in clinical diagnosis.
Collapse
Affiliation(s)
- Federico Figueredo
- Instituto de Química, Universidade Federal de Goiás , Goiânia, GO 74690-900, Brazil
- Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA) , Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paulo T Garcia
- Instituto de Química, Universidade Federal de Goiás , Goiânia, GO 74690-900, Brazil
| | - Eduardo Cortón
- Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA) , Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás , Goiânia, GO 74690-900, Brazil
| |
Collapse
|
39
|
Pourreza N, Golmohammadi H, Rastegarzadeh S. Highly selective and portable chemosensor for mercury determination in water samples using curcumin nanoparticles in a paper based analytical device. RSC Adv 2016. [DOI: 10.1039/c6ra08879a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Curcumin nanoparticle (CURNs) are employed in a paper based analytical device (PADs) for monitoring Hg2+ concentration.
Collapse
Affiliation(s)
- Nahid Pourreza
- Department of Chemistry
- Faculty of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| | - Hamed Golmohammadi
- Department of Chemistry
- Faculty of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| | - Saadat Rastegarzadeh
- Department of Chemistry
- Faculty of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| |
Collapse
|
40
|
Liu Y, Cai Y, Jiang X, Wu J, Le X. Molecular interactions, characterization and antimicrobial activity of curcumin–chitosan blend films. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.08.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Mahmood K, Zia KM, Zuber M, Salman M, Anjum MN. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review. Int J Biol Macromol 2015; 81:877-90. [PMID: 26391597 DOI: 10.1016/j.ijbiomac.2015.09.026] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/05/2015] [Accepted: 09/16/2015] [Indexed: 01/15/2023]
Abstract
Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad, Pakistan.
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Mahwish Salman
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
42
|
Liang F, Wang D, Ma P, Wang X, Song D, Yu Y. A highly selective and sensitive ratiometric fluorescent probe for pH measurement based on fluorescence resonance energy transfer. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5124-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Pávai M, Mihály J, Paszternák A. pH and CO2 Sensing by Curcumin-Coloured Cellophane Test Strip. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0102-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|