1
|
Nishimura K, Tanaka S, Miura K, Okada S, Suzuki M, Nakamura H. A Water-Soluble Small Molecule Boron Carrier Targeting Biotin Receptors for Neutron Capture Therapy. ACS OMEGA 2024; 9:51631-51640. [PMID: 39758612 PMCID: PMC11696430 DOI: 10.1021/acsomega.4c09388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
A critical challenge in boron neutron capture therapy (BNCT) is expanding its effectiveness through the development of novel boron agents with different mechanisms of action than the approved drug 4-borono-l-phenylalanine (BPA). In this study, we developed a small molecule boron carrier, biotinyl-closo-dodecaborate conjugate with an iodophenyl moiety (BBC-IP), incorporating biotin as a ligand for biotin receptors overexpressed in various cancer cells, alongside an albumin ligand and boron source. BBC-IP exhibited high water solubility, minimal cytotoxicity, and superior cellular uptake compared to BPA in both human and mouse cancer cells. Biodistribution studies revealed that BBC-IP achieved enhanced tumor accumulation (9.7 μg [B]/g, 3 h) in mouse colon tumors, surpassing BPA's accumulation levels (7.2 μg [B]/g, 3 h) at a dose of 15 mg [B]/kg. However, despite this improved tumor accumulation, BPA demonstrated superior BNCT efficacy. The intracellular localization of boron agents in tumor cells revealed that BPA localized throughout the cell, whereas BBC-IP localized mainly in the cytoplasm. These results indicate the intratumoral localization, as well as tumor accumulation are critical for the efficacy of novel BNCT agents.
Collapse
Affiliation(s)
- Kai Nishimura
- School
of Life Science and Technology, Institute
of Science Tokyo, 4259
Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Shota Tanaka
- Laboratory
for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuki Miura
- School
of Life Science and Technology, Institute
of Science Tokyo, 4259
Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Laboratory
for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Okada
- School
of Life Science and Technology, Institute
of Science Tokyo, 4259
Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Laboratory
for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minoru Suzuki
- Institute
for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010,
Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroyuki Nakamura
- School
of Life Science and Technology, Institute
of Science Tokyo, 4259
Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Laboratory
for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
2
|
Jalalvand AR. A novel quadruple templates molecularly imprinted polymer electrochemical sensor assisted by second-order calibration methods for detection of Sustanon abuse. SENSING AND BIO-SENSING RESEARCH 2023. [DOI: 10.1016/j.sbsr.2023.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
3
|
Jalalvand AR, Akbari V, Soleimani S, Mohammadi G, Farshadnia T, Farshadnia P. Developing a novel nano-drug delivery system for delivery of quinapril according to experimental and chemometrical evidence. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Jalalvand AR. Chemometrics-assisted electrochemical biosensing of cholesterol as the sole precursor of steroids by a novel electrochemical biosensor. Steroids 2023; 190:109159. [PMID: 36566822 DOI: 10.1016/j.steroids.2022.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
This project was performed with the aims of increasing the sensitivity of differential pulse voltammetry (DPV) which itself is a sensitive electroanalytical technique, and also to compare the area under peak (univariate calibration), height of peak (univariate calibration) and whole of vector (multivariate calibration) for calibration purposes. These topics were investigated by fabrication of a novel electrochemical biosensor for determination of cholesterol (CHO). The procedure used in this project was based on the synthesis of molecularly imprinted polymers (MIPs) to the preconcentration of CHO and its biosensing by a rotating glassy carbon electrode (GCE) modified by co-immobilization of cholesterol oxidase (CO), cholesterol esterase (CE) and horseradish peroxidase (HP) onto multiwalled carbon nanotubes-ionic liquid (COCEHP/MWCNTs-IL/GCE). The results showed that the hydrodynamic DPV (HYDPV) was much more sensitive than DPV and using the area under peak for univariate calibration purposes was more suitable than height of peak. Adsorption at the electrode surface is an important trouble which affects the height and position of voltammetric peaks, but the area under peak is not affected by adsorption therefore, it can be more suitable for univariate calibration purposes. The biosensor response was also calibrated by chronoamperometry and the results confirmed that the HYDPV was more sensitive than chronoamperometry. The next attempt was based on recording the biosensor responses based on second-order HYDPV data and modeling of them (whole of vectors) by three-way calibration methods which showed the best performance among the tested methods for determination of CHO. The biosensor response was long-term stable, repeatable and reproducible which was successfully applied to the analysis of serum sample towards determination of CHO whose results were comparable with a reference method.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Jalalvand AR, Rashidi Z, Khajenoori M. Sensitive and selective simultaneous biosensing of nandrolone and testosterone as two anabolic steroids by a novel biosensor assisted by second-order calibration. Steroids 2023; 189:109138. [PMID: 36379297 DOI: 10.1016/j.steroids.2022.109138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Recently, our research group have focused on an interesting project in which a novel dual template molecularly imprinted (DTMIP) biosensor was fabricated and assisted by second-order differential pulse voltammetric (DPV) data for simultaneous determination of nandrolone decanoate (ND) and testosterone decanoate (TS). An indium tin oxide (ITO) was modified with multiwalled carbon nanotubes-graphene-ionic liquid (MWCNT-Gr-IL) and then, the fullerene C60 was casted onto the surface of MWCNT-Gr-IL/ITO and electrochemically reduced. Finally, DTMIPs were electrosynthesized by electropolymerization of 4-aminobenzoic acid (ABA) as monomer with ND and TS as template molecules to obtain the final structure of the biosensor (DTMIP/C60/MWCNT-Gr-IL/ITO). Structure of the biosensor was electrochemically and microscopically characterized. The ND and TS generated two severely overlapped DPVs at the surface of the biosensor which forced us to assist the biosensor with three-way calibration by second-order DPV data to simultaneous determine them. Two second-order algorithms including multivariate curve resolution alternating least squares (MCR-ALS) and parallel factor analysis2 (PARAFAC2) were used to build second-order calibration models and evaluation of their performance in the analysis of synthetic samples showed more superiority of the MCR-ALS than PARAFC2 which motivated us to select PARAFC2 for the analysis of urine samples as real cases. Application of the biosensor assisted by PARAFC2 for the analysis of urine samples towards simultaneous determination of ND and TS was successful.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zeinab Rashidi
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| | - Maryam Khajenoori
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
6
|
Jalalvand AR, Akbari V, Bahramikia S. Two- and multi-way analyses of cardiolipin-cytochrome c interactions and exploiting second-order advantage for bio-sensing of cytochrome c. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
7
|
Jalalvand AR. Synthesis of a novel dual template molecularly imprinted polymer and its integration with fullerene C60 and multiwall carbon nanotubes for simultaneous electrochemical determination of ferritin and transferrin. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Moradi A, Adibi H, Akbari V, Jalalvand AR. Developing a novel amperometric method for biosensing of carbonic anhydrase II based on conventional and multi-way chemometric analyses of its inhibition by acetazolamide, dorzolamide and methazolamide. SENSING AND BIO-SENSING RESEARCH 2022; 37:100516. [DOI: 10.1016/j.sbsr.2022.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Izadi R, Arkan E, Jalalvand AR, Akbari V. Multivariate analyses to develop a novel drug delivery system: Trying to expanding the system to bio-sensing of the human serum albumin. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Akbari V, Jamasbi E, Korani S, Mohammadi-Motlagh HR, Mohammadi G, Jalalvand AR. Introducing an interesting and novel strategy based on exploiting first-order advantage from spectrofluorimetric data for monitoring three toxic metals in living cells. Toxicol Rep 2022; 9:647-655. [PMID: 35399215 PMCID: PMC8990214 DOI: 10.1016/j.toxrep.2022.03.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
In this work, we did our best to develop a novel and interesting analytical method based on coupling of spectrofluorimetry with first-order multivariate calibration techniques for simultaneous determination of lead (Pd), zinc (Zn) and cadmium (Cd) in HeLa cells. To achieve this goal, quenching of the emission of graphene (GR) was individually investigated in the presence of Pb, Zn and Cd and then, according to the linear ranges obtained from individual calibration graphs, a multivariate calibration model was developed based on modeling of the quenching of the emission of GR in the presence of the mixtures of Pb, Zn and Cd. First-order multivariate calibration models were constructed by partial least squares (PLS), principal component regression (PCR), orthogonal signal correction-PLS (OSC-PLS), continuum power regression (CPR), robust continuum regression (RCR) and partial robust M-regression (PRM) and their performances were evaluated and statistically compared. Finally, the OSC-PLS was chosen as the best model with the best practical performance for analytical purposes.
Collapse
Affiliation(s)
- Vali Akbari
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elaheh Jamasbi
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Korani
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali R. Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Jalalvand AR. Chemometrics assisted-electrochemical investigation of the binding and inhibition of calcineurin by tacrolimus: A combinatorial study. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Khan ZA, Hong PJS, Lee CH, Hong Y. Recent Advances in Electrochemical and Optical Sensors for Detecting Tryptophan and Melatonin. Int J Nanomedicine 2021; 16:6861-6888. [PMID: 34675512 PMCID: PMC8521600 DOI: 10.2147/ijn.s325099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophan and melatonin are pleiotropic molecules, each capable of influencing several cellular, biochemical, and physiological responses. Therefore, sensitive detection of tryptophan and melatonin in pharmaceutical and human samples is crucial for human well-being. Mass spectrometry, high-performance liquid chromatography, and capillary electrophoresis are common methods for both tryptophan and melatonin analysis; however, these methods require copious amounts of time, money, and manpower. Novel electrochemical and optical detection tools have been subjects of intensive research due to their ability to offer a better signal-to-noise ratio, high specificity, ultra-sensitivity, and wide dynamic range. Recently, researchers have designed sensitive and selective electrochemical and optical platforms by using new surface modifications, microfabrication techniques, and the decoration of diverse nanomaterials with unique properties for the detection of tryptophan and melatonin. However, there is a scarcity of review articles addressing the recent developments in the electrochemical and optical detection of tryptophan and melatonin. Here, we provide a critical and objective review of high-sensitivity tryptophan and melatonin sensors that have been developed over the past six years (2015 onwards). We review the principles, performance, and limitations of these sensors. We also address critical aspects of sensitivity and selectivity, limit and range of detection, fabrication process and time, durability, and biocompatibility. Finally, we discuss challenges related to tryptophan and melatonin detection and present future outlooks.
Collapse
Affiliation(s)
- Zeeshan Ahmad Khan
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
| | - Paul Jung-Soo Hong
- Department of Chemistry, Newton South High School, Newton, MA, 02459, USA
| | - Christina Hayoung Lee
- Department of Biology, College of Arts and Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | - Yonggeun Hong
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Department of Medicine, Division of Hematology/Oncology, Harvard Medical School-Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| |
Collapse
|
13
|
Bazdar P, Jalalvand AR, Akbari V, Khodarahmi R, Goicoechea HC. Resolving interactions of miglitol with normal and glycated human serum albumin by multivariate methods. Anal Biochem 2021; 630:114339. [PMID: 34411552 DOI: 10.1016/j.ab.2021.114339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023]
Abstract
This article reports results of one of our projects related to the investigation of interactions of miglitol (MIG) with normal human serum albumin (HSA) and glycated HSA (GHSA) with the help of recording spectroscopic and electrochemical data. The experimental data were analyzed by conventional and chemometric methods to extract useful information for comprehensive justifications of the interactions of the MIG with HSA and GHSA. Hard- and soft-modeling chemometric methods were used to extract quantitative and qualitative information. Then, molecular docking techniques were used to further investigation of the binding of the MIG with HSA and GHSA and the extracted results were compatible with those obtained by experimental methods. Finally, according to the binding of the BV with HSA and GHSA, second-order differential pulse voltammetric data were recorded and calibrated with three-way calibration methods for exploiting second-order advantage for determination of the GHSA in the presence of the HSA to develop a novel chemometrics assisted-electroanalytical method for diagnostic and monitoring of diabetic.
Collapse
Affiliation(s)
- Parsa Bazdar
- Research Institute Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Vali Akbari
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242, S3000ZAA, Santa Fe, Argentina
| |
Collapse
|
14
|
Mohamady A, Shahlaei M, Akbari V, Goicoechea HC, Jalalvand AR. Chemometrics-assisted multi-instrumental techniques for investigation of interactions of dapagliflozin with normal and glycated human serum albumin: Application to exploiting second-order advantage for determination of glycated human serum albumin as a biomarker for controlling diabetes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Jalili C, Akbari V, Khodarahmi R, Goicoechea HC, Jalalvand AR. Electrochemical-spectroscopic-chemometric investigation of binding and inhibition of myeloperoxidase by bivalirudin: Application to determination of myeloperoxidase as a biomarker for acute coronary syndrome. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Lv Y, Zhang X, Zhang P, Wang H, Ma Q, Tao X. Comparison between voltammetric detection methods for abalone-flavoring liquid. Open Life Sci 2021; 16:354-361. [PMID: 33954255 PMCID: PMC8051168 DOI: 10.1515/biol-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 11/15/2022] Open
Abstract
This article attempts to determine the most accurate classification method for different abalone-flavoring liquids. Three common voltammetric detection methods, namely, linear sweep voltammetry (LSV), cyclic voltammetry (CV), and square-wave voltammetry (SWV), were considered. To compare their classification accuracies of abalone-flavoring liquids, three methods were separately adopted to classify five different abalone-flavoring liquids, using a four-electrode (Au, Pt, Pd, and W) sensor array. Then the data acquired by each method were subject to the principal component analysis (PCA): the first three principal components whose eigenvalues were greater than 1 were extracted from each set of data; the cumulative variance contribution rate and the principal component scores of each method were obtained. The PCA results show that the first three principal components obtained by the CV had the highest cumulative variance contribution rate (91.307%), indicating that the CV can more comprehensively characterize the information of abalone-flavoring liquid samples than the other two methods. According to the principal component scores, compared with those of LSV and SWV, the same kind of samples detected by the CV were highly clustered and the different kinds of samples detected by the CV were greatly dispersed. This indicates that the CV can effectively distinguish between the five abalone-flavoring liquids. Finally, the detection data were further verified through probabilistic neural network and a support vector machine algorithm optimized by genetic algorithm. The results further confirm that the CV is more accurate than the other two methods in the classification of abalone-flavoring liquids. Therefore, the CV was recommended for the classification of abalone-flavoring liquids.
Collapse
Affiliation(s)
- Yan Lv
- Mechanical Engineering Department of Dalian Polytechnic University, Dalian 116034, China
| | - Xu Zhang
- Mechanical Engineering Department of Dalian Polytechnic University, Dalian 116034, China
| | - Peng Zhang
- Mechanical Engineering Department of Dalian Polytechnic University, Dalian 116034, China
| | - Huihui Wang
- Mechanical Engineering Department of Dalian Polytechnic University, Dalian 116034, China
| | - Qinyi Ma
- Mechanical Engineering Department of Dalian Polytechnic University, Dalian 116034, China
| | - Xueheng Tao
- Mechanical Engineering Department of Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
17
|
Chemometrics in investigation of small molecule-biomacromolecule interactions: A review. Int J Biol Macromol 2021; 181:478-493. [PMID: 33798569 DOI: 10.1016/j.ijbiomac.2021.03.184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/27/2021] [Indexed: 01/24/2023]
Abstract
Chemometrics is chemical discipline in which mathematical and statistical methods are coupled with chemical data to extract useful information which cannot be extracted by the use of conventional methods. When experimental techniques are assisted by chemometric methods, very interesting studies will be performed which enable us to obtain valuable information about the system under our study. Chemico-biological interactions are very useful studies which are performed to obtain information about binding of small molecules with biological macromolecules. Recently, these studies have been assisted by chemometric methods to perform advanced studies which can help us to have a deep insight to them. Literature survey showed us that multivariate analysis of the chemico-biological interactions is becoming popular and nowadays, chemometricians are using multivariate chemometric methods for resolving chemico-biological interactions. This article focuses on the works published in the literature to provide a background for those who are interested to work in this field and finally, the results will be discussed and concluded.
Collapse
|
18
|
Khodarahmi R, Akbari V, Mohammadi S, Farshadnia T, Rahimabadi MM, Goicoechea HC, Jalalvand AR. Chemometric modeling of the electrochemical data to investigate proline cis/trans isomeration effect on aggregation of Tau protein. Protein Expr Purif 2021; 182:105858. [PMID: 33639278 DOI: 10.1016/j.pep.2021.105858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/05/2023]
Abstract
Tau protein (Tau) is a proline-rich protein and in this work, we have developed a very interesting strategy based on combination of electrochemistry with chemometric methods to investigate proline cis/trans isomeration effect on the Tau aggregation. To achieve this goal, the proline residues at RTPPK motif have been replaced by alanine to generate RTPAK, RTAPK and RTAAK mutants of the Tau. Then, cyclic voltammetric (CV) responses of the Tau and RTPAK, RTAPK and RTAAK as its mutants in the presence of heparin (HEP) as an anionic inducing agent which could trigger aggregation of the Tau were recorded at physiological conditions every hour during 12 h. Therefore, 48 data sets of titrations were obtained which were handled by chemometric methods to extract useful information about aggregation of the Tau. The data were hard-modeled by EQUISPEC, SQUAD, REACTLAB and SPECFIT to extract useful quantitative information. Our results confirmed that the strength of the binding of the HEP with proteins was obeyed from Tau > RTPAK ~ RTAPK > RTAAK which confirmed that the aggregation of the proteins was obeyed from this order as well. Therefore, aggregation of the Tau is decreased by transforming Cis isomer to Trans even in the presence of an anionic inducing agent such as HEP which may have value for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Vali Akbari
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Mohammadi
- Nano Drug Delivery Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tooraj Farshadnia
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Moradi Rahimabadi
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242, S3000ZAA, Santa Fe, Argentina
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
19
|
Liu Z, Huang X, Jiang Z, Tuo X. Investigation of the binding properties between levamlodipine and HSA based on MCR-ALS and computer modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118929. [PMID: 32961448 DOI: 10.1016/j.saa.2020.118929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Levamlodipine (LEE) is a drug commonly used for antihypertensive treatment in clinical therapy. The overlapping fluorescence spectra of LEE and human serum albumin (HSA) cause some trouble in analysis of interactions between them by using the classic fluorescence method. Here, the multivariate curve resolution-alternating least squares (MCR-ALS) approach was used to overcome this disadvantage. Meanwhile, the binding properties of LEE-HSA complex were then explored through computer modeling. The MCR-ALS results suggested that LEE-HSA complex was present in the mixture solution of LEE and HSA. This conclusion was then confirmed by the Stern-Volmer equation and time-resolved fluorescence experiment. The binding constant (Ka) was 2.139 × 104 L·mol-1 at 298 K. LEE was located close to the Trp-214 residue of HSA, with van der Waals forces and hydrogen bonding as main driving forces for this interaction. LEE can alter the conformation of HSA, in which the content of α-helix reduced from 57.2% to 52.3%. The Pi-Alkyl interactions contributed to maintaining the stability of the LEE-HSA complex. The results of molecular dynamics simulations showed that LEE-HSA complex was formed within 5 ns, and the particle size (Rg) of HSA was altered by the binding reaction. This study would promote better understanding of the transportation and distribution mechanisms of LEE in the human body.
Collapse
Affiliation(s)
- Zhaoqing Liu
- College of Chemistry, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaojian Huang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zheng Jiang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
20
|
Two- and three-way chemometric analyses for investigation of interactions of acarbose with normal and glycated human serum albumin: Developing a novel biosensing system. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Jalalvand AR, Mohammadi G, Najafi F, Sadeghi E, Bahrami G, Rostamzad A, Sadrjavadi K, Azadi E, Adibi H, Goicoechea HC, Abbasi N, Ghaneialvar H. Developing an interesting electrochemical biosensing system from an enzyme inhibition study: Binding, inhibition and determination of catalase by ascorbate. SENSING AND BIO-SENSING RESEARCH 2020; 30:100383. [DOI: 10.1016/j.sbsr.2020.100383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Jalalvand AR. A study originated from combination of electrochemistry and chemometrics for investigation of the inhibitory effects of ciprofloxacin as a potent inhibitor on cytochrome P450. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105104] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Introduction of a thrombin sensor based on its interaction with dabigatran as an oral direct thrombin inhibitor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111417. [PMID: 33321578 DOI: 10.1016/j.msec.2020.111417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/31/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023]
Abstract
Dabigatran (DAB) is a direct thrombin inhibitor used for preventing blood clots and emboli after orthopedic surgery. The DAB - thrombin interaction was followed by fluorescence and UV-Vis spectroscopic methods. The binding of DAB to thrombin was also modeled by the molecular docking method. The obtained experimental results were consistent with theoretical results. The voltammetric method was also tested for DAB - thrombin interaction. Based on voltammetric findings, carbon paste electrode containing graphite powder, paraffin oil, MWCNTs, and DAB was constructed and used for thrombin monitoring after investigation of the DAB oxidation mechanism for the first time. The decrease in the linear sweep voltammetric (LSV) peak current of DAB in the presence of thrombin was utilized for the thrombin analysis. The calibration plot was linear in the concentration range of 1 to 70 nM (R2 = 0.9992) by LSV technique with a detection limit of 0.3 nM. The applicability of the proposed sensor was evaluated by the determination of thrombin in human serum as a real sample.
Collapse
|
24
|
Jalalvand AR. Electrochemistry in combination with hard- and soft-modeling chemometric methods for investigation of the inhibitory effects of naringenine on cytochrome P450. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
25
|
Soleimani S, Arkan E, Farshadnia T, Mahnam Z, Jalili F, Goicoechea HC, Jalalvand AR. The first attempt on fabrication of a nano-biosensing platform and exploiting first-order advantage from impedimetric data: Application to simultaneous biosensing of doxorubicin, daunorubicin and idarubicin. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
Jalalvand AR. Chemometric modeling of different types of electrochemical data for investigation of the binding and inhibition of calcineurin by cyclosporine. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Jalalvand AR, Zangeneh MM, Jalili F, Soleimani S, Díaz-Cruz JM. An elegant technology for ultrasensitive impedimetric and voltammetric determination of cholestanol based on a novel molecularly imprinted electrochemical sensor. Chem Phys Lipids 2020; 229:104895. [PMID: 32165169 DOI: 10.1016/j.chemphyslip.2020.104895] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
In this work, a novel molecularly imprinted electrochemical sensor (MIES) has been fabricated based on electropolymerization of a molecularly imprinted polymer (MIP) onto a glassy carbon electrode (GCE) modified with gold-palladium alloy nanoparticles (AuPd NPs)/polydopamine film (PDA)/multiwalled carbon nanotubes-chitosan-ionic liquid (MWCNTs-CS-IL) for voltammetric and impedimetric determination of cholestanol (CHO). Modifications applied to the bare GCE formed an excellent biocompatible composite film which was able to selectively detect CHO molecules. Modifications applied to the bare GCE were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (SEM). Under optimal experimental conditions, the sensor was able to detect CHO in the range of 0.1-60 pM and 1-50 pM by EIS and DPV, respectively. Moreover, the sensor showed high sensitivity, selectivity, repeatability, reproducibility, low interference and good stability towards CHO determination. Our records confirmed that the sensor was successfully able to the analysis real samples for determination of CHO.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Jalili
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shokoufeh Soleimani
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jose Manuel Díaz-Cruz
- Departament d'Enginyeria Química i Química Analítica, Facultat de Química, Universitat de Barcelona, Martí i Franques 1-11, E-8028 Barcelona, Spain
| |
Collapse
|
28
|
Ghanbari K, Roshani M, Goicoechea HC, Jalalvand AR. Developing an elegant and integrated electrochemical-theoretical approach for detection of DNA damage induced by 4-nonylphenol. Heliyon 2019; 5:e02755. [PMID: 31720481 PMCID: PMC6839279 DOI: 10.1016/j.heliyon.2019.e02755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/03/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
In this work, a novel biosensor was fabricated for detection of DNA damage induced by 4-nonylphenol (NP) and also determination of NP. To achieve this goal, a glassy carbon electrode (GCE) was modified with chitosan (Chit), gold nanoparticles (Au NPs) and DNA-multiwalled carbon nanotubes (DNA-MWCNTs). Then, the DNA-MWCNTs/Au NPs/Chit/GCE was incubated with methylene blue (MB) to obtain MB-DNA-MWCNTs/Au NPs/Chit/GCE in which MB was used as the redox indicator. The modifications applied to the GCE were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopic (EDS) and theoretical evidence. MB is a derivative of anthraquinone which can intercalate into double helix structure of DNA. By treating MB-DNA-MWCNTs/Au NPs/Chit/GCE with NP, a higher R ct was observed because the insertion of the NP may result in a more negative charge environment on the DNA surface which hinders accessibility of [Fe(CN)6]3-/4- anion to the electrode surface. Change in the EIS response of the biosensor in the presence of NP was used to develop a novel system for monitoring the DNA damage induced by NP. The EIS technique was also used to develop a sensitive electroanalytical method for determination of NP.
Collapse
Affiliation(s)
| | - Mahmoud Roshani
- Department of Chemistry, Ilam University, Ilam, Iran
- Corresponding author.
| | - Hector C. Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), C_atedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe, Argentina
| | - Ali R. Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Corresponding author.
| |
Collapse
|
29
|
Khodarahmi R, Khateri S, Adibi H, Nasirian V, Hedayati M, Faramarzi E, Soleimani S, Goicoechea HC, Jalalvand AR. Chemometrical-electrochemical investigation for comparing inhibitory effects of quercetin and its sulfonamide derivative on human carbonic anhydrase II: Theoretical and experimental evidence. Int J Biol Macromol 2019; 136:377-385. [PMID: 31207328 DOI: 10.1016/j.ijbiomac.2019.06.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/12/2023]
Abstract
This paper reports results of a valuable study on investigation of inhibitory effects of the sulfonamide derivative of quercetin (QD) on human carbonic anhydrase II (CA-II) by electrochemical and chemometrical approaches. To achieve this goal, a glassy carbon electrode (GCE) was chosen as the sensing platform and different electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) were used to investigate and comparing inhibitory effects of quercetin (Q) and QD on CA-II. By the use of EQUISPEC, SPECFIT, SQUAD and REACTLAB as efficient hard-modeling algorithms, bindings of Q and QD with CA-II were investigated and the results confirmed that the QD inhibited the CA-II stronger than Q suggesting a highly relevant role of QD's-SO2NH2 group in inhibiting activity and also was confirmed by docking studies. Finally, a novel EIS technique based on interaction of Q and CA-II was developed for sensitive electroanalytical determination of CA-II and in this section of our study, the sensitivity of the developed electroanalytical methodology was improved by the modification of the GCE was with multi-walled carbon nanotubes-ionic liquid.
Collapse
Affiliation(s)
- Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shaya Khateri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Nasirian
- Department of Chemistry and Physics, Louisiana State University in Shreveport, Shreveport, LA, USA
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Faramarzi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shokoufeh Soleimani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Catedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC242 (S3000ZAA), Santa Fe, Argentina
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
30
|
Jalalvand AR, Ghobadi S, Akbari V, Goicoechea HC, Faramarzi E, Mahmoudi M. Mathematical modeling of interactions of cabergoline with human serum albumin for biosensing of human serum albumin. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Jalalvand AR, Ghobadi S, Goicoechea HC, Faramarzi E, Mahmoudi M. Matrix augmentation as an efficient method for resolving interaction of bromocriptine with human serum albumin: trouble shooting and simultaneous resolution. Heliyon 2019; 5:e02153. [PMID: 31388584 PMCID: PMC6667702 DOI: 10.1016/j.heliyon.2019.e02153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/12/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
This work reports the results of an interesting study related to the investigation of interactions of bromocriptine (BCP) with human serum albumin (HSA) by mathematicall modelling of voltammetric and spectroscopic data into an augmented data matrix and its resolution by multivariate curve resolution-alternating least squares (MCR-ALS). The quality of the results obtained by MCR-ALS was examined by MCR-BANDS and its outputs confirmed the absence of rotational ambiguities in the MCR-ALS results. BCP-HSA interactions were also modeled by molecular docking methods to verify the results obtained from experimental sections and fortunately, they were compatible. Hard modeling of the experimental data by EQUISPEC helped us to calculate the binding constant of the complex formed from BCP-HSA interactions which was in a good agreement with that of calculated from direct analysis of the experimental data. Finally, with the help of two different amperometric measurements based on BCP-HSA interactions a novel electroanalytical method was developed for biosensing of HSA in serum samples.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sirous Ghobadi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Catedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC242, S3000ZAA, Santa Fe, Argentina
| | - Elahe Faramarzi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Mahmoudi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
32
|
Chemometrics-assisted voltammetric determination of timolol maleate and brimonidine tartrate utilizing a carbon paste electrode modified with iron (III) oxide nanoparticles. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Jalalvand AR, Roushani M, Goicoechea HC, Rutledge DN, Gu HW. MATLAB in electrochemistry: A review. Talanta 2019; 194:205-225. [DOI: 10.1016/j.talanta.2018.10.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
34
|
Jalalvand AR, Goicoechea HC, Gu HW. An interesting strategy devoted to fabrication of a novel and high-performance amperometric sodium dithionite sensor. Microchem J 2019. [DOI: 10.1016/j.microc.2018.08.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Zangeneh MM, Norouzi H, Mahmoudi M, Goicoechea HC, Jalalvand AR. Fabrication of a novel impedimetric biosensor for label free detection of DNA damage induced by doxorubicin. Int J Biol Macromol 2018; 124:963-971. [PMID: 30508544 DOI: 10.1016/j.ijbiomac.2018.11.278] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/17/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
In this work, a novel impedimetric biosensor has been fabricated for detection of DNA damage induced by doxorubicin (DX). Cytochrome P450 reductase (CPR) is required for electron transfer from nicotinamide adenine dinucleotide phosphate (NADPH) to cytochrome P450 (CP450) which causes DX to undergo a one-electron reduction of the p-quinone residue to form the semiquinone radical resulting in the generation of free hydroxyl radical which causes DNA damage. After modification of bare glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs) and chitosan (Ch), CPR and CP450 were co-immobilized onto the surface of Ch/MWCNTs/GCE by cross-linking CPR, CP450 and Ch through addition of glutaraldehyde. Then, the DNA was assembled onto the surface of CPRCP450/Ch/MWCNTs/GCE to fabricate the biosensor (DNA/CPRCP450/Ch/MWCNTs/GCE). Modifications applied to the bare GCE to fabricate the biosensor were characterized by CV, EIS and SEM. The DNA/CPRCP450/Ch/MWCNTs/GCE was treated in the damaging solution (DX + NADPH) which caused a significant DNA damage and the exposed DNA bases reduced the electrostatic repulsion of the negatively charged redox probe leading to Faradaic impedance changes. Performance of the biosensor for detection of DNA damage in the presence of Spinach extract was also examined and finally, an indirect impedimetric method was developed for determination of DX.
Collapse
Affiliation(s)
- Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hasan Norouzi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Mahmoudi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242, S3000ZAA Santa Fe, Argentina
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
36
|
Investigation of interactions of Comtan with human serum albumin by mathematically modeled voltammetric data: A study from bio-interaction to biosensing. Bioelectrochemistry 2018; 123:162-172. [DOI: 10.1016/j.bioelechem.2018.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 11/22/2022]
|
37
|
Jalalvand AR. Fabrication of a novel and high-performance amperometric sensor for highly sensitive determination of ochratoxin A in juice samples. Talanta 2018; 188:225-231. [DOI: 10.1016/j.talanta.2018.05.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/24/2022]
|
38
|
Rashidi K, Mahmoudi M, Mohammadi G, Zangeneh MM, Korani S, Goicoechea HC, Gu HW, Jalalvand AR. Simultaneous co-immobilization of three enzymes onto a modified glassy carbon electrode to fabricate a high-performance amperometric biosensor for determination of total cholesterol. Int J Biol Macromol 2018; 120:587-595. [PMID: 30170050 DOI: 10.1016/j.ijbiomac.2018.08.163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Abstract
In this work, we have fabricated a novel amperometric cholesterol (CHO) biosensor because of the importance of determination of CHO levels in blood which is an important parameter for diagnosis and prevention of disease. To achieve this goal, cholesterol oxidase, cholesterol esterase and horseradish peroxidase were simultaneously co-immobilized onto a glassy carbon electrode (GCE) modified with gold nanoparticles/chitin-ionic liquid/poly(3,4-ethylenedioxypyrrole)/graphene-multiwalled carbon nanotubes-1,1'-ferrocenedicarboxylic acid-ionic liquid. Modifications applied to the bare GCE were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The biosensor detected CHO in linear ranges of 0.1-25 μM and 25-950 μM with a detection limit of 0.07 μM. The sensitivity of the biosensor was estimated to be 6.6 μA μM-1 cm-2, its response time was <5 s and Michaelis-Menten constant was calculated to be 0.12 μM. Results obtained in this study revealed that the biosensor was selective, sensitive, stable, repeatable and reproducible. Finally, the biosensor was successfully applied to the determination of CHO levels in rats plasma.
Collapse
Affiliation(s)
- Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Mahmoudi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Science, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Catedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242, S3000ZAA Santa Fe, Argentina
| | - Hui-Wen Gu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
39
|
Zhang J, Chen L, Liu D, Zhu Y, Zhang Y. Interactions of pyrene and/or 1-hydroxypyrene with bovine serum albumin based on EEM-PARAFAC combined with molecular docking. Talanta 2018; 186:497-505. [DOI: 10.1016/j.talanta.2018.04.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023]
|
40
|
Mohammadi G, Faramarzi E, Mahmoudi M, Ghobadi S, Ghiasvand AR, Goicoechea HC, Jalalvand AR. Chemometrics-assisted investigation of interactions of Tasmar with human serum albumin at a glassy carbon disk: Application to electrochemical biosensing of electro-inactive serum albumin. J Pharm Biomed Anal 2018; 156:23-35. [DOI: 10.1016/j.jpba.2018.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 12/30/2022]
|
41
|
Abbasi S, Gharaghani S, Benvidi A, Rezaeinasab M. Novel insights into the effect of folate–albumin binding on the transport of ascorbic acid as an anticancer agent: chemometric analysis based on combined spectroscopic and electrochemical studies. NEW J CHEM 2018. [DOI: 10.1039/c8nj01572d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical behavior of ascorbic acid and folic acid upon their interaction with albumin is investigated using electrochemical, chemometric and docking studies.
Collapse
Affiliation(s)
- Saleheh Abbasi
- Department of Chemistry
- Faculty of Science
- Yazd University
- Yazd 89195-741
- Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| | - Ali Benvidi
- Department of Chemistry
- Faculty of Science
- Yazd University
- Yazd 89195-741
- Iran
| | - Masoud Rezaeinasab
- Department of Chemistry
- Faculty of Science
- Yazd University
- Yazd 89195-741
- Iran
| |
Collapse
|
42
|
Khoo MM, Ng KL, Alias Y, Khor SM. Impedimetric biotin—Immunosensor with excellent analytical performance for real sample analysis. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Groove Binding of Vanillin and Ethyl Vanillin to Calf Thymus DNA. J Fluoresc 2017; 27:1815-1828. [DOI: 10.1007/s10895-017-2119-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/14/2017] [Indexed: 10/19/2022]
|
44
|
Ma J, Qi J, Gao X, Yan C, Zhang T, Tang H, Li H. Study of Chemical Intermediates by Means of ATR-IR Spectroscopy and Hybrid Hard- and Soft-Modelling Multivariate Curve Resolution-Alternating Least Squares. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:4595267. [PMID: 28386512 PMCID: PMC5366238 DOI: 10.1155/2017/4595267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 06/07/2023]
Abstract
3,5-Diamino-1,2,4-triazole (DAT) became a significant energetic materials intermediate, and the study of its reaction mechanism has fundamental significance in chemistry. The aim of this study is to investigate the ability of online attenuated total reflection infrared (ATR-IR) spectroscopy combined with the novel approach of hybrid hard- and soft-modelling multivariate curve resolution-alternating least squares (HS-MCR) analysis to monitor and detect changes in structural properties of compound during 3,5-diamino-1,2,4-triazole (DAT) synthesis processes. The subspace comparison method (SCM) was used to obtain the principal components number, and then the pure IR spectra of each substance were obtained by independent component analysis (ICA) and HS-MCR. The extent of rotation ambiguity was estimated from the band boundaries of feasible solutions calculated using the MCR-BANDS procedure. There were five principal components including two intermediates in the process in the results. The reaction rate constants of DAT formation reaction were also obtained by HS-MCR. HS-MCR was used to analyze spectroscopy data in chemical synthesis process, which not only increase the information domain but also reduce the ambiguities of the obtained results. This study provides the theoretical basis for the optimization of synthesis process and technology of energetic materials and provides a strong technical support of research and development of energy material with extraordinary damage effects.
Collapse
Affiliation(s)
- Junxiu Ma
- Institute of Analytical Science, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Juan Qi
- Institute of Analytical Science, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Xinyu Gao
- Institute of Analytical Science, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Chunhua Yan
- Institute of Analytical Science, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Tianlong Zhang
- Institute of Analytical Science, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Hongsheng Tang
- Institute of Analytical Science, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Hua Li
- Institute of Analytical Science, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| |
Collapse
|
45
|
Jalalvand AR, Goicoechea HC. Applications of electrochemical data analysis by multivariate curve resolution-alternating least squares. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Manouchehri F, Izadmanesh Y, Aghaee E, Ghasemi JB. Experimental, computational and chemometrics studies of BSA-vitamin B6 interaction by UV–Vis, FT-IR, fluorescence spectroscopy, molecular dynamics simulation and hard-soft modeling methods. Bioorg Chem 2016; 68:124-36. [DOI: 10.1016/j.bioorg.2016.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/13/2022]
|
47
|
Uzuriaga-Sánchez RJ, Khan S, Wong A, Picasso G, Pividori MI, Sotomayor MDPT. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.05.129] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Zhang Q, Ni Y, Kokot S. Competitive interactions between glucose and lactose with BSA: which sugar is better for children? Analyst 2016; 141:2218-27. [DOI: 10.1039/c5an02420j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study strongly suggested that, as compared with glucose, lactose is more likely to promote the growth and development of healthy children.
Collapse
Affiliation(s)
- Qiulan Zhang
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Yongnian Ni
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
- State Key Laboratory of Food Science and Technology
| | - Serge Kokot
- School of Chemistry
- Physics and Mechanical Engineering
- Science and Engineering Faculty
- Queensland University of Technology
- Brisbane 4001
| |
Collapse
|
49
|
Protein/ionic liquid/glassy carbon sensors following analyte focusing by ionic liquid micelle collapse for simultaneous determination of water soluble vitamins in plasma matrices. Talanta 2015; 139:150-8. [DOI: 10.1016/j.talanta.2015.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 12/26/2022]
|
50
|
Duan H, Li L, Wang X, Wang Y, Li J, Luo C. β-Cyclodextrin/chitosan–magnetic graphene oxide–surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin. RSC Adv 2015. [DOI: 10.1039/c5ra11061k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this report, a sensitive and selective chemiluminescence biosensor for bovine serum albumin coupled with surface molecularly imprinted nanocomplex using β-cyclodextrin/chitosan–magnetic graphene oxide as backbone material was investigated.
Collapse
Affiliation(s)
- Huimin Duan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Leilei Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Xiaojiao Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanhui Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jianbo Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Chuannan Luo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan)
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|