1
|
Liu Y, Li Y, Gong H, Liu Y, Wang Y, Ma C, Wei Y, Shi C. A rapid, specific, and simple-to-use biosensor for amplification-free determination of microRNA based on electrical potential-assisted and ternary hybridization. Mikrochim Acta 2025; 192:315. [PMID: 40263179 DOI: 10.1007/s00604-025-07143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025]
Abstract
An ultra-fast, easy-to-use and non-amplification electrochemical detection platform was constructed for microRNA (miRNA) detection. A set of label-free hairpin probes and capture probes were introduced to form a ternary complex, which could enhance the selectivity and stability of miRNA detection due to the ability of reducing non-specific bind with non-target and enhancing accessibility of target to probes. Moreover, the capture probe immobilization and hybridization process were accelerated by the external electric field, shortening the detection time from 2 h to 5 min. The platform showed a detection limit of 1.28 fM under ideal experimental control conditions and had ability to identify 1- or 2-nucleotide (nt) difference. In addition, the designed sensor achieved the sensitive determination of miRNA-21 in serum samples. The excellent anti-interference capability of this detection method indicated its potential for clinical application. Its simplicity and high specificity made this method a promising tool for detecting different miRNA to assist the diagnosis of diverse cancers.
Collapse
Affiliation(s)
- Yaru Liu
- Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Yang Li
- Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Hao Gong
- Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Yao Liu
- Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Yijie Wang
- Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Cuiping Ma
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering,, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yuxi Wei
- Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, 266071, Qingdao, People's Republic of China.
| | - Chao Shi
- Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, 266071, Qingdao, People's Republic of China.
- Qingdao Navid Biotechnol Co Ltd, Qingdao, People's Republic of China.
| |
Collapse
|
2
|
Zhao Y, Cheng L, Xu M, Zhao C. Ultra-sensitive detection of microRNAs using an electrochemical biosensor based on a PNA-DNA 2 three-way junction nanostructure and dual cascade isothermal amplification. Anal Chim Acta 2025; 1345:343755. [PMID: 40015791 DOI: 10.1016/j.aca.2025.343755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND MiRNA expression profiles may serve as valuable biomarkers for early cancer diagnosis. However, the detection of miRNA remains greatly challenging due to its shorter length and lower abundance in cells. Electrochemical biosensors based on DNA nanostructures have attracted significant attention due to their improved capture efficiency, high sensitivity, and ease of miniaturization, but the complex construction process, non-specific interactions among DNA probes, and their low stability continue to severely restrict their widespread application in clinical diagnostics. Therefore, developing robust and sensitive methods for miRNA analysis is still of great value. RESULTS We describe an ultra-sensitive electrochemical biosensor for miRNA by integrating the PNA-DNA2 three-way junction (3WJ) nanostructure with target-recycling catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) dual cascade isothermal amplification. The target miRNA triggers CHA amplification, resulting in the generation of substantial quantities of double-stranded DNA (dsDNA) products. These dsDNA are subsequently captured by PNA probes immobilized on the electrode surface, leading to the formation of a densely packed layer of PNA-DNA2 3WJ nanostructure. Subsequently, the single-stranded termini of the two branches extending from 3WJ function as promoters to initiate the HCR, resulting in the formation of a layer of intricately intertwined branched long dsDNA molecules, which could adsorb substantial quantities of [Ru(NH3)6]3+, thereby significantly amplifying the electrochemical signal. This electrochemical biosensor exhibits exceptional sensitivity towards miRNA-21, achieving a detection limit as low as 2.9 aM while effectively discriminating single base mutations. SIGNIFICANCE This represents the first electrochemical system for miRNA detection by integrating the PNA-DNA2 3WJ with CHA-HCR dual cascade isothermal amplification. The robust, specific and ultrasensitive feature makes cancer cell miRNA monitoring possible, suggesting its great application prospect as a promising sensing platform for monitoring various miRNA biomarkers in cancer diagnostics.
Collapse
Affiliation(s)
- Yang Zhao
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, 315300, PR China
| | - Li Cheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, PR China
| | - Mengjia Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chao Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
3
|
Wang W, Ge Q, Zhao X. Enzyme-free isothermal amplification strategy for the detection of tumor-associated biomarkers: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
An electrochemical apta-assay based on hybridization chain reaction and aflatoxin B1-driven Ag-DNAzyme as amplification strategy. Bioelectrochemistry 2023; 149:108322. [DOI: 10.1016/j.bioelechem.2022.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
5
|
Margiana R, Hammid AT, Ahmad I, Alsaikhan F, Turki Jalil A, Tursunbaev F, Umar F, Romero Parra RM, Fakri Mustafa Y. Current Progress in Aptasensor for Ultra-Low Level Monitoring of Parkinson's Disease Biomarkers. Crit Rev Anal Chem 2022; 54:617-632. [PMID: 35754381 DOI: 10.1080/10408347.2022.2091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, Parkinson's disease (PD) has been introduced as a long-term degenerative disorder of the central nervous system which mainly affects approximately more than ten million people worldwide. The vast majority of diagnostic methods for PD have operated based on conventional sensing platforms, while the traditional laboratory tests are not efficient for diagnosis of PD in the early stage due to symptoms of this common neurodegenerative syndrome starting slowly. The advent of the aptasensor has revolutionized the early-stage diagnosis of PD by measuring related biomarkers due to the myriad advantages of originating from aptamers which can be able to sensitive and selective capture various types of related biomarkers. The progress of numerous sensing platforms and methodologies in terms of biosensors based on aptamer application for PD diagnosis has revealed promising results. In this review, we present the latest developments in myriad types of aptasensors for the determination of related PD biomarkers. Working strategies, advantages and limitations of these sensing approaches are also mentioned, followed by prospects and challenges.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Dr. Soetomo General Academic Hospital, Indonesia Surabaya
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Farkhod Tursunbaev
- Independent Researcher, "Medcloud" Educational Centre, Tashkent, Uzbekistan
- Research Scholar, Department of Science and Innovation, Akfa University, Tashkent, Uzbekistan
| | - Fadilah Umar
- Department of Sports Science, Faculty of Sports, Sebelas Maret University, Surakarta, Indonesia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
6
|
Mikuła E, Katrlík J, Rodrigues LR. Electrochemical Aptasensors for Parkinson's Disease Biomarkers Detection. Curr Med Chem 2022; 29:5795-5814. [PMID: 35619313 DOI: 10.2174/0929867329666220520123337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Biomarkers are characteristic molecules that can be measured as indicators of biological process status or condition, exhibiting special relevance in Parkinson's Disease (PD). This disease is a chronic neurodegenerative disorder very difficult to study given the site of pathology and due to a clinical phenotype that fluctuates over time. Currently there is no definitive diagnostic test, thus clinicians hope that the detection of crucial biomarkers will help to the symptomatic and presymptomatic diagnostics and providing surrogate endpoints to demonstrate the clinical efficacy of new treatments. METHODS Electrochemical aptasensors are excellent analytical tools that are used in the detection of PD biomarkers, as they are portable, easy to use, and perform real-time analysis. RESULTS In this review, we discuss the most important clinical biomarkers for PD, highlighting their physiological role and function in the disease. Herein, we review for the first time innovative aptasensors for the detection of current potential PD biomarkers based on electrochemical techniques and discuss future alternatives, including ideal analytical platforms for point-of-care diagnostics. CONCLUSION These new tools will be critical not only in the discovery of sensitive, specific, and reliable biomarkers of preclinical PD, but also in the development of tests that can assist in the early detection and differential diagnosis of parkinsonian disorders and in monitoring disease progression. Various methods for fixing aptamers onto the sensor surfaces, enabling quantitative and specific PD biomarker detection present in synthetic and clinical samples, will also be discussed.
Collapse
Affiliation(s)
- Edyta Mikuła
- Department of Biosensors, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia
| | - Ligia R Rodrigues
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
7
|
Trachioti MG, Hrbac J, Prodromidis MI. Determination of 8−hydroxy−2ˊ−deoxyguanosine in urine with “linear” mode sparked graphite screen-printed electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Hybridization chain reaction and its applications in biosensing. Talanta 2021; 234:122637. [PMID: 34364446 DOI: 10.1016/j.talanta.2021.122637] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
To pursue the sensitive and efficient detection of informative biomolecules for bioanalysis and disease diagnosis, a series of signal amplification techniques have been put forward. Among them, hybridization chain reaction (HCR) is an isothermal and enzyme-free process where the cascade reaction of hybridization events is initiated by a target analyte, yielding a long nicked dsDNA molecule analogous to alternating copolymers. Compared with conventional polymerase chain reaction (PCR) that can proceed only with the aid of polymerases and complicated thermal cycling, HCR has attracted increasing attention because it can occur under mild conditions without using enzymes. As a powerful signal amplification tool, HCR has been employed to construct various simple, sensitive and economic biosensors for detecting nucleic acids, small molecules, cells, and proteins. Moreover, HCR has also been applied to assemble complex nanostructures, some of which even act as the carriers to execute the targeted delivery of anticancer drugs. Recently, HCR has engendered tremendous progress in RNA imaging applications, which can not only achieve endogenous RNA imaging in living cells or even living animals but also implement imaging-guided photodynamic therapy, paving a promising path to promote the development of theranostics. In this review, we begin with the fundamentals of HCR and then focus on summarizing the recent advances in HCR-based biosensors for biosensing and RNA imaging strategies. Further, the challenges and future perspective of HCR-based signal amplification in biosensing and theranostic application are discussed.
Collapse
|
9
|
Huang Y, Zhao S, Zhang W, Duan Q, Yan Q, Fu H, Zhong L, Yi G. Multifunctional electrochemical biosensor with "tetrahedral tripods" assisted multiple tandem hairpins assembly for ultra-sensitive detection of target DNA. RSC Adv 2021; 11:20046-20056. [PMID: 35479883 PMCID: PMC9033681 DOI: 10.1039/d1ra02424h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/23/2021] [Indexed: 01/12/2023] Open
Abstract
Nucleic acids are genetic materials in the human body that play important roles in storing, copying, and transmitting genetic information. Abnormal nucleic acid sequences, base mutations, and genetic changes often lead to cancer and other diseases. Meanwhile, methylated DNA is one of the main epigenetic modifications, which is considered to be an excellent biomarker in the early detection, prognosis, and treatment of cancers. Therefore, a multifunctional electrochemical biosensor was constructed with sturdy tetrahedral tripods, which assisted multiple tandem hairpins through base complementary pairing and effective ultra-sensitive detection of targets (DNA, microRNA, and methylated DNA). In the experiments, experimental conditions were optimized, and different DNA concentrations in serum were detected to verify the sensitivity of the biosensor and the feasibility of this protocol. In addition, microRNA and DNA methylation were detected through different designs of tetrahedral tripods (TTs) that capture probes to prove the superiority of this scheme. A sturdy pyramid structure of TTs extremely enhanced the capture efficiency of targets. The targets triggered the one-step isothermal multi-tandem amplification reaction by incubating multiple hairpin assemblies. To our knowledge, a combination of two parts, which greatly reduced background interference and decreased non-specific substance interference, has appeared for the first time in this paper. Moreover, the load area of electrochemical substances was significantly increased than that in previous studies. This greatly increased the detection range and detection limit of targets. The electrochemical signal responses were generated in freely diffusing hexaammineruthenium(iii) chloride (RuHex). RuHex could adhere to the DNA phosphate backbone by a powerful electrostatic attraction, causing increased current responses. Schematic illustration of the fabricated electrochemical biosensor. TTs assisted multiple tandem hairpins assembly for ultra-sensitive detection of target DNA.![]()
Collapse
Affiliation(s)
- Yuqi Huang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Shuhui Zhao
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Wenxiu Zhang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Qiuyue Duan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Qi Yan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Hu Fu
- Clinical Laboratory of Chengdu First People's Hospital Chengdu 610000 PR China
| | - Liang Zhong
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| | - Gang Yi
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University Chongqing 400016 PR China
| |
Collapse
|
10
|
Nanostructured material-based electrochemical sensing of oxidative DNA damage biomarkers 8-oxoguanine and 8-oxodeoxyguanosine: a comprehensive review. Mikrochim Acta 2021; 188:58. [PMID: 33507409 DOI: 10.1007/s00604-020-04689-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Oxidative DNA damage plays an important role in the pathogenesis of various diseases. Among oxidative DNA lesions, 8-oxoguanine (8-oxoG) and its corresponding nucleotide 8-oxo-2'-deoxyguanosine (8-oxodG), the guanine and deoxyguanosine oxidation products, have gained much attention, being considered biomarkers for oxidative DNA damage. Both 8-oxoG and 8-oxodG are used to predict overall body oxidative stress levels, to estimate the risk, to detect, and to make prognosis related to treatment of cancer, degenerative, and other age-related diseases. The need for rapid, easy, and low-cost detection and quantification of 8-oxoG and 8-oxodG biomarkers of oxidative DNA damage in complex samples, urine, blood, and tissue, caused an increasing interest on electrochemical sensors based on modified electrodes, due to their high sensitivity and selectivity, low-cost, and easy miniaturization and automation. This review aims to provide a comprehensive and exhaustive overview of the fundamental principles concerning the electrochemical determination of the biomarkers 8-oxoG and 8-oxodG using nanostructured materials (NsM), such as carbon nanotubes, carbon nanofibers, graphene-related materials, gold nanomaterials, metal nanoparticles, polymers, nanocomposites, dendrimers, antibodies and aptamers, and modified electrochemical sensors.
Collapse
|
11
|
Borum RM, Jokerst JV. Hybridizing clinical translatability with enzyme-free DNA signal amplifiers: recent advances in nucleic acid detection and imaging. Biomater Sci 2021; 9:347-366. [PMID: 32734995 PMCID: PMC7855509 DOI: 10.1039/d0bm00931h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleic acids have become viable prognostic and diagnostic biomarkers for a diverse class of diseases, particularly cancer. However, the low femtomolar to attomolar concentration of nucleic acids in human samples require sensors with excellent detection capabilities; many past and current platforms fall short or are economically difficult. Strand-mediated signal amplifiers such as hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) are superior methods for detecting trace amounts of biomolecules because one target molecule triggers the continuous production of synthetic double-helical DNA. This cascade event is highly discriminatory to the target via sequence specificity, and it can be coupled with fluorescence, electrochemistry, magnetic moment, and electrochemiluminescence for signal reporting. Here, we review recent advances in enhancing the sensing abilities in HCR and CHA for improved live-cell imaging efficiency, lowered limit of detection, and optimized multiplexity. We further outline the potential for clinical translatability of HCR and CHA by summarizing progress in employing these two tools for in vivo imaging, human sample testing, and sensing-treating dualities. We finally discuss their future prospects and suggest clinically-relevant experiments to supplement further related research.
Collapse
Affiliation(s)
- Raina M Borum
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | | |
Collapse
|
12
|
Chen TW, Chinnapaiyan S, Chen SM, Ali MA, Elshikh MS, Lee SY, Chang WH, Mahmoud AH. Sonochemical approach to the synthesis of metal tungstate/nafion composite with electrocatalytic properties and its electrochemical sensing performance. ULTRASONICS SONOCHEMISTRY 2020; 66:104901. [PMID: 32244087 DOI: 10.1016/j.ultsonch.2019.104901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 06/11/2023]
Abstract
High-intensity ultrasound can be used to produce novel materials, offering an atypical pathway to recognized products without high bulk temperatures, high pressures, or long reaction times. A highly sensitive and selective robust modified sensor was developed using a composition of electrochemically active strontium metal (Sr) based tungstate interconnected with nafion polymer through a facile sonochemical approach. In addition, multiple parameters are important for sonochemical methods and specifically nanomaterial or electrocatalyst development during the ultrasonic irradiation. Moreover, high-intensity ultrasonic probe (Ti-horn) was used to synthesis of nanomaterial at 50 kHz and 200 W. The SrWO4/nafion was characterized via FESEM, EDX and XRD methods. 8-HD-guanosine (8-hydroxydeoxyguanosine) is one of the major byproduct of deoxyribonucleic acid (DNA) oxidation. The concentrations of 8-HD-guanosine within a cell are a measurement of oxidative stress in body and however its excess level in body causes carcinogenic threats. Therefore, the quantification of 8-HD-guanosine in biological samples with high sensitivity is of great significance. The SrWO4/nafion modified sensor displayed low detection of 14.36 nM and wide linear range (0.025-398.6 µM), compare to previous reports.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sathishkumar Chinnapaiyan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, Taitung MacKay Memorial Hospital, MacKay Memorial Hospital, MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.
| | - Wen-Han Chang
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan; The Graduate Institute of Manufacturing Technology (GIMT), National Taipei University of Technology, Taipei 106, Taiwan (ROC); Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ahmed Hossam Mahmoud
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Matulakul P, Vongpramate D, Kulchat S, Chompoosor A, Thanan R, Sithithaworn P, Sakonsinsiri C, Puangmali T. Development of Low-Cost AuNP-Based Aptasensors with Truncated Aptamer for Highly Sensitive Detection of 8-Oxo-dG in Urine. ACS OMEGA 2020; 5:17423-17430. [PMID: 32715227 PMCID: PMC7377066 DOI: 10.1021/acsomega.0c01834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), an oxidized form of guanosine residues, is a critical biomarker for various cancers. Herein, a sensitive citrate-capped gold nanoparticle-based aptasensor device has been developed for the detection of 8-oxo-dG in urine. We previously designed a 38-nt anti-8-oxo-dG-aptamer by a computer simulation and the experimental validation has been performed in the present work. The analytical performance of the 38-nt aptamer from the in silico design was compared with the parent 66-nt aptamer. This assay is based on the principle of salt-induced aggregation of citrate-capped gold nanoparticles. Based on this sensing mechanism, the difference between the absorbance in the presence and absence of 8-oxo-dG at λ = 525 nm (ΔA525) increased linearly as a function of 8-oxo-dG concentrations in the ranges of 10-100 and 15-100 nM for 38-nt and 66-nt aptasensors, respectively. This method can provide detection limits of 6.4 nM for 8-oxo-dG in the 38-nt aptasensor and 13.2 nM in the 66-nt aptasensor. Similar to the 66-nt aptamer, the shortened aptamer, 38-nt long, can provide high sensitivity and selectivity with rapid detection time. In addition, using the 38-nt aptamer as a recognition component in the developed portable low-cost device showed high sensitivity in the detection range of 15-100 nM with a detection limit of 12.9 nM, which is much lower than the threshold value (280 nM) for normal human urine. This easy-to-use device could effectively and economically be utilized for monitoring 8-oxo-dG in real urine samples and potentially serve as a prototype for a commercial device.
Collapse
Affiliation(s)
- Piyaporn Matulakul
- Materials
Science and Nanotechnology Program, Department of Physics, Faculty
of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Drusawin Vongpramate
- Department
of Information Technology, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand
| | - Sirinan Kulchat
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
| | - Apiwat Chompoosor
- Department
of Chemistry, Faculty of Science, Ramkhamhaeng
University, Bangkok 10240, Thailand
| | - Raynoo Thanan
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute (CARI), Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Screening and Care Program (CASCAP), Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Paiboon Sithithaworn
- Cholangiocarcinoma
Research Institute (CARI), Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Screening and Care Program (CASCAP), Khon
Kaen University, Khon Kaen 40002, Thailand
- Department
of Parasitology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute (CARI), Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Screening and Care Program (CASCAP), Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Theerapong Puangmali
- Materials
Science and Nanotechnology Program, Department of Physics, Faculty
of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
14
|
Ferenc G, Váradi Z, Kupihár Z, Paragi G, Kovács L. Analytical and Structural Studies for the Investigation of Oxidative Stress in Guanine Oligonucleotides. Int J Mol Sci 2020; 21:E4981. [PMID: 32679695 PMCID: PMC7404036 DOI: 10.3390/ijms21144981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
DNA damage plays a decisive role in epigenetic effects. The detection and analysis of DNA damages, like the most common change of guanine (G) to 8-oxo-7,8-dihydroguanine (OG), is a key factor in cancer research. It is especially true for G quadruplex structure (GQ), which is one of the best-known examples of a non-canonical DNA arrangement. In the present work, we provided an overview on analytical methods in connection with the detection of OG in oligonucleotides with GQ-forming capacity. Focusing on the last five years, novel electrochemical tools, like dedicated electrodes, were overviewed, as well as different optical methods (fluorometric assays, resonance light scattering or UV radiation) along with hyphenated detection and structural analysis methods (CD, NMR, melting temperature analysis and nanopore detection) were also applied for OG detection. Additionally, GQ-related computational simulations were also summarized. All these results emphasize that OG detection and the analysis of the effect of its presence in higher ordered structures like GQ is still a state-of-the-art research line with continuously increasing interest.
Collapse
Affiliation(s)
- Györgyi Ferenc
- Nucleic Acid Synthesis Laboratory, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Zoltán Váradi
- Nucleic Acids Laboratory, Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.V.); (Z.K.)
| | - Zoltán Kupihár
- Nucleic Acids Laboratory, Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.V.); (Z.K.)
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, Dóm tér 8, 6720 Szeged, Hungary
- Institute of Physics, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Lajos Kovács
- Nucleic Acids Laboratory, Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.V.); (Z.K.)
| |
Collapse
|
15
|
Zhou X, Zhu Q, Yang Y. Aptamer-integrated nucleic acid circuits for biosensing: Classification, challenges and perspectives. Biosens Bioelectron 2020; 165:112422. [PMID: 32729540 DOI: 10.1016/j.bios.2020.112422] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/27/2022]
Abstract
Owing to their high programmability and modularity, autonomous enzyme-free nucleic acid circuits are attracting ever-growing interest as signal amplifiers with potential applications in developing highly sensitive biosensing techniques. Besides nucleic acid input, the biosensing scope of aptamer-integrated nucleic acids could be further expanded to non-nucleic targets by integrating nucleic acid circuits with aptamers-a class of functional oligonucleotides with binding capabilities toward specific targets. By coupling upstream target recognition with downstream signal amplification, aptamer-integrated nucleic acid circuits enable aptasensors with increased sensitivity and enhanced performances, which may act as powerful tools in various fields including environment monitoring, personal care, clinical diagnosis, etc. In designing aptamer-integrated nucleic acid circuits, smart integration between aptamer and nucleic acid circuits plays a crucial role in developing reliable circuits with good performances. To date, although there are plenty of published researches adopting aptamer-integrated nucleic acid circuits as amplifiers in biosensing systems, deep discussion or systematic review on rational design strategies for aptamer-integrated nucleic acid circuits is still lacking. To fill this gap, rational aptamer-nucleic acid circuits integration modes were classified and summarized for the first time based on reviewing the state of art of existing aptamer-integrated nucleic acid circuits. Moreover, theoretical updates in nucleic acid circuits designs and major challenges to be overcome in developing highly sensitive aptamer-integrated nucleic acids based biosensing systems are discussed in this review.
Collapse
Affiliation(s)
- Xiaohong Zhou
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Qian Zhu
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yihan Yang
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Immobilization Techniques for Aptamers on Gold Electrodes for the Electrochemical Detection of Proteins: A Review. BIOSENSORS-BASEL 2020; 10:bios10050045. [PMID: 32354207 PMCID: PMC7277302 DOI: 10.3390/bios10050045] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The development of reliable biosensing platforms plays a key role in the detection of proteins in clinically and environmentally derived samples for diagnostics, as well as for process monitoring in biotechnological productions. For this purpose, the biosensor has to be stable and reproducible, and highly sensitive to detect potentially extremely low concentrations and prevent the nonspecific binding of interfering compounds. In this review, we present an overview of recently published (2017–2019) immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins. These include the direct immobilization of thiolated aptamers and the utilization of short linkers, streptavidin/biotin interaction, as well as DNA nanostructures and reduced graphene oxide as immobilization platforms. Applied strategies for signal amplification and the prevention of biofouling are additionally discussed, as they play a crucial role in the design of biosensors. While a wide variety of amplification strategies are already available, future investigations should aim to establish suitable antifouling strategies that are compatible with electrochemical measurements. The focus of our review lies on the detailed discussion of the underlying principles and the presentation of utilized chemical protocols in order to provide the reader with promising ideas and profound knowledge of the subject, as well as an update on recent discoveries and achievements.
Collapse
|
17
|
Govindasamy M, Wang SF, Subramanian B, Ramalingam RJ, Al-Lohedan H, Sathiyan A. A novel electrochemical sensor for determination of DNA damage biomarker (8-hydroxy-2'-deoxyguanosine) in urine using sonochemically derived graphene oxide sheets covered zinc oxide flower modified electrode. ULTRASONICS SONOCHEMISTRY 2019; 58:104622. [PMID: 31450347 DOI: 10.1016/j.ultsonch.2019.104622] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
To explore a novel and multi-layer based graphene oxide covered zinc oxide nanoflower (ZnO NFs@GOS) as a modified electrode materials by sonochemical technique (40 kHz, 300 W). Herein, novel nanocomposite is successfully characterized by various characterization analysis (FESEM, HRTEM, XRD, XPS and (EIS) electrochemical impedance spectroscopy) and employed as high sensitive modified electrode (ZnO NFs@GOS nanocomposite) for the electrochemical determination of biomarker. 8-hydroxy-2'-deoxyguanosine (8-HDG) is one of the important cancer and oxidative stress biomarker. The results demonstrated that the ZnO NFs@GOS modified SPCE reveal well-defined electro-oxidation peak at 0.36 V (vs. Ag/AgCl). The high sensitive properties of the optimized flower like modified electrode are because of the excellent synergistic effect of the ZnO flower and the graphene oxide nanosheets, as evidenced by a superior bio-sensing performance. The nanocomposite fabricated modified biosensor was facilitating the analysis of 8-HDG in the concentration ranges of 0.05-536.5 µM with a low detection limit is 8.67 nM. The ZnO NFs@GOS modified sensor can also employed for the determination of 8-HDG in human urine samples, promising its application towards the quantification of cancer biomarker in biological samples.
Collapse
Affiliation(s)
- Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| | - Bowya Subramanian
- Department of Electrical Engineering and Computer Science, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Department of Information Technology, KSR College of Engineering, Tiruchengode, Tamil Nadu, India
| | - R Jothi Ramalingam
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia.
| | - Hamad Al-Lohedan
- Surfactant Research Chair, Chemistry Department, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Anandraj Sathiyan
- Department of Chemistry, Bishop Heber College, Trichy 620017, Tamil Nadu, India
| |
Collapse
|
18
|
Zhao RN, Jia LP, Feng Z, Ma RN, Zhang W, Shang L, Xue QW, Wang HS. Ultrasensitive electrochemiluminescence aptasensor for 8-hydroxy-2'-deoxyguanosine detection based on target-induced multi-DNA release and nicking enzyme amplification strategy. Biosens Bioelectron 2019; 144:111669. [PMID: 31494507 DOI: 10.1016/j.bios.2019.111669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 01/19/2023]
Abstract
8-Hydroxy-2'-deoxyguanosine (8-OH-dG) is a principal stable marker of DNA oxidative damage. Sensitive and specific detection of 8-OH-dG is of great importance for early disease diagnosis. In this paper, we developed an electrochemiluminescence aptasensor for 8-OH-dG detection based on target induced multi-DNA release and nicking enzyme signaling amplification strategy. First, three kinds of short DNAs were aligned on the aptamers immobilized on the magnetic beads. In the presence of 8-OH-dG, the aptamer recognized and specifically bound with 8-OH-dG, leading to the release of three kinds of short DNAs and three-fold signal amplification. Then the released short DNAs hybridized with ferrocence (Fc) labeled hairpin DNA (Fc-HP) immobilized on the gold electrode to form a double strand DNA. Subsequently, nicking endonuclease (Nt.AlwI) recognized the asymmetric sequence in the dsDNA and cleaved the substrate strand (Fc-HP) into two parts, one fragments containing Fc would leave the surface of electrode. Based on the quenching effect of Fc on the electrochemiluminescence (ECL) of Ru(bpy)32+/TPA, a signal-on ECL aptasensor was developed. At the same time, three kinds of short DNAs were released again and reused to initiate the repeated cycles of hybridization-cleavage. Under double signal amplification, this aptasensor achieved a low detection of 25 fM and a wide linear range from 100 fM to 10 nM for 8-OH-dG. Besides, the amount of 8-OH-dG in urine samples derived from different people were determined with satisfactory results.
Collapse
Affiliation(s)
- Ruo-Nan Zhao
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Li-Ping Jia
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China.
| | - Zhe Feng
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Rong-Na Ma
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Wei Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Lei Shang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qing-Wang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Huai-Sheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
19
|
Electrochemical analysis of 8-hydroxy-2'-deoxyguanosine with enhanced sensitivity based on exonuclease-mediated functional nucleic acid. Talanta 2019; 199:324-328. [PMID: 30952266 DOI: 10.1016/j.talanta.2019.02.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 01/27/2023]
Abstract
In this work, an electrochemical method for sensitive analysis of 8-hydroxy-2'-deoxyguanosine, a key biomarker that is widely used to study oxidative injury-related diseases, is proposed based on exonuclease-mediated functional nucleic acid. In the design, exonuclease can not only distinguish the existence of target, but also suppress the background noise, thus the sensitivity can be enhanced. Moreover, DNAzyme designed in the functional nucleic acid can further improve the sensitivity of the analysis during signal generation process. Therefore, exonuclease-mediated functional nucleic acid may ensure high sensitivity of the assay. Further studies reveal that the detection of 8-hydroxy-2'-deoxyguanosine can be achieved with a linearity from 0.01 nM to 7.0 μM and a detection limit of 6.82 pM. The new method has also been successfully applied to the determination of 8-OHdG in urine with good results, indicating its great potential for practical use.
Collapse
|
20
|
Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Biosens Bioelectron 2018; 117:508-514. [DOI: 10.1016/j.bios.2018.06.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/24/2018] [Indexed: 01/12/2023]
|
21
|
Park CR, Park SJ, Lee WG, Hwang BH. Biosensors Using Hybridization Chain Reaction - Design and Signal Amplification Strategies of Hybridization Chain Reaction. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0182-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Jia LP, Zhao RN, Wang LJ, Ma RN, Zhang W, Shang L, Wang HS. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction. Biosens Bioelectron 2018; 117:690-695. [PMID: 30014942 DOI: 10.1016/j.bios.2018.06.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023]
Abstract
The present work reported a simple, lable-free and sensitive electrochemical method for the detection of protein kinase A (PKA) activity. This method was based on the specific recognition of aptamer and the aptamer-induced hybridization chain reaction (HCR) amplification strategy. The aptasensor was constructed by immobilizing capture probe on a gold electrode via an Au-S bond. When adenosine triphosphate (ATP) aptamer was introduced, its one terminus hybridized with capture probe and the other hybridized with the complementary region of an auxiliary probe, which other region triggered HCR between two hairpin DNA (H1 and H2) to form a long DNA concatamer. At last a large number of electroactive methyle blue (MB) molecules were assembled on the dsDNA concatamer, which generated a significantly amplified electrochemical signal. In the presence of ATP, the HCR would not be performed because the aptamer specifically bond to ATP and the electrochemical response would decrease. However, when ATP and PKA coexisted, the electrochemical response would recovery because that ATP had been translated into ADP by PKA. So the activity of PKA could be effectively monitored according to the change of electrochemical signal. Based on the HCR amplification strategy, the aptasensor showed a wide linear range (4 - 4 ×105 U L-1) and a low detection limit (1.5 U L-1) for the detection of PKA. Furthermore, the method was applied to study the inhibitory effect of H-89 on PKA activity. The developed aptasensor was also used to the analysis of drug-induced PKA activity in cell lysates, indicating the potential application of the developed method in the fields of clinical diagnostics and discovery of new targeted drugs.
Collapse
Affiliation(s)
- Li-Ping Jia
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruo-Nan Zhao
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li-Juan Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Rong-Na Ma
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wei Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Lei Shang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Huai-Sheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
23
|
Jalalian SH, Karimabadi N, Ramezani M, Abnous K, Taghdisi SM. Electrochemical and optical aptamer-based sensors for detection of tetracyclines. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Manavalan S, Rajaji U, Chen SM, Steplin Paul Selvin S, Govindasamy M, Chen TW, Ajmal Ali M, Al-Hemaid FMA, Elshikh MS. Determination of 8-hydroxy-2′-deoxyguanosine oxidative stress biomarker using dysprosium oxide nanoparticles@reduced graphene oxide. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00727f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electrochemical detection of 8-OHdG biomarker using Dy2O3@RGO/SPCE.
Collapse
Affiliation(s)
- Shaktivel Manavalan
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Umamaheswari Rajaji
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | | | - Mani Govindasamy
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
- Research and Development Center for Smart Textile Technology
| | - M. Ajmal Ali
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh- 11451
- Saudi Arabia
| | - Fahad M. A. Al-Hemaid
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh- 11451
- Saudi Arabia
| | - M. S. Elshikh
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh- 11451
- Saudi Arabia
| |
Collapse
|