1
|
Moretto G, Colombo R, Negri S, Cena H, Vailati L, Papetti A. Italian Biodiversity: A Source of Edible Plant Extracts with Protective Effects Against Advanced Glycation End Product-Related Diseases. Nutrients 2025; 17:935. [PMID: 40289949 PMCID: PMC11946827 DOI: 10.3390/nu17060935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Italy's plant biodiversity, characterized by many plant species, is an important source of bioactive secondary metabolites that help reduce the risk of the development of advanced glycation end product (AGE)-related diseases. AGEs are involved in various diseases, such as diabetes, cardiovascular, and neurodegenerative disorders. Therefore, the aim of the study was to investigate the antiglycative, hypoglycemic, and neuroprotective properties of nine edible plant extracts using different in vitro assays. Methods: The ability of the extracts to counteract AGE formation was evaluated at different stages of the glycation reaction using in vitro systems based on the determination of Amadori products and the co-incubation of a model protein with a dicarbonyl compound under different experimental conditions. In addition, the extracts' methylglyoxal (MGO) and glyoxal (GO) trapping ability was investigated. Hypoglycemic activity was assessed by measuring α-amylase inhibition, while the neuroprotective effects were explored by testing amyloid β peptide 1-42 (Aβ1-42) fibrillogenesis inhibition. Results: All extracts generally had a dose-related capacity for the inhibition of AGE formation, mainly at the intermediate stage of the glycation reaction; high trapping capacity against MGO and GO; and promising hypoglycemic properties. In addition, they affected the fibrillogenesis process by reducing mature amyloid fibril formation and altering fibril morphology. Conclusions: All tested extracts had promising anti-fibrillogenic properties. Rosa canina extract was the most active among the tested plant species given its antiglycative activity (about 80% inhibition of AGE formation), trapping capacity against MGO and GO (almost 100%), hypoglycemic effects (66.20 ± 0.88%), and anti-fibrillogenic effects (69.00 ± 4.49% inhibition), indicating its suitability in the management of AGE-related diseases and for the potential development of a novel food ingredient.
Collapse
Affiliation(s)
- Giulia Moretto
- Drug Sciences Department, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
| | - Raffaella Colombo
- Drug Sciences Department, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.C.)
| | - Stefano Negri
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Hellas Cena
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Clinical Nutrition Unit, ICS Maugeri, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 27100 Pavia, Italy
| | - Lorena Vailati
- Struttura Complessa di Anatomia Patologica, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Adele Papetti
- Drug Sciences Department, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy; (S.N.); (H.C.)
| |
Collapse
|
2
|
Chuang WC, Chen CH, Duh TH, Chen YL. Fluorescent aptasensor based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification for detection of beta-amyloid oligomers in cerebrospinal fluid. Mikrochim Acta 2025; 192:70. [PMID: 39804483 DOI: 10.1007/s00604-024-06943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction. After evaluating the parameters of the aptasensor system, we selected Hairpin10, which has a 10-nucleotide extended sequence, as the hairpin sequence that interacts with AβO. The quantitative linear range of the proposed aptasensor is from 11.3 to 113 ng mL-1 in artificial cerebrospinal fluid (aCSF), and the detection limit was 7.29 ng mL-1. The present work realized the assay of AβO in aCSF with satisfactory quantitative results.
Collapse
Affiliation(s)
- Wan-Chen Chuang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 621301, Chia-Yi, Taiwan
| | - Chun-Hsien Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 621301, Chia-Yi, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, 621301, Chia-Yi, Taiwan
| | - Tsai-Hui Duh
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yen-Ling Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 621301, Chia-Yi, Taiwan.
- Center for Nano Bio-Detection, National Chung Cheng University, 621301, Chia-Yi, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
| |
Collapse
|
3
|
Piccialli I, Greco F, Roviello G, Sisalli MJ, Tedeschi V, di Mola A, Borbone N, Oliviero G, De Feo V, Secondo A, Massa A, Pannaccione A. The 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) as a new molecule able to inhibit Amyloid β aggregation and neurotoxicity. Biomed Pharmacother 2023; 168:115745. [PMID: 37871561 DOI: 10.1016/j.biopha.2023.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Amyloid β 1-42 (Aβ1-42) protein aggregation is considered one of the main triggers of Alzheimer's disease (AD). In this study, we examined the in vitro anti-amyloidogenic activity of the isoindolinone derivative 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) and its neuroprotective potential against the Aβ1-42 toxicity. By performing the Thioflavin T fluorescence assay, Western blotting analyses, and Circular Dichroism experiments, we found that ISOAC1 was able to reduce the Aβ1-42 aggregation and conformational transition towards β-sheet structures. Interestingly, in silico studies revealed that ISOAC1 was able to bind to both the monomer and a pentameric protofibril of Aβ1-42, establishing a hydrophobic interaction with the PHE19 residue of the Aβ1-42 KLVFF motif. In vitro analyses on primary cortical neurons showed that ISOAC1 counteracted the increase of intracellular Ca2+ levels and decreased the Aβ1-42-induced toxicity, in terms of mitochondrial activity reduction and increase of reactive oxygen species production. In addition, confocal microscopy analyses showed that ISOAC1 was able to reduce the Aβ1-42 intraneuronal accumulation. Collectively, our results clearly show that ISOAC1 exerts a neuroprotective effect by reducing the Aβ1-42 aggregation and toxicity, hence emerging as a promising compound for the development of new Aβ-targeting therapeutic strategies for AD treatment.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Giovanni Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Naples, Italy
| | - Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonia di Mola
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, SA, Italy
| | - Nicola Borbone
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonio Massa
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, SA, Italy.
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
4
|
Siniscalco D, Francius G, Tarek M, Bali SK, Laprévote O, Malaplate C, Oster T, Pauron L, Quilès F. Molecular Insights for Alzheimer's Disease: An Unexplored Storyline on the Nanoscale Impact of Nascent Aβ 1-42 toward the Lipid Membrane. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17507-17517. [PMID: 36995989 DOI: 10.1021/acsami.2c22196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Deciphering the mechanism of Alzheimer's disease is a key element for designing an efficient therapeutic strategy. Molecular dynamics (MD) calculations, atomic force microscopy, and infrared spectroscopy were combined to investigate β-amyloid (Aβ1-42) peptide interactions with supported lipid bilayers (SLBs). The MD simulations showed that nascent Aβ1-42 monomers remain anchored within a model phospholipid bilayer's hydrophobic core, which suggests their stability in their native environment. We tested this prediction experimentally by studying the behavior of Aβ1-42 monomers and oligomers when interacting with SLBs. When Aβ1-42 monomers and oligomers were self-assembled with a lipid bilayer and deposited as an SLB, they remain within the bilayers. Their presence in the bilayers induces destabilization of the model membranes. No specific interactions between Aβ1-42 and the SLBs were detected when SLBs free of Aβ1-42 were exposed to Aβ1-42. This study suggests that Aβ can remain in the membrane after cleavage by γ-secretase and cause severe damage to the membrane.
Collapse
Affiliation(s)
| | | | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | | | | | | | - Thierry Oster
- Université de Lorraine, UR AFPA, F-54000 Nancy, France
| | - Lynn Pauron
- Université de Lorraine, UR AFPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
5
|
De Lorenzi E, Seghetti F, Tarozzi A, Pruccoli L, Contardi C, Serra M, Bisi A, Gobbi S, Vistoli G, Gervasoni S, Argentini C, Ghirardo G, Guarato G, Orso G, Belluti F, Di Martino RMC, Zusso M. Targeting the multifaceted neurotoxicity of Alzheimer's disease by tailored functionalisation of the curcumin scaffold. Eur J Med Chem 2023; 252:115297. [PMID: 36996713 DOI: 10.1016/j.ejmech.2023.115297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Simultaneous modulation of multifaceted toxicity arising from neuroinflammation, oxidative stress, and mitochondrial dysfunction represents a valuable therapeutic strategy to tackle Alzheimer's disease. Among the significant hallmarks of the disorder, Aβ protein and its aggregation products are well-recognised triggers of the neurotoxic cascade. In this study, by tailored modification of the curcumin-based lead compound 1, we aimed at developing a small library of hybrid compounds targeting Aβ protein oligomerisation and the consequent neurotoxic events. Interestingly, from in vitro studies, analogues 3 and 4, bearing a substituted triazole moiety, emerged as multifunctional agents able to counteract Aβ aggregation, neuroinflammation and oxidative stress. In vivo proof-of-concept evaluations, performed in a Drosophila oxidative stress model, allowed us to identify compound 4 as a promising lead candidate.
Collapse
|
6
|
The Fuzzy Border between the Functional and Dysfunctional Effects of Beta-Amyloid: A Synaptocentric View of Neuron-Glia Entanglement. Biomedicines 2023; 11:biomedicines11020484. [PMID: 36831020 PMCID: PMC9953143 DOI: 10.3390/biomedicines11020484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Recent observations from clinical trials using monoclonal antibodies against Aβ seem to suggest that Aβ-targeting is modestly effective and not sufficiently based on an effective challenge of the role of Aβ from physiological to pathological. After an accelerated approval procedure for aducanumab, and more recently lecanemab, their efficacy and safety remain to be fully defined despite previous attempts with various monoclonal antibodies, and both academic institutions and pharmaceutical companies are actively searching for novel treatments. Aβ needs to be clarified further in a more complicated context, taking into account both its accumulation and its biological functions during the course of the disease. In this review, we discuss the border between activities affecting early, potentially reversible dysfunctions of the synapse and events trespassing the threshold of inflammatory, self-sustaining glial activation, leading to irreversible damage. We detail a clear understanding of the biological mechanisms underlying the derangement from function to dysfunction and the switch of the of Aβ role from physiological to pathological. A picture is emerging where the optimal therapeutic strategy against AD should involve a number of allied molecular processes, displaying efficacy not only in reducing the well-known AD pathogenesis players, such as Aβ or neuroinflammation, but also in preventing their adverse effects.
Collapse
|
7
|
Significance of native PLGA nanoparticles in the treatment of Alzheimer's disease pathology. Bioact Mater 2022; 17:506-525. [PMID: 36330076 PMCID: PMC9614411 DOI: 10.1016/j.bioactmat.2022.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is believed to be triggered by increased levels/aggregation of β-amyloid (Aβ) peptides. At present, there is no effective disease-modifying treatment for AD. Here, we evaluated the therapeutic potential of FDA-approved native poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles on Aβ aggregation and in cellular/animal models of AD. Our results showed that native PLGA can not only suppress the spontaneous aggregation but can also trigger disassembly of preformed Aβ aggregates. Spectroscopic studies, molecular dynamics simulations and biochemical analyses revealed that PLGA, by interacting with the hydrophobic domain of Aβ1-42, prevents a conformational shift towards the β-sheet structure, thus precluding the formation and/or triggering disassembly of Aβ aggregates. PLGA-treated Aβ samples can enhance neuronal viability by reducing phosphorylation of tau protein and its associated signaling mechanisms. Administration of PLGA can interact with Aβ aggregates and attenuate memory deficits as well as Aβ levels/deposits in the 5xFAD mouse model of AD. PLGA can also protect iPSC-derived neurons from AD patients against Aβ toxicity by decreasing tau phosphorylation. These findings provide unambiguous evidence that native PLGA, by targeting different facets of the Aβ axis, can have beneficial effects in mouse neurons/animal models as well as on iPSC-derived AD neurons - thus signifying its unique therapeutic potential in the treatment of AD pathology. PLGA nanoparticles by interacting with hydrophobic domain inhibit Aβ aggregation. PLGA-mediated inhibition of Aβ aggregation can increase viability of mouse neurons. PLGA administration can attenuate cognitive deficits/pathology in 5xFAD AD mouse model. PLGA can protect iPSC-derived neurons from AD patients against Aβ toxicity.
Collapse
|
8
|
Chen CH, Jong YJ, Chao YY, Wang CC, Chen YL. Fluorescent aptasensor based on conformational switch-induced hybridization for facile detection of β-amyloid oligomers. Anal Bioanal Chem 2022; 414:8155-8165. [PMID: 36178490 DOI: 10.1007/s00216-022-04350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
Aβ oligomers (AβO) are a dominant biomarker for early Alzheimer's disease diagnosis. A fluorescent aptasensor coupled with conformational switch-induced hybridization was established to detect AβO. The fluorescent aptasensor is based on the interaction of fluorophore-labeled AβO-specific aptamer (FAM-Apt) against its partly complementary DNA sequence on the surface of magnetic beads (cDNA-MBs). Once the FAM-Apt binds to AβO, the conformational switch of FAM-Apt increases the tendency to be captured by cDNA-MBs. This causes a descending fluorescence of supernatant, which can be utilized to determine the levels of AβO. Thus, the base-pair matching above 12 between FAM-Apt and cDNA-MBs with increasing hybridizing free energies reached the ascending fluorescent signal equilibrium. The optimized aptasensor showed linearity from 1.7 ng mL-1 to 85.1 (R = 0.9977) with good recoveries (79.27-109.17%) in plasma. Furthermore, the established aptasensor possesses rational selectivity in the presence of monomeric Aβ, fibrotic Aβ, and interferences. Therefore, the developed aptasensor is capable of quantifying AβO in human plasma and possesses the potential to apply in clinical cases.
Collapse
Affiliation(s)
- Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuh-Jyh Jong
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Ying Chao
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan.
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, Taiwan.
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Krafft GA, Jerecic J, Siemers E, Cline EN. ACU193: An Immunotherapeutic Poised to Test the Amyloid β Oligomer Hypothesis of Alzheimer’s Disease. Front Neurosci 2022; 16:848215. [PMID: 35557606 PMCID: PMC9088393 DOI: 10.3389/fnins.2022.848215] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects 50 million people worldwide, with 10 million new cases occurring each year. The emotional and economic impacts of AD on patients and families are devastating. Approved treatments confer modest improvement in symptoms, and recently one treatment obtained accelerated approval from the United States Food and Drug Administration (FDA) and may have modest disease modifying benefit. Research over the past three decades has established a clear causal linkage between AD and elevated brain levels of amyloid β (Aβ) peptide, and substantial evidence now implicates soluble, non-fibrillar Aβ oligomers (AβOs) as the molecular assemblies directly responsible for AD-associated memory and cognitive failure and accompanying progressive neurodegeneration. The widely recognized linkage of elevated Aβ and AD spawned a comprehensive 20-year therapeutic campaign that focused primarily on two strategies – inhibition of the secretase enzymes responsible for Aβ production and clearance of Aβ peptide or amyloid plaques with Aβ-directed immunotherapeutics. Unfortunately, all clinical trials of secretase inhibitors were unsuccessful. Of the completed phase 3 immunotherapy programs, bapineuzumab (targeting amyloid plaque) and solanezumab (targeting Aβ monomers) were negative, and the crenezumab program (targeting Aβ monomers and to a small extent oligomers) was stopped for futility. Aducanumab (targeting amyloid plaques), which recently received FDA accelerated approval, had one positive and one negative phase 3 trial. More than 25 negative randomized clinical trials (RCTs) have evaluated Aβ-targeting therapeutics, yet none has directly evaluated whether selective blockage of disease-relevant AβOs can stop or reverse AD-associated cognitive decline. Here, we briefly summarize studies that establish the AD therapeutic rationale to target AβOs selectively, and we describe ACU193, the first AβO-selective immunotherapeutic to enter human clinical trials and the first positioned to test the AβO hypothesis of AD.
Collapse
|
10
|
Modulation of Amyloid β-Induced Microglia Activation and Neuronal Cell Death by Curcumin and Analogues. Int J Mol Sci 2022; 23:ijms23084381. [PMID: 35457197 PMCID: PMC9027876 DOI: 10.3390/ijms23084381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is not restricted to the neuronal compartment but includes important interactions with immune cells, including microglia. Protein aggregates, common pathological hallmarks of AD, bind to pattern recognition receptors on microglia and trigger an inflammatory response, which contributes to disease progression and severity. In this context, curcumin is emerging as a potential drug candidate able to affect multiple key pathways implicated in AD, including neuroinflammation. Therefore, we studied the effect of curcumin and its structurally related analogues cur6 and cur16 on amyloid-β (Aβ)-induced microglia activation and neuronal cell death, as well as their effect on the modulation of Aβ aggregation. Primary cortical microglia and neurons were exposed to two different populations of Aβ42 oligomers (Aβ42Os) where the oligomeric state had been assigned by capillary electrophoresis and ultrafiltration. When stimulated with high molecular weight Aβ42Os, microglia released proinflammatory cytokines that led to early neuronal cell death. The studied compounds exerted an anti-inflammatory effect on high molecular weight Aβ42O-stimulated microglia and possibly inhibited microglia-mediated neuronal cell toxicity. Furthermore, the tested compounds demonstrated antioligomeric activity during the process of in vitro Aβ42 aggregation. These findings could be investigated further and used for the optimization of multipotent candidate molecules for AD treatment.
Collapse
|
11
|
Paul PS, Cho JY, Wu Q, Karthivashan G, Grabovac E, Wille H, Kulka M, Kar S. Unconjugated PLGA nanoparticles attenuate temperature-dependent β-amyloid aggregation and protect neurons against toxicity: implications for Alzheimer's disease pathology. J Nanobiotechnology 2022; 20:67. [PMID: 35120558 PMCID: PMC8817552 DOI: 10.1186/s12951-022-01269-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/16/2022] [Indexed: 12/26/2022] Open
Abstract
Conversion of β-amyloid (Aβ) peptides from soluble random-coil to aggregated protein enriched with β-sheet-rich intermediates has been suggested to play a role in the degeneration of neurons and development of Alzheimer's disease (AD) pathology. Aggregation of Aβ peptide can be prompted by a variety of environmental factors including temperature which can influence disease pathogenesis. Recently, we reported that FDA-approved unconjugated poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles can have beneficial effects in cellular and animal models of AD by targeting different facets of the Aβ axis. In this study, using biochemical, structural and spectroscopic analyses, we evaluated the effects of native PLGA on temperature-dependent Aβ aggregation and its ability to protect cultured neurons from degeneration. Our results show that the rate of spontaneous Aβ1-42 aggregation increases with a rise in temperature from 27 to 40 °C and PLGA with 50:50 resomer potently inhibits Aβ aggregation at all temperatures, but the effect is more profound at 27 °C than at 40 °C. It appears that native PLGA, by interacting with the hydrophobic domain of Aβ1-42, prevents a conformational shift towards β-sheet structure, thus precluding the formation of Aβ aggregates. Additionally, PLGA triggers disassembly of matured Aβ1-42 fibers at a faster rate at 40 °C than at 27 °C. PLGA-treated Aβ samples can significantly enhance viability of cortical cultured neurons compared to neurons treated with Aβ alone by attenuating phosphorylation of tau protein. Injection of native PLGA is found to influence the breakdown/clearance of Aβ peptide in the brain. Collectively, these results suggest that PLGA nanoparticles can inhibit Aβ aggregation and trigger disassembly of Aβ aggregates at temperatures outside the physiological range and can protect neurons against Aβ-mediated toxicity thus validating its unique therapeutic potential in the treatment of AD pathology.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Qi Wu
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Govindarajan Karthivashan
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Emily Grabovac
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
| | - Holger Wille
- Department of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| | - Mariana Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2M9 Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Satyabrata Kar
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
- Departments of Medicine (Neurology) and Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8 Canada
| |
Collapse
|
12
|
Ami D, Natalello A. Characterization of the Conformational Properties of Soluble and Insoluble Proteins by Fourier Transform Infrared Spectroscopy. Methods Mol Biol 2022; 2406:439-454. [PMID: 35089573 DOI: 10.1007/978-1-0716-1859-2_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The FTIR (micro-)spectroscopy method applied to the study of the structural properties of different soluble and insoluble proteins will be illustrated. In particular, we will discuss the procedure to analyze proteins in form of hydrated films and in solution by means of attenuated total reflection (ATR) measurements. Moreover, we will describe the procedure to characterize bacterial inclusion bodies (IBs) and amyloid deposits within human tissues by means of FTIR microspectroscopy.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
13
|
Duroux C, Hagège A. CE-ICP-MS to probe Aβ1-42 / copper (II) interactions, a complementary tool to study amyloid aggregation in Alzheimer's Disease. Metallomics 2021; 14:6482862. [PMID: 34951920 DOI: 10.1093/mtomcs/mfab075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022]
Abstract
Copper (II) ions appear to be involved in the Alzheimer's disease (AD) and seem to influence the aggregation of the amyloid-β1-42 (Aβ1-42) peptide. However, data are not conclusive and still not subject to consensus, copper (II) being suspected to either promote or inhibit aggregation. To address this question, CE-ICP-MS hyphenation was proposed as a complementary tool to follow the distribution of copper in the different oligomeric forms, at different sub-stoichiometries and different incubation times. Results clearly indicated the formation of several negatively charged copper complexes and showed the enhancement of the aggregation rate with copper concentration. Moreover, the variations of copper (II) speciation suggest different aggregation pathway, even for sub-stoichiometric ratios.
Collapse
Affiliation(s)
- C Duroux
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 69100 Villeurbanne, France
| | - A Hagège
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 69100 Villeurbanne, France
| |
Collapse
|
14
|
Interactions between copper (II) and β-amyloid peptide using capillary electrophoresis-ICP-MS: Kd measurements at the nanogram scale. Anal Bioanal Chem 2021; 414:5347-5355. [PMID: 34812903 DOI: 10.1007/s00216-021-03769-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Although the interaction between the β-amyloid peptide and copper (II) appears to play an important role in Alzheimer's disease, the affinity constant is still controversial and values are ranging from 107 to 1011 M-1. With the aim of clarifying this point, a complementary method, based on the capillary electrophoresis-ICP-MS hyphenation, was developed and competitive binding experiments were conducted in the presence of nitrilotriacetic acid. The effect of the capillary surface (neutral or positively charged) and nature of the buffer (Tris or Hepes) have been studied. Tris buffer was found to be inappropriate for such determination as it enhances the dissociation of copper (II) complexes, already occurring in the presence of an electric field in capillary electrophoresis. Using Hepes, a value of 1010 M-1 was found for the affinity of the small β-amyloid peptide 1-16 for copper (II), which is in agreement with the values obtained for other proteins involved in neurodegenerative diseases. These constants were also determined in conditions closer to those of biological media (higher ionic strength, presence of carbonates).
Collapse
|
15
|
Saha D, Jana B. Kinetic and thermodynamic stability comparison for the fibrillar form of small amyloid-β(1-42) oligomers using scaled molecular dynamics. Phys Chem Chem Phys 2021; 23:16897-16908. [PMID: 34328153 DOI: 10.1039/d1cp01866c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amyloid-β (Aβ) oligomers act as intermediates for several neurodegenerative disease-relevant fibril formations. However, gaining insight into the oligomer to fibril conversion process remains a challenge due to the transient nature of small Aβ. In this study, we probe the kinetic and thermodynamic stabilities of small Aβ(1-42) oligomers in fibrillar conformations to understand from what size these aggregates start forming stable fibrils. With no definite structures available for small Aβ42 aggregates, we have started with oligomers extracted from mature fibrils having four, five, six and nine chains stacked together, and have performed order-to-disorder transition on these systems. Using scaled molecular dynamics (sMD) simulation, the timescale for breaking the native contacts of fibrils has been compared. The results indicate that the kinetic stability of oligomers increases with size, especially at the C-terminus end beyond five-chain oligomers. The free energy of breaking the contacts at the β-sheet regions in the structures has been obtained on an unscaled potential from a free energy extrapolation (FEE) approach. The values show that although stable minima are obtained for larger oligomers due to the enhanced stability of the C-terminus ends, fully stable fibril formation may require aggregates larger than the ones considered in our study. Additionally, dissimilar kinetics for the unbinding of terminal chains across all the oligomers has been observed. The interaction energy values calculated from unscaled MD simulations reveal the crucial role of water in our observations. Our work provides the application of an easy-to-deploy method that sheds light on interactions which could be significant in the early stages of Aβ42 fibril formation.
Collapse
Affiliation(s)
- Debasis Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | | |
Collapse
|
16
|
Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of Label-Free Optical Imaging in Alzheimer's Disease Screening and Diagnosis. Front Aging Neurosci 2021; 13:699024. [PMID: 34366828 PMCID: PMC8341907 DOI: 10.3389/fnagi.2021.699024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
As the major neurodegenerative disease of dementia, Alzheimer's disease (AD) has caused an enormous social and economic burden on society. Currently, AD has neither clear pathogenesis nor effective treatments. Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been verified as potential tools for diagnosing and monitoring Alzheimer's disease. However, the high costs, low spatial resolution, and long acquisition time limit their broad clinical utilization. The gold standard of AD diagnosis routinely used in research is imaging AD biomarkers with dyes or other reagents, which are unsuitable for in vivo studies owing to their potential toxicity and prolonged and costly process of the U.S. Food and Drug Administration (FDA) approval for human use. Furthermore, these exogenous reagents might bring unwarranted interference to mechanistic studies, causing unreliable results. Several label-free optical imaging techniques, such as infrared spectroscopic imaging (IRSI), Raman spectroscopic imaging (RSI), optical coherence tomography (OCT), autofluorescence imaging (AFI), optical harmonic generation imaging (OHGI), etc., have been developed to circumvent this issue and made it possible to offer an accurate and detailed analysis of AD biomarkers. In this review, we present the emerging label-free optical imaging techniques and their applications in AD, along with their potential and challenges in AD diagnosis.
Collapse
Affiliation(s)
- Kai Liu
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiasong Li
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Raksha Raghunathan
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Hong Zhao
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Stephen T. C. Wong
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
17
|
Anand BG, Wu Q, Karthivashan G, Shejale KP, Amidian S, Wille H, Kar S. Mimosine functionalized gold nanoparticles (Mimo-AuNPs) suppress β-amyloid aggregation and neuronal toxicity. Bioact Mater 2021; 6:4491-4505. [PMID: 34027236 PMCID: PMC8131740 DOI: 10.1016/j.bioactmat.2021.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/18/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Evidence suggests that increased level/aggregation of beta-amyloid (Aβ) peptides initiate neurodegeneration and subsequent development of Alzheimer's disease (AD). At present, there is no effective treatment for AD. In this study, we reported the effects of gold nanoparticles surface-functionalized with a plant-based amino acid mimosine (Mimo-AuNPs), which is found to cross the blood-brain barrier, on the Aβ fibrillization process and toxicity. Thioflavin T kinetic assays, fluorescence imaging and electron microscopy data showed that Mimo-AuNPs were able to suppress the spontaneous and seed-induced Aβ1-42 aggregation. Spectroscopic studies, molecular docking and biochemical analyses further revealed that Mimo-AuNPs stabilize Aβ1-42 to remain in its monomeric state by interacting with the hydrophobic domain of Aβ1-42 (i.e., Lys16 to Ala21) there by preventing a conformational shift towards the β-sheet structure. Additionally, Mimo-AuNPs were found to trigger the disassembly of matured Aβ1-42 fibers and increased neuronal viability by reducing phosphorylation of tau protein and the production of oxyradicals. Collectively, these results reveal that the surface-functionalization of gold nanoparticles with mimosine can attenuate Aβ fibrillization and neuronal toxicity. Thus, we propose Mimo-AuNPs may be used as a potential treatment strategy towards AD-related pathologies. Mimosine functionalized with gold nanoparticles (Mimo-AuNPs) can cross blood-brain barrier. Mimo-AuNPs inhibit aggregation of Aβ peptides by interacting with its hydrophobic domain. Mimo-AuNPs can trigger disassembly of pre-aggregated Aβ fibers. Mimo-AuNPs can protect neurons against Aβ toxicity by attenuating intracellular signaling.
Collapse
Affiliation(s)
- Bibin G Anand
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Qi Wu
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Govindarajan Karthivashan
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Kiran P Shejale
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, India
| | - Sara Amidian
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Departments of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Departments of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| | - Satyabrata Kar
- Departments of Medicine and University of Alberta, Edmonton, Alberta, T6G 2M8, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
| |
Collapse
|
18
|
Vosough F, Barth A. Characterization of Homogeneous and Heterogeneous Amyloid-β42 Oligomer Preparations with Biochemical Methods and Infrared Spectroscopy Reveals a Correlation between Infrared Spectrum and Oligomer Size. ACS Chem Neurosci 2021; 12:473-488. [PMID: 33455165 PMCID: PMC8023574 DOI: 10.1021/acschemneuro.0c00642] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
![]()
Soluble oligomers of the amyloid-β(1-42)
(Aβ42) peptide,
widely considered to be among the relevant neurotoxic species involved
in Alzheimer’s disease, were characterized with a combination
of biochemical and biophysical methods. Homogeneous and stable Aβ42
oligomers were prepared by treating monomeric solutions of the peptide
with detergents. The prepared oligomeric solutions were analyzed with
blue native and sodium dodecyl sulfate polyacrylamide gel electrophoresis,
as well as with infrared (IR) spectroscopy. The IR spectra indicated
a well-defined β-sheet structure of the prepared oligomers.
We also found a relationship between the size/molecular weight of
the Aβ42 oligomers and their IR spectra: The position of the
main amide I′ band of the peptide backbone correlated with
oligomer size, with larger oligomers being associated with lower wavenumbers.
This relationship explained the time-dependent band shift observed
in time-resolved IR studies of Aβ42 aggregation in the absence
of detergents, during which the oligomer size increased. In addition,
the bandwidth of the main IR band in the amide I′ region was
found to become narrower with time in our time-resolved aggregation
experiments, indicating a more homogeneous absorption of the β-sheets
of the oligomers after several hours of aggregation. This is predominantly
due to the consumption of smaller oligomers in the aggregation process.
Collapse
Affiliation(s)
- Faraz Vosough
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
19
|
Rationally designed peptide-based inhibitor of Aβ42 fibril formation and toxicity: a potential therapeutic strategy for Alzheimer's disease. Biochem J 2020; 477:2039-2054. [PMID: 32427336 PMCID: PMC7293109 DOI: 10.1042/bcj20200290] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Amyloid beta peptide (Aβ42) aggregation in the brain is thought to be responsible for the onset of Alzheimer's disease, an insidious condition without an effective treatment or cure. Hence, a strategy to prevent aggregation and subsequent toxicity is crucial. Bio-inspired peptide-based molecules are ideal candidates for the inhibition of Aβ42 aggregation, and are currently deemed to be a promising option for drug design. In this study, a hexapeptide containing a self-recognition component unique to Aβ42 was designed to mimic the β-strand hydrophobic core region of the Aβ peptide. The peptide is comprised exclusively of D-amino acids to enhance specificity towards Aβ42, in conjunction with a C-terminal disruption element to block the recruitment of Aβ42 monomers on to fibrils. The peptide was rationally designed to exploit the synergy between the recognition and disruption components, and incorporates features such as hydrophobicity, β-sheet propensity, and charge, that all play a critical role in the aggregation process. Fluorescence assays, native ion-mobility mass spectrometry (IM-MS) and cell viability assays were used to demonstrate that the peptide interacts with Aβ42 monomers and oligomers with high specificity, leading to almost complete inhibition of fibril formation, with essentially no cytotoxic effects. These data define the peptide-based inhibitor as a potentially potent anti-amyloid drug candidate for this hitherto incurable disease.
Collapse
|
20
|
Fagiani F, Lanni C, Racchi M, Pascale A, Govoni S. Amyloid-β and Synaptic Vesicle Dynamics: A Cacophonic Orchestra. J Alzheimers Dis 2020; 72:1-14. [PMID: 31561377 DOI: 10.3233/jad-190771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now more than two decades since amyloid-β (Aβ), the proteolytic product of the amyloid-β protein precursor (AβPP), was first demonstrated to be a normal and soluble product of neuronal metabolism. To date, despite a growing body of evidence suggests its regulatory role on synaptic function, the exact cellular and molecular pathways involved in Aβ-driven synaptic effects remain elusive. This review provides an overview of the mounting evidence showing Aβ-mediated effects on presynaptic functions and neurotransmitter release from axon terminals, focusing on its interaction with synaptic vesicle cycle. Indeed, Aβ peptides have been found to interact with key presynaptic scaffold proteins and kinases affecting the consequential steps of the synaptic vesicle dynamics (e.g., synaptic vesicles exocytosis, endocytosis, and trafficking). Defects in the fine-tuning of synaptic vesicle cycle by Aβ and deregulation of key molecules and kinases, which orchestrate synaptic vesicle availability, may alter synaptic homeostasis, possibly contributing to synaptic loss and cognitive decline. Elucidating the presynaptic mechanisms by which Aβ regulate synaptic transmission is fundamental for a deeper comprehension of the biology of presynaptic terminals as well as of Aβ-driven early synaptic defects occurring in prodromal stage of AD. Moreover, a better understating of Aβ involvement in cellular signal pathways may allow to set up more effective therapeutic interventions by detecting relevant molecular mechanisms, whose imbalance might ultimately lead to synaptic impairment in AD.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy.,Scuola Universitaria Superiore IUSS, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Italy
| |
Collapse
|
21
|
Caruso G, Spampinato SF, Cardaci V, Caraci F, Sortino MA, Merlo S. β-amyloid and Oxidative Stress: Perspectives in Drug Development. Curr Pharm Des 2020; 25:4771-4781. [PMID: 31814548 DOI: 10.2174/1381612825666191209115431] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023]
Abstract
Alzheimer's Disease (AD) is a slow-developing neurodegenerative disorder in which the main pathogenic role has been assigned to β-amyloid protein (Aβ) that accumulates in extracellular plaques. The mechanism of action of Aβ has been deeply analyzed and several membrane structures have been identified as potential mediators of its effect. The ability of Aβ to modify neuronal activity, receptor expression, signaling pathways, mitochondrial function, and involvement of glial cells have been analyzed. In addition, extensive literature deals with the involvement of oxidative stress in Aβ effects. Herein we focus more specifically on the reciprocal regulation of Aβ, that causes oxidative stress, that favors Aβ aggregation and toxicity and negatively affects the peptide clearance. Analysis of this strict interaction may offer novel opportunities for therapeutic intervention. Both common and new molecules endowed with antioxidant properties deserve attention in this regard.
Collapse
Affiliation(s)
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| | - Vincenzo Cardaci
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy.,Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, 94018 Troina, Italy.,Department of Drug Sciences, University of Catania, 95125 Catania, Italy
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy
| |
Collapse
|
22
|
Delfi M, Leone S, Emendato A, Ami D, Borriello M, Natalello A, Iannuzzi C, Picone D. Understanding the self-assembly pathways of a single chain variant of monellin: A first step towards the design of sweet nanomaterials. Int J Biol Macromol 2020; 152:21-29. [PMID: 32088237 DOI: 10.1016/j.ijbiomac.2020.02.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Peptides and proteins possess an inherent tendency to self-assemble, prompting the formation of amyloid aggregates from their soluble and functional states. Amyloids are linked to many devastating diseases, but self-assembling proteins can also represent formidable tools to produce new and sustainable biomaterials for biomedical and biotechnological applications. The mechanism of fibrillar aggregation, which influences the morphology and the properties of the protein aggregates, depend on factors such as pH, ionic strength, temperature, agitation, and protein concentration. We have here used intensive mechanical agitation, with or without beads, to prompt the aggregation of the single-chain derivative of the plant protein monellin, named MNEI, which is a well characterized sweet protein. Transmission electron microscopy confirmed the formation of fibrils several micrometers long, morphologically different from the previously characterized fibers of MNEI. Changes in the protein secondary structures during the aggregation process were monitored by Fourier transform infrared spectroscopy, which detected differences in the conformation of the final aggregates obtained under mechanical agitation. Moreover, soluble oligomers could be detected in the early phases of aggregation by polyacrylamide gel-electrophoresis. These findings emphasize the existence of multiple pathways of fibrillar aggregation for MNEI, which could be exploited for the design of innovative protein-based biomaterials.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Alessandro Emendato
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Clara Iannuzzi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.
| |
Collapse
|
23
|
Mangiagalli M, Carvalho H, Natalello A, Ferrario V, Pennati ML, Barbiroli A, Lotti M, Pleiss J, Brocca S. Diverse effects of aqueous polar co-solvents on Candida antarctica lipase B. Int J Biol Macromol 2020; 150:930-940. [DOI: 10.1016/j.ijbiomac.2020.02.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/04/2023]
|
24
|
Donnarumma F, Leone S, Delfi M, Emendato A, Ami D, Laurents DV, Natalello A, Spadaccini R, Picone D. Probing structural changes during amyloid aggregation of the sweet protein MNEI. FEBS J 2019; 287:2808-2822. [DOI: 10.1111/febs.15168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Federica Donnarumma
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Serena Leone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Masoud Delfi
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Alessandro Emendato
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Douglas V. Laurents
- Institute of Physical Chemistry ‘Rocasolano’ Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Antonino Natalello
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Roberta Spadaccini
- Department of Science and Technology Università degli Studi del Sannio Benevento Italy
| | - Delia Picone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| |
Collapse
|
25
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
26
|
Tung N, Derreumaux P, Vu VV, Nam PC, Ngo ST. C-Terminal Plays as the Possible Nucleation of the Self-Aggregation of the S-Shape Aβ 11-42 Tetramer in Solution: Intensive MD Study. ACS OMEGA 2019; 4:11066-11073. [PMID: 31460204 PMCID: PMC6648102 DOI: 10.1021/acsomega.9b00992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Amyloid beta (Aβ) peptides are characterized as the major factors associated with neuron death in Alzheimer's disease, which is listed as the most common form of neurodegeneration. Disordered Aβ peptides are released from proteolysis of the amyloid precursor protein. The Aβ self-assembly process roughly takes place via five steps: disordered forms → oligomers → photofibrils → mature fibrils → plaques. Although Aβ fibrils are often observed in patient brains, oligomers were recently indicated to be major neurotoxic elements. In this work, the neurotoxic compound S-shape Aβ11-42 tetramer (S4Aβ11-42) was investigated over 10 μs of unbiased MD simulations. In particular, the S4Aβ11-42 oligomer adopted a high dynamics structure, resulting in unsuccessful determination of their structures in experiments. The C-terminal was suggested as the possible nucleation of the Aβ42 aggregation. The sequences 27-35 and 39-40 formed rich β-content, whereas other residues mostly adopted coil structures. The mean value of the β-content over the equilibrium interval is ∼42 ± 3%. Furthermore, the dissociation free energy of the S4Aβ11-42 peptide was predicted using a biased sampling method. The obtained free energy is ΔG US = -58.44 kcal/mol which is roughly the same level as the corresponding value of the U-shape Aβ17-42 peptide. We anticipate that the obtained S4Aβ11-42 structures could be used as targets for AD inhibitor screening over the in silico study.
Collapse
Affiliation(s)
- Nguyen
Thanh Tung
- Institute
of Materials Science, Vietnam Academy of
Science and Technology, Hanoi 10307, Vietnam
| | - Philippe Derreumaux
- Laboratory of Theoretical and Chemistry, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Laboratoire
de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Van V. Vu
- NTT
Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Pham Cam Nam
- Department
of Chemical Engineering, The University
of Da Nang—University of Science and Technology, Da Nang City 550000, Vietnam
| | - Son Tung Ngo
- Laboratory
of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang
University, Ho Chi
Minh City 758307, Vietnam
| |
Collapse
|
27
|
Leri M, Natalello A, Bruzzone E, Stefani M, Bucciantini M. Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ 1-42 aggregation. Food Chem Toxicol 2019; 129:1-12. [PMID: 30995514 DOI: 10.1016/j.fct.2019.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
Abstract
Oleuropein aglycone (OleA), the most abundant polyphenol in extra virgin olive oil (EVOO), and Hydroxythyrosol (HT), the OleA main metabolite, have attracted our interest due to their multitarget effects, including the interference with amyloid aggregation path. However, the mechanistic details of their anti-amyloid effect are not known yet. We report here a broad biophysical approach and cell biology techniques that enabled us to characterize the different molecular mechanisms by which OleA and HT modulate the Aβ1-42 fibrillation, a main histopathological feature of Alzheimer's disease (AD). In particular, OleA prevents the growth of toxic Aβ1-42 oligomers and blocks their successive growth into mature fibrils following its interaction with the peptide N-terminus, while HT speeds up harmless fibril formation. Our data demonstrate that, by stabilizing oligomers and fibrils, both polyphenols reduce their seeding activity and aggregate/membrane interaction on human neuroblastoma SH-SY5Y cells. These findings highlight the great potential of EVOO polyphenols and offer the possibility to validate and to optimize their use for possible AD prevention and therapy.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Department of Neuroscience, Psychology, Area of Medicine and Health of the Child of the University of Florence, Viale Pieraccini, 6 - 50139 Florence, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Elena Bruzzone
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy.
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy.
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy.
| |
Collapse
|
28
|
Bisceglia F, Seghetti F, Serra M, Zusso M, Gervasoni S, Verga L, Vistoli G, Lanni C, Catanzaro M, De Lorenzi E, Belluti F. Prenylated Curcumin Analogues as Multipotent Tools To Tackle Alzheimer's Disease. ACS Chem Neurosci 2019; 10:1420-1433. [PMID: 30556996 DOI: 10.1021/acschemneuro.8b00463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease is likely to be caused by copathogenic factors including aggregation of Aβ peptides into oligomers and fibrils, neuroinflammation, and oxidative stress. To date, no effective treatments are available, and because of the multifactorial nature of the disease, it emerges the need to act on different and simultaneous fronts. Despite the multiple biological activities ascribed to curcumin as neuroprotector, its poor bioavailability and toxicity limit the success in clinical outcomes. To tackle Alzheimer's disease on these aspects, the curcumin template was suitably modified and a small set of analogues was attained. In particular, derivative 1 turned out to be less toxic than curcumin. As evidenced by capillary electrophoresis and transmission electron microscopy studies, 1 proved to inhibit the formation of large toxic Aβ oligomers, by shifting the equilibrium toward smaller nontoxic assemblies and to limit the formation of insoluble fibrils. These findings were supported by molecular docking and steered molecular dynamics simulations which confirmed the superior capacity of 1 to bind Aβ structures of different complexity. Remarkably, 1 also showed in vitro anti-inflammatory and antioxidant properties. In summary, the curcumin-based analogue 1 emerged as multipotent compound worthy to be further investigated and exploited in the Alzheimer's disease multitarget context.
Collapse
Affiliation(s)
- Federica Bisceglia
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Francesca Seghetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, 35131 Padua, Italy
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Laura Verga
- Department of Molecular Medicine, Unit of Pathology, University of Pavia IRCCS Policlinico S. Matteo Foundation, Via Forlanini 14, 27100 Pavia, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Cristina Lanni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Michele Catanzaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Ersilia De Lorenzi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|