1
|
Liu L, Chen M, Zhao T, Yuan L, Mi Z, Bai Y, Fei P, Liu Z, Li C, Wang L, Feng F. Ratiometric fluorescence and smartphone-assisted sensing platform based on dual-emission carbon dots for brilliant blue detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124782. [PMID: 38991616 DOI: 10.1016/j.saa.2024.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, an innovative ratiometric fluorescence and smartphone-assisted visual sensing platform based on blue-yellow dual-emission carbon dots (BY-CDs) was constructed for the first time to determine brilliant blue. The BY-CDs was synthesized via a facile one-step hydrothermal process involving propyl gallate and o-phenylenediamine. The synthesized BY-CDs exhibit favorable water solubility and exceptional fluorescence stability. Under excitation at 370 nm, BY-CDs show two distinguishable fluorescence emission bands (458 and 558 nm). Upon addition of brilliant blue, the fluorescence intensity at 558 nm exhibited a significant quenching effect attributed to fluorescence resonance energy transfer (FRET), while the fluorescence intensity at 458 nm was basically unchanged. The prepared BY-CDs can effectively serve as a ratiometric nanosensor for determining brilliant blue with the ratio of fluorescence intensities at 458 and 558 nm (F458/F558) as response signal. In addition, the developed ratiometric fluorescence sensor exhibits a noticeable alteration in color from yellow to green under UV light with a wavelength of 365 nm upon addition of varying concentrations of brilliant blue, which provides the possibility of visual detection of brilliant blue by a smartphone application. Finally, the BY-CDs based dual-mode sensing platform successfully detected brilliant blue in actual food samples and achieved a desirable recovery rate. This study highlights the merits of fast, convenient, economical, real-time, visual, high accuracy, excellent precision, good selectivity and high sensitivity for brilliant blue detection, and paves new paths for the monitoring of brilliant blue in real samples.
Collapse
Affiliation(s)
- Lizhen Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Meng Chen
- Shanxi Datong University, Datong 037009, PR China
| | - Ting Zhao
- Shanxi Datong University, Datong 037009, PR China
| | - Lin Yuan
- Shanxi Normal University, Taiyuan 030032, PR China
| | - Zhi Mi
- Shanxi Datong University, Datong 037009, PR China.
| | - Yunfeng Bai
- Shanxi Datong University, Datong 037009, PR China
| | - Peng Fei
- Shanxi Datong University, Datong 037009, PR China
| | - Zhixiong Liu
- Shanxi Datong University, Datong 037009, PR China
| | - Caiqing Li
- Shanxi Datong University, Datong 037009, PR China
| | - Ligang Wang
- Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- Shanxi Datong University, Datong 037009, PR China; Shanxi Normal University, Taiyuan 030032, PR China.
| |
Collapse
|
2
|
Tomac I, Adam V, Labuda J. Advanced chemically modified electrodes and platforms in food analysis and monitoring. Food Chem 2024; 460:140548. [PMID: 39096799 DOI: 10.1016/j.foodchem.2024.140548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
Electrochemical sensors and electroanalytical techniques become emerging as effective and low-cost tools for rapid assessment of special parameters of the food quality. Chemically modified electrodes are developed to change properties and behaviour, particularly sensitivity and selectivity, of conventional electroanalytical sensors. Within this comprehensive review, novel trends in chemical modifiers material structure, electrodes construction and flow analysis platforms are described and evaluated. Numerous recent application examples for the detection of food specific analytes are presented in a form of table to stimulate further development in both, the basic research and commercial field.
Collapse
Affiliation(s)
- Ivana Tomac
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek, J. J. Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Generála Píky 1999/5, 613 00 Brno, Czech Republic.
| | - Jan Labuda
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
3
|
Jabbar HS. Pseudo-water-soluble Fe 2O 3 as Nanozyme catalyzed chemiluminescent reaction for detection of brilliant blue in gelatin and beverages. Food Chem 2024; 453:139678. [PMID: 38759439 DOI: 10.1016/j.foodchem.2024.139678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Converting solid iron oxide nanoparticles into a "pseudo-water-soluble" form before applying them to chemiluminescent reactions leads to enhance the chemiluminescence intensity. Using 8-hydroxyquinoline as a colloidal agent, a new, fast, and simple method of synthesizing pseudo-water-soluble Fe2O3 nanoparticles was developed. SEM, VSM, SAED, HRTEM, XRD, FTIR, and EDS techniques were used to characterize the synthesized Fe2O3 nanoparticles. Fe2O3 nanoparticles synthesized in this study have superior peroxidase-like activity (POD-like) and are stable under a wide range of pH and temperature. The chemiluminescence reaction of luminol-H2O2 is intensified and accelerated by a colloidal solution of Fe-nanoparticles/8-hydroxyquinoline. Reverse-flow injection analysis was employed to determine brilliant blue. A chemiluminescent sensing method based on iron oxide nanozymes was utilized for sensitive detection of the brilliant blue synthetic dye, achieving a limit of detection of 0.06 mg/L and a dynamic linear range of 0.1 to 50 mg/L. The recovery and relative standard deviations of real samples were found to be 97.83-99.93% and 0.09-3.07%, respectively. An analysis of a sample, from injection to obtaining the maximum peak, could be performed in less than one minute.
Collapse
Affiliation(s)
- Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
4
|
de Faria LV, Villafuerte LM, do Nascimento SFL, de Sá IC, Peixoto DA, Ribeiro RSDA, Nossol E, Lima TDM, Semaan FS, Pacheco WF, Dornellas RM. 3D-printed electrodes using graphite/carbon nitride/polylactic acid composite material: A greener platform for detection of amaranth dye in food samples. Food Chem 2024; 442:138497. [PMID: 38271904 DOI: 10.1016/j.foodchem.2024.138497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
The production of sustainable materials with properties aimed at the additive manufacturing of electrochemical sensors has gained prestige in the scientific scenario. Here, a novel lab-made composite material using graphite (G) and carbon nitride (C3N4) embedded into polylactic acid (PLA) biopolymer is proposed to produce 3D-printed electrodes. PLA offers printability and mechanical stability in this composition, while G and C3N4 provide electrical properties and electrocatalytic sites, respectively. Characterizations by Raman and infrared spectroscopies and Energy Dispersive X-rays indicated that the G/C3N4/PLA composite was successfully obtained, while electron microscopy images revealed non-homogeneous rough surfaces. Better electrochemical properties were achieved when the G/C3N4/PLA proportion (35:5:60) was used. As a proof of concept, amaranth (AMR), a synthetic dye, was selected as an analyte, and a fast method using square wave voltammetry was developed. Utilizing the 3D-printed G/C3N4/PLA electrode, a more comprehensive linear range (0.2 to 4.2 μmol/L), a 5-fold increase in sensitivity (9.83 μmol-1 L μA), and better limits of detection (LOD = 0.06 μmol/L) and quantification (LOQ = 0.18 μmol/L) were achieved compared to the G/PLA electrode. Samples of jelly, popsicles, isotonic drinks, and food flavoring samples were analyzed, and similar results to those obtained by UV-vis spectrometry confirmed the method's reliability. Therefore, the described sensor is a simple, cost-effective alternative for assessing AMR in routine food analysis.
Collapse
Affiliation(s)
- Lucas V de Faria
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói-RJ, Brazil.
| | - Luana M Villafuerte
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói-RJ, Brazil
| | - Suéllen F L do Nascimento
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói-RJ, Brazil
| | - Igor C de Sá
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói-RJ, Brazil
| | - Diego A Peixoto
- Instituto de Química, Universidade Federal de Uberlândia, 38408-100 Uberlândia-MG, Brazil
| | - Ruan S de A Ribeiro
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói-RJ, Brazil
| | - Edson Nossol
- Instituto de Química, Universidade Federal de Uberlândia, 38408-100 Uberlândia-MG, Brazil
| | - Thiago de M Lima
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói-RJ, Brazil
| | - Felipe S Semaan
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói-RJ, Brazil
| | - Wagner F Pacheco
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói-RJ, Brazil
| | - Rafael M Dornellas
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141 Niterói-RJ, Brazil.
| |
Collapse
|
5
|
Ion BC, van Staden JKF, Georgescu-State R, Comnea-Stancu IR. An ultrasensitive electrochemical platform based on copper oxide nanoparticles and poly (crystal violet) for the detection of brilliant blue FCF from soft drinks. Food Chem 2024; 437:137751. [PMID: 37907001 DOI: 10.1016/j.foodchem.2023.137751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
In this study, a highly sensitive and quick electrochemical platform based on poly (crystal violet) film and copper oxide nanoparticles for the detection of brilliant blue FCF from various soft beverages was developed. The synthesized copper oxide nanoparticles were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray. Further, crystal violet was electropolymerized on the surface of the carbon paste electrode modified with copper oxide nanoparticles. The electrochemical properties of poly (crystal) violet/copper oxide nanoparticles modified carbon paste electrode were assessed through the utilization of cyclic voltammetry and electrochemical impedance spectroscopy. Furthermore, the signal towards the oxidation of brilliant blue was examined using the differential pulse voltammetry method. Under ideal experimental conditions, the peak current exhibited a linear relationship with the brilliant blue concentration within the range of 0.01-1.00 nmol/L, with a sensitivity of 294.55 µA nmol/L cm-2 and a significant detection limit of 3 pmol/L. In the presence of other dyes and other food additives, the developed platform showed greater selectivity in detecting brilliant blue. The reliability of the designed platform was demonstrated by the 99.19 - 100.67 recovery percentage for the identification of BB in various soft drink samples.
Collapse
Affiliation(s)
- Bianca-Cristina Ion
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Jacobus Koos Frederick van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania.
| | - Ramona Georgescu-State
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Ionela-Raluca Comnea-Stancu
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
6
|
Luo S, Sun X, Zhang L, Miao Y, Yan G. Preparation of room-temperature phosphorescence-ratiometric fluorescence magnetic mesoporous imprinted microspheres and its application in detection of malachite green and tartrazine in multimatrix. Food Chem 2024; 430:137096. [PMID: 37562263 DOI: 10.1016/j.foodchem.2023.137096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
The photoluminescent properties of Mn-doped ZnS quantum dots were fully exploited, and room-temperature phosphorescence (RTP)-ratiometric fluorescence (RF) magnetic mesoporous molecularly imprinted polymers (PFMM-MIPs) were prepared by integrating molecular imprinting technology. RTP was used to detect malachite green (MG). The fluorescence at 420 nm and the peak at 590 nm in the fluorescence mode were used as the response reference signals respectively to detect tartrazine (TZ). The linear responsive range and detection limit of MG were 0.01-150 μM and 4.3 nM, and these of TZ were 0.05-80 μM and 23.7 nM. RTP, which can avoid the interference of background fluorescence, and RF with self-calibration ability can both largely weaken the matrix effect. This work enables single-probe-type MIPs to achieve dual-target analysis via RTP and RF. This method provides excellent sensitivity, specificity, recovery and recyclability, and is expected to be prospectively applied in the fields of food, environment and biological analyses.
Collapse
Affiliation(s)
- Shiqing Luo
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xiaojie Sun
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030000, China
| | - Lifang Zhang
- School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030000, China; Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Taiyuan 030000, China.
| | - Yanming Miao
- School of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Guiqin Yan
- School of Life Science, Shanxi Normal University, Taiyuan 030000, China
| |
Collapse
|
7
|
Fiorito S, Epifano F, Palumbo L, Collevecchio C, Spogli R, Genovese S. Separation and quantification of Tartrazine (E102) and Brilliant Blue FCF (E133) in green colored foods and beverages. Food Res Int 2023; 172:113094. [PMID: 37689866 DOI: 10.1016/j.foodres.2023.113094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
In the present study we investigated the capacities of a panel of 25 solid sorbents represented by layered structures, inorganic oxides and hydroxides, and phyllosilicates, to effectively remove in high yield Tartrazine (E102) and Brilliant Blue FCF (E133) from aqueous solutions, and more notable, green colored food matrices. Quantification of the title compounds have been achieved by HPLC-DAD analyses. Contents of E102 and E133 in real samples were in the range 1.3-36.5 μg/mL and 1.0-20.1 μg/mL, respectively. After a treatment of 1 min., in most cases a complete bleaching of solutions and deep coloring of the solid phase was recorded. The most effective solids to this aim were seen to be aluminium based ayered double hydroxides. In the case of magnesium oxide for E102, and magnesium aluminium D. benzensulfonate SDS 01 H8L and Florisil for E133, a selective adsorption (>99.9 %) of only one dye was observed. The adsorption recorded was strictly dependent on the loading of the sorbent. Related values were 300 mg for the separation of E102 by magnesium oxide from all the five food matrices under investigation, and in the range 200 mg-300 mg for magnesium aluminium D. benzensulfonate SDS 01 H8L and Florisil in the case of E133. The application of Langmuir and Freundlich models suggested that the adsorption may take place in the inner layers of the solids with a favourable thermodynamique outcome. Findings described herein offer the concrete possibility of quantifications of individual dyes in matrices containing more than one food colorant.
Collapse
Affiliation(s)
- Serena Fiorito
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| | - Lucia Palumbo
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Chiara Collevecchio
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Roberto Spogli
- Prolabin & Tefarm Srl, Via dell'Acciaio 9, 06134 Perugia, Italy
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università "G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| |
Collapse
|
8
|
Wu Q, Duan XJ, Lv HT, Wang LT. Red-emitting carbon dots as fluorescent probes for the rapid detection of brilliant blue FCF in foods. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
9
|
Jacinto C, Maza Mejía I, Khan S, López R, Sotomayor MDPT, Picasso G. Using a Smartphone-Based Colorimetric Device with Molecularly Imprinted Polymer for the Quantification of Tartrazine in Soda Drinks. BIOSENSORS 2023; 13:639. [PMID: 37367004 DOI: 10.3390/bios13060639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The present study reports the development and application of a rapid, low-cost in-situ method for the quantification of tartrazine in carbonated beverages using a smartphone-based colorimetric device with molecularly imprinted polymer (MIP). The MIP was synthesized using the free radical precipitation method with acrylamide (AC) as the functional monomer, N,N'-methylenebisacrylamide (NMBA) as the cross linker, and potassium persulfate (KPS) as radical initiator. The smartphone (RadesPhone)-operated rapid analysis device proposed in this study has dimensions of 10 × 10 × 15 cm and is illuminated internally by light emitting diode (LED) lights with intensity of 170 lux. The analytical methodology involved the use of a smartphone camera to capture images of MIP at various tartrazine concentrations, and the subsequent application of the Image-J software to calculate the red, green, blue (RGB) color values and hue, saturation, value (HSV) values from these images. A multivariate calibration analysis of tartrazine in the range of 0 to 30 mg/L was performed, and the optimum working range was determined to be 0 to 20 mg/L using five principal components and a limit of detection (LOD) of 1.2 mg/L was obtained. Repeatability analysis of tartrazine solutions with concentrations of 4, 8, and 15 mg/L (n = 10) showed a coefficient of variation (% RSD) of less than 6%. The proposed technique was applied to the analysis of five Peruvian soda drinks and the results were compared with the UHPLC reference method. The proposed technique showed a relative error between 6% and 16% and % RSD lower than 6.3%. The results of this study demonstrate that the smartphone-based device is a suitable analytical tool that offers an on-site, cost-effective, and rapid alternative for the quantification of tartrazine in soda drinks. This color analysis device can be used in other molecularly imprinted polymer systems and offers a wide range of possibilities for the detection and quantification of compounds in various industrial and environmental matrices that generate a color change in the MIP matrix.
Collapse
Affiliation(s)
- Christian Jacinto
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
| | - Ily Maza Mejía
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
| | - Sabir Khan
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
- Chemistry Institute-Araraquara-SP, São Paulo State University (UNESP), Araraquara 14801-900, Brazil
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoro 59625-900, Brazil
| | - Rosario López
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
| | - Maria D P T Sotomayor
- Chemistry Institute-Araraquara-SP, São Paulo State University (UNESP), Araraquara 14801-900, Brazil
| | - Gino Picasso
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
| |
Collapse
|
10
|
Gimadutdinova L, Ziyatdinova G, Davletshin R. Selective Voltammetric Sensor for the Simultaneous Quantification of Tartrazine and Brilliant Blue FCF. SENSORS (BASEL, SWITZERLAND) 2023; 23:1094. [PMID: 36772133 PMCID: PMC9920251 DOI: 10.3390/s23031094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Tartrazine and brilliant blue FCF are synthetic dyes used in the food, cosmetic and pharmaceutical industries. The individual and/or simultaneous control of their concentrations is required due to dose-dependent negative health effects. Therefore, the paper presents experimental results related to the development of a sensing platform for the electrochemical detection of tartrazine and brilliant blue FCF based on a glassy carbon electrode (GCE) modified with MnO2 nanorods, using anodic differential pulse voltammetry. Homogeneous and stable suspensions of MnO2 nanorods have been obtained involving cetylpyridinium bromide solution as a cationic surfactant. The MnO2 nanorods-modified electrode showed a 7.9-fold increase in the electroactive surface area and a 72-fold decrease in the electron transfer resistance. The developed sensor allowed the simultaneous quantification of dyes for two linear domains: in the ranges of 0.10-2.5 and 2.5-15 μM for tartrazine and 0.25-2.5 and 2.5-15 μM for brilliant blue FCF with detection limits of 43 and 41 nM, respectively. High selectivity of the sensor response in the presence of typical interference agents (inorganic ions, saccharides, ascorbic and sorbic acids), other food dyes (riboflavin, indigo carmine, and sunset yellow), and vanillin has been achieved. The sensor has been tested by analyzing soft and isotonic sports drinks and the determined concentrations were close to those obtained involving the chromatography technique.
Collapse
Affiliation(s)
- Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Rustam Davletshin
- Department of High Molecular and Organoelement Compounds, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
11
|
Moulya KP, Manjunatha JG, Aljuwayid AM, Habila MA, Sillanpaa M. Polymer modified Carbon Paste Electrode as the Sensor for the Analysis of Tartrazine. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
12
|
Bonyadi S, Ghanbari K. Application of molecularly imprinted polymer and ZnO nanostructure as a novel sensor for tartrazine determination. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Wu S, Tian J, Xie N, Adnan M, Wang J, Liu G. A sensitive, accurate, and high-throughput gluco-oligosaccharide oxidase-based HRP colorimetric method for assaying lytic polysaccharide monooxygenase activity. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:15. [PMID: 35418300 PMCID: PMC8830019 DOI: 10.1186/s13068-022-02112-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
Abstract
Background The AA9 (auxiliary activities) family of lytic polysaccharide monooxygenases (AA9 LPMOs) is a ubiquitous and diverse group of enzymes in the fungal kingdom. They catalyse the oxidative cleavage of glycosidic bonds in lignocellulose and exhibit great potential for biorefinery applications. Robust, high-throughput and direct methods for assaying AA9 LPMO activity, which are prerequisites for screening LPMOs with excellent properties, are still lacking. Here, we present a gluco-oligosaccharide oxidase (GOOX)-based horseradish peroxidase (HRP) colorimetric method for assaying AA9 LPMO activity. Results We cloned and expressed a GOOX gene from Sarocladium strictum in Trichoderma reesei, purified the recombinant SsGOOX, validated its properties, and developed an SsGOOX-based HRP colorimetric method for assaying cellobiose concentrations. Then, we expressed two AA9 LPMOs from Thielavia terrestris, TtAA9F and TtAA9G, in T. reesei, purified the recombinant proteins, and analysed their product profiles and regioselectivity towards phosphoric acid swollen cellulose (PASC). TtAA9F was characterized as a C1-type (class 1) LPMO, while TtAA9G was characterized as a C4-type (class 2) LPMO. Finally, the SsGOOX-based HRP colorimetric method was used to quantify the total concentration of reducing lytic products from the LPMO reaction, and the activities of both the C1- and C4-type LPMOs were analysed. These LPMOs could be effectively analysed with limits of detection (LoDs) less than 30 nmol/L, and standard curves between the A515 and LPMO concentrations with determination coefficients greater than 0.994 were obtained. Conclusions A novel, sensitive and accurate assay method that directly targets the main activity of both C1- and C4-type AA9 LPMOs was established. This method is easy to use and could be performed on a microtiter plate for high-throughput screening of AA9 LPMOs with desirable properties. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02112-2.
Collapse
|
14
|
Kapoor A, Pratibha, Rajput JK. Solar light photocatalytic activity of CuO/TiO2 mixed oxide derived from conjugated azomethine metal complex for degradation of food colorants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Zheng Y, Mao S, Zhu J, Fu L, Zare N, Karimi F. Current status of electrochemical detection of sunset yellow based on bibliometrics. Food Chem Toxicol 2022; 164:113019. [DOI: 10.1016/j.fct.2022.113019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
|
16
|
Application of Electrochemical Sensors in the Determination of Synthetic Dyes in Foods or Beverages and Their Toxicological Effects on Human Health: a Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Li M, Li R, Han B, Ma H, Hou X, Kang Y, Zhang Y, Wang JJ. Ascorbic acid functionalized anti-aggregated Au nanoparticles for ultrafast MEF and SERS detection of tartrazine: an ultra-wide piecewise linear range study. Analyst 2022; 147:436-442. [DOI: 10.1039/d1an02139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enhancement mechanism of MEF and SERS.
Collapse
Affiliation(s)
- Mengru Li
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, PR China
| | - Ran Li
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, PR China
| | - Bo Han
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, PR China
| | - Haojie Ma
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, PR China
| | - Xueyan Hou
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, PR China
| | - Yulong Kang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, PR China
| | - Yuqi Zhang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, PR China
| | - Ji-Jiang Wang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, PR China
| |
Collapse
|
18
|
Production of soluble dietary fibers and red pigments from potato pomace in submerged fermentation by Monascus purpureus. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Solomonenko AN, Dorozhko EV, Barek J, Korotkova EI, Vyskocil V, Shabalina AV. Adsorptive stripping voltammetric determination of carbofuran in herbs on chromatographic sorbent modified electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Modulation of immune functions, inflammatory response, and cytokine production following long-term oral exposure to three food additives; thiabendazole, monosodium glutamate, and brilliant blue in rats. Int Immunopharmacol 2021; 98:107902. [PMID: 34182247 DOI: 10.1016/j.intimp.2021.107902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
The food additives thiabendazole (TBZ), monosodium glutamate (MSG), and brilliant blue (BB) are commonly used in many daily-consumed food products worldwide. They are widely used in major agricultural and industrial applications. Yet, many of its toxicological aspects are still unclear, especially immune modulation. This research was therefore intended to investigate the effects of male Wistar rats' daily oral exposure for 90 days to TBZ (10 mg/kg b.wt), MSG (20 mg/kg b.wt), or BB (1.2 mg/kg b.wt) on the blood cells, immunity, and inflammatory indicators. The three tested food additives showed varying degrees of hematological alterations. Initially, megaloblastic anemia and thrombocytopenia were evident with the three tested food additives. At the same time, TBZ showed no significant changes in the leukogram element except eosinopenia. MSG induced leukopenia, lymphocytopenia, neutrophilia, and eosinophilia. BB evoked neutrophilia and lymphopenia. The immunoglobins M (IgM) and IgG were significantly reduced with the three tested food additives. In contrast, lysozyme and nitric oxide levels were elevated. A reduced considerably lymphocyte proliferation was detected with TBZ and MSG exposure without affecting the phagocytic activity. Various pathologic disturbances in splenic tissues have been detected. An obvious increase in CD4+ but a lessening in CD8+ immunolabeling was evident in TBZ and MSG groups. The cytokines, including interferon-gamma, tumor necrosis factor-alpha, and interleukin 1β, 6, 10, and 13, were significantly upregulated in the spleen of rats exposed to TBZ, MSG, and BB. These results concluded that TBZ, MSG, and BB negatively affect hematological parameters, innate and humoral immune functions together with inflammatory responses. TBZ achieved the maximal negative impacts followed by MSG and finally with BB. Given the prevalence of these food additives, TBZ and MSG should be limited to a minimal volume use, or natural food additives should be used instead.
Collapse
|
21
|
Karaboduk K. Development of a voltammetric method for the determination of rapamycin in pharmaceutical samples at pretreated pencil graphite electrode. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kuddusi Karaboduk
- Life Sciences Application and Research Center Gazi University Ankara Turkey
| |
Collapse
|