1
|
Zhao LZ, Cao HL, He ZQ, Sun Y, Fang LL, Li WL. Recent advances in green solvents-based liquid-phase microextraction techniques for chromatographic analysis of active components in traditional Chinese medicine. J Chromatogr A 2025; 1741:465604. [PMID: 39708523 DOI: 10.1016/j.chroma.2024.465604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Traditional Chinese medicine (TCM) is a treasure of China and a crucial part of traditional medicine in the world, particularly in many oriental countries. TCM is the core and basis of traditional medicine in clinical practice for numerous diseases, and performs important function in nutraceuticals and dietary supplements. However, it is extremely difficult to extract each active ingredient from TCM to elucidate the mechanism of TCM clinical efficacy due to numerous compounds in TCM, especially trace compounds. Consequently, liquid-phase microextraction (LPME) techniques, one of the main extraction methods of active ingredients in TCM, have attracted a considerable attention from researchers. In recent years, many novel green solvents based-LPME methods have been reported, such as single-drop microextraction (SDME), hollow-fiber liquid-phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME), and electro-membrane extraction (EME). Therefore, in this review, we present an up-to-date and comprehensive summary of various LPME techniques, novel green solvents, and their applications in the analysis of active ingredients within the complex TCM samples. We provide a detailed overview of the fundamental principles, modes, and the critical process parameters of the LPME techniques. In addition, we compare different types of green solvents (i.e., deep eutectic solvents, ionic liquids, magnetic ionic liquids, supramolecular solvents, switchable solvents, among others), and the advantages and disadvantages of these solvents are critically evaluated, highlighting their suitability for various applications. Finally, we elucidate the merits and demerits of different LPME methods, discuss their practical applications, and explore their future research directions. This review aims to provide a valuable resource for researchers and practitioners in the field of TCM, promoting research development and application of the advanced and environmentally friendly sample pretreatment techniques.
Collapse
Affiliation(s)
- Li-Zhu Zhao
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Hui-Ling Cao
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Zhi-Qiang He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yuan Sun
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Lin-Lin Fang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province 116044, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Ministry of Education, Shenyang, Liaoning Province, China
| | - Wen-Lan Li
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| |
Collapse
|
2
|
Ndou DL, Mtolo BP, Khwathisi A, Ndhlala AR, Tavengwa NT, Madala NE. Development of the Pipette-Tip Micro-Solid-Phase Extraction for Extraction of Rutin From Moringa oleifera Lam. Using Activated Hollow Carbon Nanospheres as Sorbents. Int J Anal Chem 2024; 2024:2681595. [PMID: 39371109 PMCID: PMC11452233 DOI: 10.1155/2024/2681595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
Herein, a micro-solid-phase extraction (μSPE) method was developed using a pipette tip for rutin extraction, employing activated hollow carbon nanospheres (HCNSs) as the sorbent. Characterization of the activated carbon nanospheres through TGA, FTIR, and SEM analysis confirmed the success of the activation process. The study demonstrated the efficacy of PT-μSPE in rutin extraction under pH 2 conditions with a standard concentration of 2 mg·L-1. The optimal mass of HCNSs was found to be 2 mg, and a loading volume of 500 μL resulted in the maximum recovery of rutin. Propan-2-ol was the best elution solvent with 15 aspirating/dispensing cycles. The correlation of determination (R 2) for the calibration curve was found to be 0.9991, and the LOD and LOQ values were 0.604 and 1.830 mg·L-1, respectively. The applicability of the method was demonstrated by extracting rutin from a complex Moringa oleifera leaf extract with the relative standard deviation (RSD) of 3.26%, thereby validating this method as feasible for the extraction of useful bioactive compounds from complex plant samples.
Collapse
Affiliation(s)
- Dakalo Lorraine Ndou
- Department of ChemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Bonakele Patricia Mtolo
- DSI-NRF Centre of Excellence in Strong MaterialsSchool of ChemistryUniversity of the Witwatersrand, Johannesburg 2050, South Africa
| | - Adivhaho Khwathisi
- Department of BiochemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Ashwell Rungano Ndhlala
- Green Biotechnologies Research CentreDepartment of Plant ProductionSoil Science and Agricultural EngineeringUniversity of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Nikita Tawanda Tavengwa
- Department of ChemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Ntakadzeni Edwin Madala
- Department of BiochemistryFaculty of ScienceEngineering and AgricultureUniversity of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| |
Collapse
|
3
|
Martínez-Pérez-Cejuela H, Gionfriddo E. Evolution of Green Sample Preparation: Fostering a Sustainable Tomorrow in Analytical Sciences. Anal Chem 2024; 96:7840-7863. [PMID: 38687329 DOI: 10.1021/acs.analchem.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Affiliation(s)
- H Martínez-Pérez-Cejuela
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - E Gionfriddo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
4
|
Wang X, Wang M, Wu B, Yu S, Liu Z, Qin X, Xu H, Li W, Luo S, Wang L, Ma C, Liu S. Magnetic molecularly imprinted polymers using ternary deep eutectic solvent as novel functional monomer for hydroxytyrosol separation. Heliyon 2024; 10:e28257. [PMID: 38655314 PMCID: PMC11035953 DOI: 10.1016/j.heliyon.2024.e28257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
In this work, magnetic molecularly imprinted polymers (MIPs) for specific recognition of Hydroxytyrosol (HT) were designed by vinyl-modified magnetic particles (Fe3O4@SiO2@VTEOs) as carrier, ternary deep eutectic solvent (DES) as functional monomer, while ethylene glycol dimethacrylate (EGDMA) as crosslinker. The optimum amount of DES was obtained by adsorption experiments (molar ratio, caffeic acid: choline chloride: formic acid = 1:6:3) which were 140 μL in total. Under the optimized amount of DES, the maximum adsorption capacity of the MIPs particles was 42.43 mg g-1, which was superior to non-imprinted polymer (4.64 mg g-1) and the imprinting factor (IF) is 9.10. Syringin and Oleuropicrin were used as two reference molecules to test the selectivity of the DES-MIPs particles. The adsorption capacity of HT was 40.11 mg g-1. Three repeated experiments show that the polymer has high stability and repeatability (RSD = 5.50).
Collapse
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Mengru Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Bailin Wu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Shengyuan Yu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Zaizhi Liu
- College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China
| | - Xuyang Qin
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Huijuan Xu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Lijuan Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| |
Collapse
|
5
|
Grau J, Chabowska A, Werner J, Zgoła-Grześkowiak A, Fabjanowicz M, Jatkowska N, Chisvert A, Płotka-Wasylka J. Deep eutectic solvents with solid supports used in microextraction processes applied for endocrine-disrupting chemicals. Talanta 2024; 268:125338. [PMID: 37931567 DOI: 10.1016/j.talanta.2023.125338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
The determination of endocrine-disrupting chemicals (EDCs) has become one of the biggest challenges in Analytical Chemistry. Due to the low concentration of these compounds in different kinds of samples, it becomes necessary to employ efficient sample preparation methods and sensitive measurement techniques to achieve low limits of detection. This issue becomes even more struggling when the principles of the Green Analytical Chemistry are added to the equation, since finding an efficient sample preparation method with low damaging properties for health and environment may become laborious. Recently, deep eutectic solvents (DESs) have been proposed as the most promising green kind of solvents, but also with excellent analytical properties due to the possibility of custom preparation with different components to modify their polarity, viscosity or aromaticity among others. However, conventional extraction techniques using DESs as extraction solvents may not be enough to overcome challenges in analysing trace levels of EDCs. In this sense, combination of DESs with solid supports could be seen as a potential solution to this issue allowing, in different ways, to determine lower concentrations of EDCs. In that aim, the main purpose of this review is the study of the different strategies with solid supports used along with DESs to perform the determination of EDCs, comparing their advantages and drawbacks against conventional DES-based extraction methods.
Collapse
Affiliation(s)
- Jose Grau
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain; Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Aneta Chabowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Justyna Werner
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland; Department of Analytical Chemistry, University of Valencia, Valencia, 46100, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland; BioTechMed Center, Research Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
6
|
Raoufi A, Raoufi AM, Ismailzadeh A, Soleimani Rad E, Kiaeefar A. Application of hollow fiber-protected liquid-phase microextraction combined with GC-MS in determining Endrin, Chlordane, and Dieldrin in rice samples. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5261-5277. [PMID: 37115414 DOI: 10.1007/s10653-023-01570-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
This paper introduces a novel and minimized sample preparation technique based on hollow fiber-protected liquid-phase microextraction that can be used in joint with gas chromatography-mass spectrometry (GC-MS) detection to extract three organochlorine pesticides-Endrin, Chlordane, and Dieldrin-from rice samples. To that end, a single-walled carbon nanotube (SWCNT) and a proper ionic liquid (IL) were ultrasonically dispersed and injected into the lumen of hollow fiber as the extraction phase for preconcentrating and extracting the target analytes from the rice samples. The effects of the type of nanoparticles, ILs, and desorption solvent on the efficiency of extracting the analytes were investigated based on the one-factor-at-a-time (OFAT) approach. In addition, other parameters influencing the extraction procedure were optimized using an experimental design that decreased the number of experiments, reagent consumption, and costs. Under optimized conditions, the limits of detection and quantification in determining mentioned pesticides varied between 0.019-0.029 and 0.064-0.098 ng mL-1, respectively. The calibration graphs to measure Endrin, Chlordane, and Dieldrin were linear over the concentration range of 0.064-13.2, 0.098-16.7, and 0.092-11.4 ng mL-1, respectively. The relative standard deviations for inter-day and intra-day analysis were below 7.06 and 4.75% for the triplicate determination of three organochlorine pesticides. Besides, the relative recoveries and standard deviations of Endrin, Chlordane, and Dieldrin for analyzing several Iranian rice samples were between 86.0-92.9% and 4.5-5.8%, respectively. The results were compared with other similar works in literature, proving that the proposed method is efficient and useful for routine monitoring of organochlorine compounds in food samples.
Collapse
Affiliation(s)
- Arastou Raoufi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Amir Mahdi Raoufi
- Department of Chemistry, Faculty of Science, Payame Noor University, Mashhad, Iran
| | - Amir Ismailzadeh
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Soleimani Rad
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Kiaeefar
- Department of Chemistry, Shiley Center for Science and Technology, San Diego, CA, USA
| |
Collapse
|
7
|
Su K, Liew CSM, Huang Y, Goh RMV, Pua A, Sun J, Ee KH, Liu SQ, Lassabliere B, Jublot L, Yu B. A high-throughput analysis of volatile compounds with various polarities using headspace stir bar sorptive extraction. Talanta 2023; 257:124331. [PMID: 36801556 DOI: 10.1016/j.talanta.2023.124331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Long sample extraction time is usually necessary in the analysis of volatile flavour compounds to achieve high extraction efficiency. However, the long extraction time reduces sample throughput, which results in waste of labour and energy. Therefore, in this study, an improved headspace-stir bar sorptive extraction was developed to extract volatile compounds with varying polarities in a short time. With the aim of achieving high throughput, extraction conditions were selected and optimised based on the combinations of different extraction temperatures (80-160 °C), extraction times (1-61 min), and sample volumes (50-850 μL) through the response surface methodology with Box-Behnken design. After obtaining the preliminary optimal conditions (160 °C, 25 min, and 850 μL), the effect of cold stir bars with shorter extraction time on the extraction efficiency was evaluated. The cold stir bar improved the overall extraction efficiency with better repeatability, and the extraction time was further shortened to 1 min. Then, the effects of different ethanol concentrations and salt additions (sodium chloride or sodium sulfate) were studied, and 10% ethanol concentration with no salt addition provided the highest extraction efficiency for most compounds. Finally, it was verified that the high-throughput extraction condition was feasible for the volatile compounds spiked in a honeybush infusion.
Collapse
Affiliation(s)
- Keran Su
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, 117542, Singapore
| | | | - Yunle Huang
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, 117542, Singapore; Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, 138623, Singapore
| | - Rui Min Vivian Goh
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, 138623, Singapore
| | - Aileen Pua
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, 138623, Singapore
| | - Jingcan Sun
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, 138623, Singapore
| | - Kim Huey Ee
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, 138623, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, National University of Singapore, S14 Level 5, Science Drive 2, 117542, Singapore.
| | | | - Lionel Jublot
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, 138623, Singapore
| | - Bin Yu
- Mane SEA Pte Ltd, 3 Biopolis Drive, #07-17/18/19 Synapse, 138623, Singapore.
| |
Collapse
|
8
|
Sajid M, Alhooshani K. Extraction of Organochlorine Pesticides from Porous Membrane Packed Dried Fish Samples: Method Development and Greenness Evaluation. SEPARATIONS 2023. [DOI: 10.3390/separations10040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
In this work, ultrasound-assisted solvent extraction was utilized for extraction of organochlorine pesticides from membrane-protected dried fish samples. The dried fish samples were packed inside a porous membrane bag which was immersed in a solvent and subjected to ultrasonication. After the extraction process, the sample-containing bag was separated from the extract. Since samples were packed inside the membrane, their separation did not require centrifugation or filtration. Moreover, the complex components of the biota matrix may also retain inside the porous membrane bag, alleviating the requirement of extract cleanup before analysis. The parameters that can affect the ultrasound-assisted solvent extraction of membrane-protected dried fish samples were suitably optimized. These parameters include the extraction solvent and its volume, the sample amount, ultrasound intensity and extraction time. Under the optimum extraction conditions, good linearity was achieved for all the tested organochlorine pesticides, with the coefficients of determination (R2) higher than 0.9922 for the linear ranges from 5–1000, 10–1000 and 20–1000 ng/g. The values of intra-day and inter-day relative standard deviations were ≤13.8%. The limit of detection ranged from 1.5 to 6.8 ng/g. The spiked relative recoveries were in the range of 87.3–104.2%. This method demonstrated excellent figures of merit and could find potential applications in routine analytical laboratories. Finally, the greenness of this method was evaluated using the green analytical procedure index and analytical greenness calculator metrics.
Collapse
Affiliation(s)
- Muhammad Sajid
- Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Khalid Alhooshani
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
9
|
Román-Hidalgo C, Barreiros L, Villar-Navarro M, López-Pérez G, Martín-Valero MJ, Segundo MA. Electromembrane extraction based on biodegradable materials: Biopolymers as sustainable alternatives to plastics. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Membrane-based inverted liquid–liquid extraction of organochlorine pesticides in aqueous samples: evaluation, merits, and demerits. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Bayatloo MR, Salehpour N, Alavi A, Nojavan S. Introduction of maltodextrin nanosponges as green extraction phases: Magnetic solid phase extraction of fluoroquinolones. Carbohydr Polym 2022; 297:119992. [DOI: 10.1016/j.carbpol.2022.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/02/2022]
|
12
|
Gutiérrez-Serpa A, Pasán J, Jiménez-Abizanda AI, Kaskel S, Senkovska I, Pino V. Thin-film microextraction using the metal-organic framework DUT-52 for determining endocrine disrupting chemicals in cosmetics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Elik A, Sarac H, Durukan H, Demirbas A, Altunay N. Vortex assisted magnetic ionic liquid based dispersive liquid–liquid microextraction approach for determination of metribuzin in some plant samples with UV–Vis spectrophotometer. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Ponce MDV, Cina M, López C, Cerutti S. Synthesis and evaluation of a Zn-Al layered double hydroxide for the removal of ochratoxin A. Greenness assessment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2841-2848. [PMID: 35815894 DOI: 10.1039/d2ay00819j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The retention behavior of a dangerous toxin, ochratoxin A (OTA), present in food samples and derivatives was evaluated using Layered Double Hydroxides (LDHs). This nanomaterial composed mostly of zinc and aluminum was synthesized by the co-precipitation method and the obtained solid was characterized by different techniques, such as XRD, FTIR, TGA, SEM, and N2 adsorption-desorption isotherms. Experimental conditions were optimized by chemometric tools. Ochratoxin A determination was performed using an ultra-high-performance liquid chromatography (UHPLC) system coupled to tandem mass spectrometry. From the findings, quantitative removal of the mycotoxin was achieved. Thus, a novel, nanostructured, innocuous, low-cost, easily synthesized material, such as the Zn-Al layered double hydroxide, is proposed for ochratoxin A removal. This might represent an effective and sustainable approach with potential applications to different types of food and feed samples.
Collapse
Affiliation(s)
- María Del Valle Ponce
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina.
- Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis, Ruta 148 Ext. Norte, Villa Mercedes, CP5730, Argentina
| | - Mariel Cina
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina.
- Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, CP5700, Argentina
| | - Carlos López
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET-UNSL), Almirante Brown 1455, San Luis, CP5700, Argentina
- Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, CP5700, Argentina
| | - Soledad Cerutti
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina.
- Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, CP5700, Argentina
| |
Collapse
|
15
|
Wang Y, Yang X, Pang L, Geng P, Mi F, Hu C, Peng F, Guan M. Application progress of magnetic molecularly imprinted polymers chemical sensors in the detection of biomarkers. Analyst 2022; 147:571-586. [PMID: 35050266 DOI: 10.1039/d1an01112j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific recognition and highly sensitive detection of biomarkers play an essential role in identification, early diagnosis and prevention of many diseases. Magnetic molecularly imprinted polymers (MMIPs) have been widely used to capture biomimetic receptors for targets in various complex matrices due to their superior recognition ability, structural stability, and rapid separation characteristics, which overcome the existing deficiencies of traditional recognition elements such as antibodies, aptamers. The integration of MMIPs as recognition elements with chemical sensors opens new opportunities for the development of advanced analytical devices with improved selectivity and sensitivity, shorter analysis time, and lower cost. Recently, MMIPs-chemical sensors (MMIPs-CS) have made significant progress in detection, but many challenges and development spaces remain. Therefore, this review focuses on the research progress of the sensor based on biomarker detection and introduces the surface modification of the magnetic support material used to prepare high selective MMIPs, as well as the selective extraction of target biomarkers by MMIPs from the complex biological sample matrix. Based on the understanding of optical sensors and electrochemical sensors, the applications of MMIPs-optical sensors (MMIPs-OS) and MMIPs-electrochemical sensors (MMIPs-ECS) for biomarker detection were reviewed and discussed in detail. Moreover, it provides an overview of the challenges in this research area and the potential strategies for the rational design of high-performance MMIPs-CS, accelerating the development of multifunctional MMIPs-CS.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Xiaomin Yang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Lin Pang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China.
| |
Collapse
|
16
|
Sajid M, Płotka-Wasylka J. Green analytical chemistry metrics: A review. Talanta 2022; 238:123046. [PMID: 34801903 DOI: 10.1016/j.talanta.2021.123046] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022]
Abstract
Green analytical chemistry encourages reducing the use of toxic chemicals/reagents, using energy-efficient equipment, and generating minimal waste. The recent trends in analytical method development focus on the miniaturization of the sample preparation devices, the development of solventless or solvent-minimized extraction techniques, and the utilization of less toxic solvents. The twelve principles of GAC serve as a basic guideline for inducing greenness in the analytical procedures. Despite these guidelines, in many conditions, some undesired steps are unavoidable. Therefore, it is important to evaluate the greenness of analytical procedures to assess and, if possible, reduce their impact on the environment and workers. Several metrics have been developed for the evaluation of the greenness of analytical procedures. Analytical Eco-Scale, Green Analytical Procedure Index, and Analytical Greenness Metric are among some important tools for assessing the greenness of analytical procedures. All these metrics take different aspects of the analytical procedure into account to provide the green index of the procedure. This review covered these metrics, their principles, and examples of their application to selected analytical procedures. The advantages and limitations of these metrics with the perspective of common reader/user are presented. We believe that this paper will inspire many new perspectives and developments in this area.
Collapse
Affiliation(s)
- Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Chemical Faculty and BioTechMed Center, Gdańsk University of Technology (GUT), 11/12 G. Narutowicz St., 80-233 Gdańsk, Poland.
| |
Collapse
|
17
|
Farooq S, Wu H, Nie J, Ahmad S, Muhammad I, Zeeshan M, Khan R, Asim M. Application, advancement and green aspects of magnetic molecularly imprinted polymers in pesticide residue detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150293. [PMID: 34798762 DOI: 10.1016/j.scitotenv.2021.150293] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Molecularly imprinted polymers (MIPs) have added a vital contribution to food quality and safety with the effective extraction of pesticide residues due to their unique properties. Magnetic molecularly imprinted polymers (MMIPs) are a superior approach to overcome stereotypical limitations due to their unique core-shell and novel composite structure, including high chemothermal stability, rapid extraction, and high selectivity. Over the past two decades, different MMIPs have been developed for pesticide extraction in actual food samples with a complex matrix. Nevertheless, such developments are desirable, yet the synthesis and mode of application of MMIP have great potential as a green chemistry approach that can significantly reduce environmental pollution and minimize resource utilization. In this review, the MMIP application for single or multipesticide detection has been summarized by critiquing each method's uniqueness and efficiency in real sample analysis and providing a possible green chemistry exploration procedure for MMIP synthesis and application for escalated food and environmental safety.
Collapse
Affiliation(s)
- Saqib Farooq
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, PR China
| | - Haiyan Wu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, PR China.
| | - Jiyun Nie
- College of Horticulture, Qingdao Agriculture University/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, PR China
| | - Shakeel Ahmad
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, PR China
| | - Ihsan Muhammad
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, PR China
| | - Muhammad Zeeshan
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College of Guangxi University, Nanning 530004, PR China
| | - Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao 266101, PR China
| | - Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao 266101, PR China
| |
Collapse
|
18
|
|
19
|
Kamaruzaman S, Nasir NM, Mohd Faudzi SM, Yahaya N, Mohamad Hanapi NS, Wan Ibrahim WN. Solid-Phase Extraction of Active Compounds from Natural Products by Molecularly Imprinted Polymers: Synthesis and Extraction Parameters. Polymers (Basel) 2021; 13:polym13213780. [PMID: 34771337 PMCID: PMC8587613 DOI: 10.3390/polym13213780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are synthetic polymers with a predetermined selectivity for a particular analyte or group of structurally related compounds, making them ideal materials for separation processes. Hence, in sample preparation, MIPs are chosen as an excellent material to provide selectivity. Moreover, its use in solid-phase extraction, also referred to as molecular imprinted solid phase extraction (MISPE), is well regarded. In recent years, many papers have been published addressing the utilization of MIPs or MISPE as sorbents in natural product applications, such as synthesis. This review describes the synthesis and characterization of MIPs as a tool in natural product applications.
Collapse
Affiliation(s)
- Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.M.N.); (S.M.M.F.)
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Najihah Mohammad Nasir
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.M.N.); (S.M.M.F.)
| | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.M.N.); (S.M.M.F.)
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia;
| | - Nor Suhaila Mohamad Hanapi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (N.S.M.H.); (W.N.W.I.)
| | - Wan Nazihah Wan Ibrahim
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; (N.S.M.H.); (W.N.W.I.)
| |
Collapse
|
20
|
|
21
|
González-Hernández P, Pacheco-Fernández I, Bernardo F, Homem V, Pasán J, Ayala JH, Ratola N, Pino V. Headspace solid-phase microextraction based on the metal-organic framework CIM-80(Al) coating to determine volatile methylsiloxanes and musk fragrances in water samples using gas chromatography and mass spectrometry. Talanta 2021; 232:122440. [PMID: 34074425 DOI: 10.1016/j.talanta.2021.122440] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
A headspace solid-phase microextraction (HS-SPME) method was developed using the metal-organic framework (MOF) CIM-80(Al) as extraction phase and in combination with gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of 6 methylsiloxanes and 7 musk fragrances in different environmental waters. The chromatographic separation was optimized in different GC instruments equipped with different detectors, allowing the correct separation and identification of the compounds. The HS-SPME method was optimized using a Box-Behnken experimental design, while the validation was carried out together with the most suitable commercial fiber (divinylbenzene/polydimethylsiloxane) for comparison purposes. The MOF-based coating was particularly efficient for the determination of volatile methylsiloxanes, showing moderately lower limits of detection (of 0.2 and 0.5 μg L-1versus 0.6 μg L-1 for cyclic methylsiloxanes) and slightly better precision (relative standard deviation values lower than 17% versus 22%) than the commercial coating, while avoiding the cross-contamination issues associated to the polymeric composition of commercial fibers. The method was applied for the analysis of seawater and wastewater samples, allowing the quantification of several analytes and the assessment of matrix effects. The proposed HS-SPME method using the CIM-80(Al) fiber constitutes a more environmentally friendly, simpler, and efficient strategy in comparison with other sample preparation methods using different extraction techniques, while the use of a MOF as fiber sorbent constitutes a potential alternative to exploit the features of SPME for the challenging environmental monitoring of these compounds.
Collapse
Affiliation(s)
- Providencia González-Hernández
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, University of Porto, Porto, 4200-465, Portugal.
| | - Idaira Pacheco-Fernández
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Fábio Bernardo
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, University of Porto, Porto, 4200-465, Portugal.
| | - Vera Homem
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, University of Porto, Porto, 4200-465, Portugal.
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Física, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| | - Juan H Ayala
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| | - Nuno Ratola
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering, University of Porto, Porto, 4200-465, Portugal.
| | - Verónica Pino
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Tenerife, 38206, Spain.
| |
Collapse
|
22
|
Abstract
Ferrofluids (FFs) constitute a type of tunable magnetic material, formed by magnetic nanoparticles suspended in a liquid carrier. The astonishing magnetic properties of these materials and their liquid nature have led to their extended use in different applications, including fields such as magnetochemistry, optics, and biomedicine, among others. Recently, FFs have been incorporated as extractant materials in magnetic-driven analytical sample preparation procedures, thus, permitting the development of different applications. FF-based extraction takes advantage of both the magnetic susceptibility of the nanoparticles and the properties of the liquid carrier, which are responsible for a wide variety of interactions with analytes and ultimately are a key factor in achieving better extraction performance. This review article classifies existing FFs in terms of the solvent used as a carrier (organic solvents, water, ionic liquids, deep eutectic solvents, and supramolecular solvents) while overviewing the most relevant analytical applications in the last decade.
Collapse
|
23
|
Giebułtowicz J, Korytowska N, Sobiech M, Polak S, Wiśniowska B, Piotrowski R, Kułakowski P, Luliński P. Magnetic Core-Shell Molecularly Imprinted Nano-Conjugates for Extraction of Antazoline and Hydroxyantazoline from Human Plasma-Material Characterization, Theoretical Analysis and Pharmacokinetics. Int J Mol Sci 2021; 22:ijms22073665. [PMID: 33915912 PMCID: PMC8038096 DOI: 10.3390/ijms22073665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to develop magnetic molecularly imprinted nano-conjugate sorbent for effective dispersive solid phase extraction of antazoline (ANT) and its metabolite, hydroxyantazoline (ANT-OH) in analytical method employing liquid chromatography coupled with mass spectrometry method. The core–shell material was characterized in terms of adsorption properties, morphology and structure. The heterogeneous population of adsorption sites towards ANT-OH was characterized by two Kd and two Bmax values: Kd (1) = 0.319 µg L−1 and Bmax (1) = 0.240 μg g−1, and Kd (2) = 34.6 µg L−1 and Bmax (2) = 5.82 μg g−1. The elemental composition of magnetic sorbent was as follows: 17.55, 37.33, 9.14, 34.94 wt% for Si, C, Fe and O, respectively. The extraction protocol was optimized, and the obtained results were explained using theoretical analysis. Finally, the analytical method was validated prior to application to pharmacokinetic study in which the ANT was administrated intravenously to three healthy volunteers. The results prove that the novel sorbent could be useful in extraction of ANT and ANT-OH from human plasma and that the analytical strategy could be a versatile tool to explain a potential and pharmacological activity of ANT and ANT-OH.
Collapse
Affiliation(s)
- Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
- Correspondence:
| | - Natalia Korytowska
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Monika Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.S.); (P.L.)
| | - Sebastian Polak
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (S.P.); (B.W.)
| | - Barbara Wiśniowska
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (S.P.); (B.W.)
| | - Roman Piotrowski
- Department of Cardiology, Postgraduate Medical School, Grochowski Hospital, 04-073 Warsaw, Poland; (R.P.); (P.K.)
| | - Piotr Kułakowski
- Department of Cardiology, Postgraduate Medical School, Grochowski Hospital, 04-073 Warsaw, Poland; (R.P.); (P.K.)
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.S.); (P.L.)
| |
Collapse
|