1
|
Sun S, Feng Y, Li H, Xu S, Huang H, Zou X, Lv Z, Yao X, Gui S, Xu Y, Jin X, Lu X. A novel biosensor MDC@N-MMCNs to selective detection and elimination of foodborne bacterial pathogens. Anal Chim Acta 2025; 1354:344008. [PMID: 40253057 DOI: 10.1016/j.aca.2025.344008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Infections caused by foodborne pathogens pose a major threat to human health. Traditional bacterial detection methods, such as plate culture and polymerase chain reaction, cannot meet the growing demand for fast and accurate detection. In contrast, colorimetric sensors have the characteristics of convenience, speed, and visualization, but their specific sensitivity is relatively poor. Therefore, it is necessary to develop a biosensor with selective identification of foodborne pathogens, high sensitivity, and early detection of foodborne pathogen contamination in food. RESULTS We have developed a broad-spectrum microbial detection biosensor platform MDC@N-MMCNs that combines antimicrobial peptides as identifying ingredients with mesoporous carbon with peroxidase-like activity to detect and eliminate foodborne pathogens rapidly. In this study, nitrogen-doped magnetic mesoporous carbon nanospheres (N-MMCNs) were prepared using ferric nitrate as the magnetic source. Musca domestica cecropin (MDC) has abundant recognition sites on the surface of bacteria, which helps to recognize and amplify the signal, and combines with N-MMCNs to form MDC@N-MMCNs. MDC@N-MMCNs have high stability, specificity, and sensitivity, with a visual detection limit as low as 102 CFU/mL. The MDC@N-MMCNs paper-based sensor enables selective and rapid detection of four foodborne pathogens via a smartphone application. SIGNIFICANCE Based on these findings, we believe that MDC@N-MMCNs hold great potential for on-site bacterial infection diagnosis in resource-limited environments or point-of-care (POCT) settings, offering a simple, cost-effective solution for food safety and public health.
Collapse
Affiliation(s)
- Shuyue Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China
| | - Yonglin Feng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China; Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, People's Republic of China
| | - Haonan Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China; Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, People's Republic of China
| | - Sijia Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China; Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, People's Republic of China
| | - Huijuan Huang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China; Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, People's Republic of China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China
| | - Xiangjie Yao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, People's Republic of China.
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotechnology Products, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China.
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
2
|
Du H, Deng Y, Lv L, Li J, Zhang C, Li Y, Zhou Y, Peng Z, Yang H, Wang B. On-site rapid detection of ancient leather using a dual recognition strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2978-2986. [PMID: 40160114 DOI: 10.1039/d5ay00004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Leather has been widely used since ancient times, and the discovery of ancient leather is of great value for studying the origin and development of costume culture. However, due to contamination and degradation of leather relics in the buried environment, traditional analytical methods face challenges in detecting microtraces of ancient leather. Therefore, an immunosensor based on a dual recognition strategy was proposed in this work for the detection of leather artifacts at archaeological sites. Anti-collagen antibodies type I (Anti-COL I) and type II (Anti-COL II) were prepared through animal immunization. Next, the antibodies on the surfaces of magnetic beads (MBs) and polystyrene microspheres (PMs) underwent a specific binding reaction with the antigens, which were magnetically separated and placed in sucrose solution, further catalyzed by sucrose invertase on functionalized polystyrene microspheres (FPMs). Finally, the collagen concentration was detected using a personal glucose meter (PGM). The prepared immunosensor exhibited excellent sensitivity, specificity, and stability, with a limit of detection (LOD) of 4.92 ng mL-1, a relative standard deviation (RSD) of 8.39% for sensitivity, and a linear detection range of 10 ng mL-1 to 100 μg mL-1. The coefficient of variation of specificity was less than 4.34%, and the sensor demonstrated a lifespan of up to three weeks. Moreover, the sensor outperforms enzyme-linked immunosorbent assay (ELISA) in terms of accuracy, specificity, and reproducibility. Therefore, this sensor provides a new strategy for the on-site detection of leather artifacts.
Collapse
Affiliation(s)
- Hao Du
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yefeng Deng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Lianpeng Lv
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Junting Li
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chao Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yichang Li
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China.
| | - Zhiqin Peng
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hailiang Yang
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China.
| | - Bing Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Wu Z, Li J, Zhang T, Zhang K, Liu X, Yang Z, Xu L, Han K. One-pot synthesized three-way junction based multiple strand displacement amplification for sensitive assay of H5N1 DNA. Analyst 2025; 150:1541-1552. [PMID: 40078160 DOI: 10.1039/d4an01586j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The rapid and sensitive detection of H5N1, a highly pathogenic avian influenza virus, is crucial for controlling its spread and minimizing its impact on public health. In this study, we developed a novel biosensor based on strand displacement amplification (SDA) coupled with CRISPR/Cas12a for highly sensitive detection of H5N1 DNA. The biosensor utilizes a combination of a three-way junction structure, composed of three hairpins (H1, H2, H3), to initiate amplification through SDA, resulting in the production of numerous activators. These activators then trigger CRISPR/Cas12a's collateral cleavage activity, which generates a detectable fluorescence signal. The biosensor demonstrated a linear detection range from 100 fM to 800 pM, with a detection limit as low as 72.87 fM. The optimized biosensor exhibited excellent sensitivity, high specificity, and a broad dynamic range, making it a promising tool for the early detection of H5N1 DNA in complex biological samples. Additionally, the use of CRISPR/Cas12a's trans-cleavage activity significantly improved signal amplification and specificity, allowing for more reliable detection compared to traditional methods. The results highlight the advantages of the integrated SDA and CRISPR/Cas12a approach, which addresses the limitations of conventional detection methods, such as low sensitivity, lengthy analysis times, and high costs. The biosensor's ability to perform well in complex sample matrices demonstrates its potential for point-of-care diagnostics, especially in resource-limited settings. Future applications of this technology could extend to the detection of other pathogens, offering a versatile and adaptable platform for disease surveillance and management.
Collapse
Affiliation(s)
- Zhengjiang Wu
- School of the Life Sciences, Jiangsu University, Zhenjiang 212013, China.
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, P.R. China.
| | - Jingwen Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, P.R. China.
| | - Tao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, P.R. China.
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan 250101, China
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
| | - Xiaomei Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, P.R. China.
| | - Zhan Yang
- Huadong Medical Institute of Biotechniques, Nanjing 210018, China
| | - Li Xu
- School of the Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Kun Han
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, P.R. China.
| |
Collapse
|
4
|
Jiang H, Deng Y, Lv X, Liu Y, Li A, Li X. New sensing methods using commercially available products: Based on PGM and PTS. Biosens Bioelectron 2025; 267:116836. [PMID: 39368295 DOI: 10.1016/j.bios.2024.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
In recent years, detection technology has made remarkable progress in the field of food safety, in vitro diagnosis, and environment monitoring under the impetus of trace substances detection requirements. However, in sharp contrast to the rapid development of detection technology, its marketization process is relatively lagging behind. One possible approach is to integrate novel sensing strategies with mature commercial devices, such as personal glucose meters (PGMs) and pregnancy test strips (PTS) to speed up their marketization process. In this review, we systematically summarized design principle, evolution, and application progress for the integration of novel sensing strategies with commercial devices PGMs and PTS. Meanwhile, key factors and difficulties for the integration novel sensing strategies with commercial devices were emphasized. More importantly, the future of prospects and remaining challenges were discussed.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ying Liu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Anyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
5
|
Yang DN, Geng S, Jing R, Zhang H. Recent Developments in Personal Glucose Meters as Point-of-Care Testing Devices (2020-2024). BIOSENSORS 2024; 14:419. [PMID: 39329794 PMCID: PMC11430212 DOI: 10.3390/bios14090419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Point-of-care testing (POCT) is a contemporary diagnostic approach characterized by its user-friendly nature, cost efficiency, environmental compatibility, and lack of reliance on professional experts. Therefore, it is widely used in clinical diagnosis and other analytical testing fields to meet the demand for rapid and convenient testing. The application of POCT technology not only improves testing efficiency, but also brings convenience and benefits to the healthcare industry. The personal glucose meter (PGM) is a highly successful commercial POCT tool that has been widely used not only for glucose analysis, but also for non-glucose target detection. In this review, the recent advances from 2020 to 2024 in non-glucose target analysis for PGMs as POCT devices are summarized. The signal transduction strategies for non-glucose target analysis based on PGMs, including enzymatic transduction, nanocarrier transduction (enzyme or glucose), and glucose consumption transduction are briefly introduced. Meanwhile, the applications of PGMs in non-glucose target analysis are outlined, encompassing biomedical, environmental, and food analysis, along with other diverse applications. Finally, the prospects of and obstacles to employing PGMs as POCT tools for non-glucose target analysis are discussed.
Collapse
Affiliation(s)
- Dan-Ni Yang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (R.J.)
| | - Shan Geng
- The Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China;
| | - Rong Jing
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (R.J.)
| | - Hao Zhang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (R.J.)
| |
Collapse
|
6
|
Su J, Zheng W. Dual-Toehold-Probe-Mediated Exonuclease-III-Assisted Signal Recycles Integrated with CHA for Detection of mecA Gene Using a Personal Glucose Meter in Skin and Soft Tissue Infection. J Microbiol Biotechnol 2023; 33:1692-1697. [PMID: 37734933 PMCID: PMC10772588 DOI: 10.4014/jmb.2306.06037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023]
Abstract
Staphylococcus aureus integrated with mecA gene, which codes for penicillin-binding protein 2a, is resistant to all penicillins and other beta-lactam antibiotics, resulting in poor treatment expectations in skin and soft tissue infections. The development of a simple, sensitive and portable biosensor for mecA gene analysis in S. aureus is urgently needed. Herein, we propose a dual-toehold-probe (sensing probe)-mediated exonuclease-III (Exo-III)-assisted signal recycling for portable detection of the mecA gene in S. aureus. When the target mecA gene is present, it hybridizes with the sensing probe, initiating Exo III-assisted dual signal recycles, which in turn release numerous "3" sequences. The released "3" sequences initiate catalytic hairpin amplification, resulting in the fixation of a sucrase-labeled H2 probe on the surface of magnetic beads (MBs). After magnet-based enrichment of an MB-H1-H2-sucrase complex and removal of a liquid supernatant containing free sucrase, the complex is then used to catalyze sucrose to glucose, which can be quantitatively detected by a personal glucose meter. With a limit of detection of 4.36 fM for mecA gene, the developed strategy exhibits high sensitivity. In addition, good selectivity and anti-interference capability were also attained with this method, making it promising for antibiotic tolerance analysis at the point-of-care.
Collapse
Affiliation(s)
- Jiaguang Su
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P.R. China
| | - Wenjun Zheng
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
7
|
Qian X, Zhang H, Zheng M, Li C, Wang J, Huang H, Deng K. A dual-mode strategy based on β-galactosidase and target-induced DNA polymerase protection for transcription factor detection using colorimetry and a glucose meter. Analyst 2023; 148:6078-6086. [PMID: 37909394 DOI: 10.1039/d3an01414b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In this work, we report a novel dual-mode method for the highly specific and sensitive detection of transcription factors (TFs) via the integration of Klenow polymerase protection induced by target-specific recognition, cascade-signal amplification using the hybridization chain reaction (HCR) and CRISPR/Cas12a system, and dual-signal transduction mediated by β-galactosidase (β-gal) and two substrates. A dual-mode signal-sensing interface was constructed by immobilizing the oligo DNA probe (P1) tethered β-gal in a 96-well plate. A hairpin H1 with the ability to initiate HCRs was designed to contain the TF binding site. The binding between the TF and H1 protected the H1 from being extended by the Klenow fragment. After thermal denaturation, the reserved H1 launched the HCR and the HCR products activated CRISPR/Cas12a to cleave P1 and reduce the β-gal on the sensing interface, and thus the contents of the TFs and the corresponding signals mediated by the catalysis of β-gal showed a correlation. This work was the first attempt at utilizing β-gal for dual-signal transduction. It is a pioneering study to utilize the HCR-CRISPR/Cas12a system for dual-mode TF sensors. It revealed that DNA polymerase protection through the binding of TF and DNA could be applied as a new pattern to develop TF sensors.
Collapse
Affiliation(s)
- Xinmei Qian
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Heng Zhang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingyu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Chunxiang Li
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jinglun Wang
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
8
|
Zhao J, Guo Y, Ma X, Liu S, Sun C, Cai M, Chi Y, Xu K. The Application of Hybridization Chain Reaction in the Detection of Foodborne Pathogens. Foods 2023; 12:4067. [PMID: 38002125 PMCID: PMC10670596 DOI: 10.3390/foods12224067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 11/26/2023] Open
Abstract
Today, with the globalization of the food trade progressing, food safety continues to warrant widespread attention. Foodborne diseases caused by contaminated food, including foodborne pathogens, seriously threaten public health and the economy. This has led to the development of more sensitive and accurate methods for detecting pathogenic bacteria. Many signal amplification techniques have been used to improve the sensitivity of foodborne pathogen detection. Among them, hybridization chain reaction (HCR), an isothermal nucleic acid hybridization signal amplification technique, has received increasing attention due to its enzyme-free and isothermal characteristics, and pathogenic bacteria detection methods using HCR for signal amplification have experienced rapid development in the last five years. In this review, we first describe the development of detection technologies for food contaminants represented by pathogens and introduce the fundamental principles, classifications, and characteristics of HCR. Furthermore, we highlight the application of various biosensors based on HCR nucleic acid amplification technology in detecting foodborne pathogens. Lastly, we summarize and offer insights into the prospects of HCR technology and its application in pathogen detection.
Collapse
Affiliation(s)
- Jinbin Zhao
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yulan Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Xueer Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Shitong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Chunmeng Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Ming Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuyang Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
| |
Collapse
|
9
|
Zhou J, Wang TY, Lan Z, Yang HJ, Ye XJ, Min R, Wang ZH, Huang Q, Cao J, Gao YE, Wang WL, Sun XL, Zhang Y. Strategy of functional nucleic acids-mediated isothermal amplification for detection of foodborne microbial contaminants: A review. Food Res Int 2023; 173:113286. [PMID: 37803599 DOI: 10.1016/j.foodres.2023.113286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/08/2023]
Abstract
Foodborne microbial contamination (FMC) is the leading cause of food poisoning and foodborne illness. The foodborne microbial detection methods based on isothermal amplification have high sensitivity and short detection time, and functional nucleic acids (FNAs) could extend the detectable object of isothermal amplification to mycotoxins. Therefore, the strategy of FNAs-mediated isothermal amplification has been emergingly applied in biosensors for foodborne microbial contaminants detection, making biosensors more sensitive with lower cost and less dependent on nanomaterials for signal output. Here, the mechanism of six isothermal amplification technologies and their application in detecting FMC is firstly introduced. Then the strategy of FNAs-mediated isothermal amplification is systematically discussed from perspectives of FNAs' versatility including recognition elements (Aptamer, DNAzyme), programming tools (DNA tweezer, DNA walker and CRISPR-Cas) and signal units (G-quadruplex, FNAs-based nanomaterials). Finally, challenges and prospects are presented in terms of addressing the issue of nonspecific amplification reaction, developing better FNAs-based sensing elements and eliminating food matrix effects.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Teng-Yu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhi Lan
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Han-Jie Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xing-Jian Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Min
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhao-Hui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qing Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Cao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu-E Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen-Long Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Lan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Wang S, Huang H, Wang X, Zhou Z, Luo Y, Huang K, Cheng N. Recent Advances in Personal Glucose Meter-Based Biosensors for Food Safety Hazard Detection. Foods 2023; 12:3947. [PMID: 37959066 PMCID: PMC10649190 DOI: 10.3390/foods12213947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Food safety has emerged as a significant concern for global public health and sustainable development. The development of analytical tools capable of rapidly, conveniently, and sensitively detecting food safety hazards is imperative. Over the past few decades, personal glucose meters (PGMs), characterized by their rapid response, low cost, and high degree of commercialization, have served as portable signal output devices extensively utilized in the construction of biosensors. This paper provides a comprehensive overview of the mechanism underlying the construction of PGM-based biosensors, which consists of three fundamental components: recognition, signal transduction, and signal output. It also detailedly enumerates available recognition and signal transduction elements, and their modes of integration. Then, a multitude of instances is examined to present the latest advancements in the application of PGMs in food safety detection, including targets such as pathogenic bacteria, mycotoxins, agricultural and veterinary drug residues, heavy metal ions, and illegal additives. Finally, the challenges and prospects of PGM-based biosensors are highlighted, aiming to offer valuable references for the iterative refinement of detection techniques and provide a comprehensive framework and inspiration for further investigations.
Collapse
Affiliation(s)
- Su Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Huixian Huang
- College of Environmental and Food Engineering, Liuzhou Vocational and Technical College, Liuzhou 545000, China;
| | - Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Ziqi Zhou
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| | - Yunbo Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (X.W.); (Z.Z.); (Y.L.); (K.H.)
| |
Collapse
|
11
|
Atay E, Altan A. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:3151-3184. [PMID: 37222549 DOI: 10.1111/1541-4337.13179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Foodborne diseases caused by pathogen bacteria are a serious problem toward the safety of human life in a worldwide. Conventional methods for pathogen bacteria detection have several handicaps, including trained personnel requirement, low sensitivity, laborious enrichment steps, low selectivity, and long-term experiments. There is a need for precise and rapid identification and detection of foodborne pathogens. Biosensors are a remarkable alternative for the detection of foodborne bacteria compared to conventional methods. In recent years, there are different strategies for the designing of specific and sensitive biosensors. Researchers activated to develop enhanced biosensors with different transducer and recognition elements. Thus, the aim of this study was to provide a topical and detailed review on aptamer, nanofiber, and metal organic framework-based biosensors for the detection of food pathogens. First, the conventional methods, type of biosensors, common transducer, and recognition element were systematically explained. Then, novel signal amplification materials and nanomaterials were introduced. Last, current shortcomings were emphasized, and future alternatives were discussed.
Collapse
Affiliation(s)
- Elif Atay
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Aylin Altan
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
12
|
Shan X, Kuang D, Feng Q, Wu M, Yang J. A dual-mode ratiometric aptasensor for accurate detection of pathogenic bacteria based on recycling of DNAzyme activation. Food Chem 2023; 423:136287. [PMID: 37178600 DOI: 10.1016/j.foodchem.2023.136287] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Pathogenic bacteria have a significant impact on food safety. Herein, an innovative dual-mode ratiometric aptasensor was constructed for ultrasensitive and accurate detection of Staphylococcus aureus (S. aureus) based on recycling of DNAzyme activation on gold nanoparticles-functionalized MXene nanomaterials (MXene@Au NPs). Electrochemiluminescent (ECL) emitter-labeled probe DNA (probe 2-Ru) containing the blocked DNAzyme was partly hybridized with aptamer and then captured by electrochemical (EC) indicator-labeled probe DNA (probe 1-MB) on electrode surface. When S. aureus presented, the conformation vibration of probe 2-Ru activated the blocked DNAzymes, leading to recycling cleavage of probe 1-MB and ECL tag close to electrode surface. Based on the reverse change tendencies of ECL and EC signals, aptasensor achieved S. aureus quantification from 5 to 108 CFU/mL. Moreover, the self-calibration characteristic of the aptasensor with dual-mode ratiometric readout ensured the reliable measurement of S. aureus in real samples. This work showed useful insight into sensing foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Xia Shan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China; Xinglin College, Nantong University, Nantong 226019, China
| | - Deqi Kuang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
13
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
14
|
He F, Wang H, Du P, Li T, Wang W, Tan T, Liu Y, Ma Y, Wang Y, El-Aty A. Personal Glucose Meters Coupled with Signal Amplification Technologies for Quantitative Detection of Non-Glucose Targets: Recent Progress and Challenges in Food Safety Hazards Analysis. J Pharm Anal 2023; 13:223-238. [PMID: 37102109 PMCID: PMC10123950 DOI: 10.1016/j.jpha.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Ensuring food safety is paramount worldwide. Developing effective detection methods to ensure food safety can be challenging owing to trace hazards, long detection time, and resource-poor sites, in addition to the matrix effects of food. Personal glucose meter (PGM), a classic point-of-care testing device, possesses unique application advantages, demonstrating promise in food safety. Currently, many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards. Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors, which is crucial for solving the challenges associated with the use of PGMs for food safety analysis. This review introduces the basic detection principle of a PGM-based sensing strategy, which consists of three key factors: target recognition, signal transduction, and signal output. Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies (nanomaterial-loaded multienzyme labeling, nucleic acid reaction, DNAzyme catalysis, responsive nanomaterial encapsulation, and others) in the field of food safety detection are reviewed. Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed. Despite the need for complex sample preparation and the lack of standardization in the field, using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.
Collapse
|
15
|
Ultrasensitive detection of pathogenic bacteria by primer exchange reaction coupled with PGM. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Ouyang Q, Wang B, Ahmad W, Yang Y, Chen Q. Development of cobalt oxyhydroxide-aptamer-based upconversion sensing nano-system for the rapid detection of Staphylococcus aureus. Anal Bioanal Chem 2022; 414:8179-8189. [PMID: 36197461 DOI: 10.1007/s00216-022-04352-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that is dangerous to humans' health. Herein, a novel upconversion fluorescent biosensor based on fluorescence resonance energy transfer from aptamer-labeled upconversion nanoparticles (UCNPs-apt) as donor and cobalt oxyhydroxide (CoOOH) nanosheets as acceptor was designed to detect S. aureus in complex matrices. The principle of the work relies on fluorescence resonance energy transfer as UCNPs-apt can self-assemble on CoOOH nanosheet surfaces by van der Waals forces to effectively quench the fluorescence. When S. aureus was added, the aptamer was able to preferentially capture the target, resulting in the dissociation of donor and acceptor and the recovery of fluorescence. The structure and morphology of the nanostructures were assigned in detail by a series of characterizations, and the energy transfer mechanism was evaluated by time-resolved lifetime measurements. Under the optimal conditions, a linear calibration plot was obtained in a concentration range of 45-4.5 × 106 CFU/mL with a limit of detection of 15 CFU/mL. In addition, the proposed biosensor was used for S. aureus detection in real samples (e.g., pork, beef), and the detection result showed no significant difference (p > 0.05) compared with the conventional plate count approach. Hence, the fabricated biosensor holds a potential application for S. aureus in food analysis and public health.
Collapse
Affiliation(s)
- Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Baoning Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yongcun Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
17
|
Yan T, Zhang S, Yang Y, Li Y, Xu LP. Biomineralization-inspired magnetic nanoflowers for sensitive miRNA detection based on exonuclease-assisted target recycling amplification. Mikrochim Acta 2022; 189:260. [PMID: 35713711 DOI: 10.1007/s00604-022-05351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Biomineralization-inspired magnetic hybrid nanoflowers were prepared facilely, and capture probes were easily immobilized on the obtained nanoflowers without tedious processing. Based on the magnetic hybrid nanoflowers and exonuclease-assisted target recycling amplification, a fluorescence miRNA sensor was fabricated. The presence of target miRNA leads to the formation of the double-strand structure, which would then be selectively digested by the exonuclease and increase fluorescence intensity. The target miRNA can be released for recycling and signal amplification. Under optimized reaction conditions, the hybrid nanoflower-based miRNA sensor had a broad detection range from 0.001 nM to 100 nM and a limit of detection of 0.23 pM (S/N = 3). The sensitive detection of miRNA in serum was also achieved with recoveries from 94.3% to 116.1%. This work provides a new insight into the fabrication of bioconjugated materials and shows great potential in miRNA sensing.
Collapse
Affiliation(s)
- Tingxiu Yan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Shaofang Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yuetong Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| |
Collapse
|
18
|
Chen W, Lai Q, Zhang Y, Liu Z. Recent Advances in Aptasensors For Rapid and Sensitive Detection of Staphylococcus Aureus. Front Bioeng Biotechnol 2022; 10:889431. [PMID: 35677308 PMCID: PMC9169243 DOI: 10.3389/fbioe.2022.889431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
The infection of Staphylococcus aureus (S.aureus) and the spread of drug-resistant bacteria pose a serious threat to global public health. Therefore, timely, rapid and accurate detection of S. aureus is of great significance for food safety, environmental monitoring, clinical diagnosis and treatment, and prevention of drug-resistant bacteria dissemination. Traditional S. aureus detection methods such as culture identification, ELISA, PCR, MALDI-TOF-MS and sequencing, etc., have good sensitivity and specificity, but they are complex to operate, requiring professionals and expensive and complex machines. Therefore, it is still challenging to develop a fast, simple, low-cost, specific and sensitive S. aureus detection method. Recent studies have demonstrated that fast, specific, low-cost, low sample volume, automated, and portable aptasensors have been widely used for S. aureus detection and have been proposed as the most attractive alternatives to their traditional detection methods. In this review, recent advances of aptasensors based on different transducer (optical and electrochemical) for S. aureus detection have been discussed in details. Furthermore, the applications of aptasensors in point-of-care testing (POCT) have also been discussed. More and more aptasensors are combined with nanomaterials as efficient transducers and amplifiers, which appears to be the development trend in aptasensors. Finally, some significant challenges for the development and application of aptasensors are outlined.
Collapse
Affiliation(s)
- Wei Chen
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| | - Qingteng Lai
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Yanke Zhang
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Zhengchun Liu
- Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
- *Correspondence: Wei Chen, ; Zhengchun Liu,
| |
Collapse
|
19
|
Hossain F, Balasuriya N, Hossain MM, Serpe MJ. Orthophosphate Quantification in Water Utilizing an Enzymatic Reaction and a Commercial Glucometer Test Strip. Anal Chem 2022; 94:2056-2062. [DOI: 10.1021/acs.analchem.1c04121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Faisal Hossain
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram 4331, Bangladesh
| | - Nicholas Balasuriya
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - M. Mosharraf Hossain
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Michael J. Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
20
|
Zheng L, Shen Y, Dong W, Zheng C, Zhou R, Lou YL. Rapid Detection and Antimicrobial Susceptibility Testing of Pathogens Using AgNPs-Invertase Complexes and the Personal Glucose Meter. Front Bioeng Biotechnol 2022; 9:795415. [PMID: 35118055 PMCID: PMC8804100 DOI: 10.3389/fbioe.2021.795415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid detection of pathogens and assessment of antimicrobial susceptibility is of great importance for public health, especially in resource-limiting regions. Herein, we developed a rapid, portable, and universal detection method for bacteria using AgNPs-invertase complexes and the personal glucose meter (PGM). In the presence of bacteria, the invertase could be released from AgNPs-invertase complexes where its enzyme activity of invertase was inhibited. Then, the enzyme activity of invertase was restored and could convert sucrose into glucose measured by a commercially PGM. There was a good linear relationship between PGM signal and concentration of E. coli or S. aureus as the bacteria model with high sensitivity. And our proposed biosensor was proved to be a rapid and reliable method for antimicrobial susceptibility testing within 4 h with consistent results of Minimum Inhibitory Concentrations (MICs) testing, providing a portable and convenient method to treat infected patients with correct antibiotics and reduce the production of antibiotic-resistant bacteria, especially for resource-limiting settings.
Collapse
Affiliation(s)
- Laibao Zheng
- *Correspondence: Yong-Liang Lou, ; Laibao Zheng,
| | | | | | | | | | | |
Collapse
|
21
|
Portable, quantitative, and sequential monitoring of copper ions and pyrophosphate based on a DNAzyme-Fe 3O 4 nanosystem and glucometer readout. Anal Bioanal Chem 2021; 413:6941-6949. [PMID: 34599395 PMCID: PMC8486162 DOI: 10.1007/s00216-021-03662-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/12/2022]
Abstract
In this report, portable, quantitative, and sequential monitoring of copper ions and pyrophosphate (PPi) with a single sensor based on a DNAzyme-Fe3O4 system and glucometer readout was performed. Initially, streptavidin was functionalized on the surface of magnetic Fe3O4 spheres through glutaraldehyde. Then, an invertase-modified DNA Cu substrate was connected to the magnetic Fe3O4 spheres by a specific reaction between streptavidin and biotin. The sensing system was formed by a hybridization reaction between the Cu substrate and Cu enzyme. In the presence of Cu2+, Cu2+ will recognize the Cu DNA substrate and form an “off-on” signal switch, thereby resulting in the separation of invertase from the Fe3O4 nanospheres. PPi recognizes Cu2+ to form a Cu2+-PPi complex, resulting in an “on-off” signal switch. Under optimized conditions, linear detection ranges for Cu2+ and PPi of 0.01–5 and 0.5–10 μM, and detection limits for Cu2+ and PPi of 10 nM and 500 nM, respectively, were obtained. Good selectivity was achieved for the analysis of Cu2+ and PPi. Satisfactory results were achieved for this biosensor during the determination of Cu2+ in real tap samples and PPi in human urine samples. This verified that the sensor is portable and low cost, and can be applied to the sequential monitoring of multiple analytes with a single point-of-care biosensor.
Collapse
|
22
|
Zhu Y, Hong W, Liu X, Tan L, Wu J, Mao C, Xiang Y, Wu S, Cheung KMC, Yeung KWK. Rapid bacterial elimination achieved by sonodynamic Au@Cu 2O hybrid nanocubes. NANOSCALE 2021; 13:15699-15710. [PMID: 34529746 DOI: 10.1039/d1nr04512a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although efforts have been devoted to develop new antibacterial agents and techniques, the challenge of bacterial infection remains unresolved and is even increasing. Sonodynamic therapy (SDT) driven by ultrasound (US) has demonstrated effectiveness in terms of penetration and it can help to clinically address the problem of deep tissue bacterial infection. In recent years, a variety of sonosensitizers, which were originally designed for photodynamic therapy, have been adopted for SDT. Yet, their unstable chemical stability and ineffective electron-hole separation are not favorable for clinical applications. Hence, we designed a new type of antibacterial sonosensitizer-namely, Au@Cu2O hybrid nanocubes-in which an interfacial Schottky junction was built between a p-type semiconductor Cu2O and a noble metal Au. When US stimulation was applied, the electrons from Cu2O could be excited at the junction and transferred to Au. Since the formed Schottky barrier could block the backflow of US-excited electrons, a prolonged electron-hole separation can be successfully established. Additionally, because of the boosted sonocatalytic activity, the Au@Cu2O hybrid nanocubes could produce a large amount of reactive oxygen species (ROS), which are subject to US stimulation. Furthermore, we found that the sonocatalytic activity of the Au@Cu2O hybrid nanocubes could be reinforced by increasing the amount of Au, enabling 99.67% of Staphylococcus aureus (S. aureus) to be killed by US stimulation for 15 minutes. The cytocompatibility of Au@Cu2O hybrid nanocubes was improved by a red blood cell membrane (RBC) coating over the surface, and the membrane did not sacrifice its superior antibacterial properties.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China.
| | - Wanglong Hong
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
| | - Lei Tan
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Congyang Mao
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China.
| | - Yiming Xiang
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China.
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China.
| | - Kenneth M C Cheung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| |
Collapse
|
23
|
Han H, Park J, Ahn JK. Immunoglobulin E Detection Method Based on Cascade Enzymatic Reaction Utilizing Portable Personal Glucose Meter. SENSORS (BASEL, SWITZERLAND) 2021; 21:6396. [PMID: 34640714 PMCID: PMC8513091 DOI: 10.3390/s21196396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023]
Abstract
We herein describe a cascade enzymatic reaction (CER)-based IgE detection method utilizing a personal glucose meter (PGM), which relies on alkaline phosphatase (ALP) activity that regulates the amount of adenosine triphosphate (ATP). The amount of sandwich assay complex is determined according to the presence or absence of the target IgE. Additionally, the ALP in the sandwich assay catalyzes the dephosphorylation of ATP, a substrate of CER, which results in the changes in glucose level. By employing this principle, IgE was reliably detected at a concentration as low as ca. 29.6 ng/mL with high specificity toward various proteins. Importantly, the limit of detection (LOD) of this portable PGM-based approach was comparable to currently commercialized ELISA kit without expensive and bulky analysis equipment as well as complexed washing step. Finally, the diagnostic capability of this method was also successfully verified by reliably detecting IgE present in a real human serum sample with an excellent recovery ratio within 100 ± 6%.
Collapse
Affiliation(s)
- Hyogu Han
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.H.); (J.P.)
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Junhyun Park
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.H.); (J.P.)
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
| | - Jun Ki Ahn
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.H.); (J.P.)
| |
Collapse
|
24
|
Ouyang Q, Wang L, Ahmad W, Yang Y, Chen Q. Upconversion Nanoprobes Based on a Horseradish Peroxidase-Regulated Dual-Mode Strategy for the Ultrasensitive Detection of Staphylococcus aureus in Meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9947-9956. [PMID: 34406747 DOI: 10.1021/acs.jafc.1c03625] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus (S. aureus) is one of the foodborne pathogens that can cause infectious diseases and food poisoning. Herein, colorimetric and fluorescent dual-mode nanoprobes were developed for ultrasensitive detection of S. aureus to immediately respond to public health emergencies, reduce false positives, and improve measurement accuracy and persuasiveness. The nanoprobe consists of aptamer-labeled magnetic nanoparticles (apt-MNPs) as the capture signal probe and horseradish peroxidase and complementary DNA-functionalized upconversion nanoparticles (HRP-UCNPs-cDNA) as the chromogenic signal probe. In the absence of S. aureus, the probe forms an immune complex through base complementation with an observable signal. When S. aureus is introduced to this system, it preferentially binds to the apt-MNPs, releasing HRP-UCNPs-cDNA from the apt-MNPs and restoring the chromogenic probe signal. Under optimum conditions, an ultrasensitive assay of S. aureus was obtained, with limits of detection of 22 CFU mL-1 for fluorescence and 20 CFU mL-1 for colorimetry in a linear range of 56-5.6 × 106 CFU mL-1. Additionally, the standard plate counting method confirmed the reliability and accuracy of the established nanoprobe with an insignificant difference. Hence, the developed dual-mode platform has extensive application prospects for speedy and specific determination of S. aureus in meat.
Collapse
Affiliation(s)
- Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongcun Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|