1
|
Yadav A, Dogra P, Sagar P, Srivastava M, Srivastava A, Kumar R, Srivastava SK. A contemporary overview on quantum dots-based fluorescent biosensors: Exploring synthesis techniques, sensing mechanism and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:126002. [PMID: 40068316 DOI: 10.1016/j.saa.2025.126002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
In the epoch of bioinformatics, pivotal biomedical scrutiny and clinical diagnosis hinge upon the unfolding of highly efficacious biosensors for intricate and targeted identification of specific biomolecules. In pursuit of developing robust biosensors endowed with superior sensitivity, precise selectivity, rapid performance, and operational simplicity, semiconductor QDs have been acknowledged as pivotal and advantageous entities. In this review, we present a comprehensive analysis of the latest unfolding within the domain of QDs used in fluorescent biosensors for the detection of diverse biomolecular entities, encompassing proteins, nucleic acids, and a range of small molecules, with an emphasis on the synthesis methodologies of QDs employed and mechanism behind sensing. Additionally, this review delves into several pivotal facets of QD-based fluorescent biosensors in detail, such as surface functionalization methodologies aimed at enhancing biocompatibility and improving target specificity. The challenges and future perspectives of QD-based fluorescent biosensors are also considered, emphasizing the necessity of ongoing multidisciplinary research to realize their full potential in enhancing personalized medicine and biomedical diagnostics.
Collapse
Affiliation(s)
- Anushka Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Dogra
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pinky Sagar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Physics-Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur 222001, India
| | - Rajneesh Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Liang H, Mu X, Huang Y, Zhao S, Tian J. Magnetic Assisted DNA Logic Gate Nanomachine Based on CRISPR/Cas12a for Recognition of Dual miRNAs. Chem Asian J 2025; 20:e202401209. [PMID: 39739998 DOI: 10.1002/asia.202401209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
The anomalous expression of microRNA poses a serious threat to human life and health safety, and serves as an important biomarker for cancer detection. In this study, a novel magnetic-assisted DNA logic gate nanomachine triggered by miRNA-21 and miRNA-155 was designed based on the trans-cleavage activity of CRISPR/Cas12a activated by a split DNA activator, using only a single crRNA and signal probe, which simplified the detection procedure and complex nucleic acid amplification. The presence of target molecules, miRNA-21 and miRNA-155, can stimulate the DNA walker machine assembled on magnetic beads, which releases activator under the action of DNAzyme. Then the trans-cleavage activity of CRISPR/Cas12a is initiated and the system signal significantly increases. Based on this, an AND logic gate nanomachine was constructed for simultaneous analysis of miRNA-21 and miRNA-155. The detection limits of miRNA-21 and miRNA-15 were 9.00 pM and 42.00 pM, respectively, and this method was successfully applied to miRNA analysis in cell samples. This nanomachine combined the DNA walker with DNA logic circuit and CRISPR/Cas12a system, providing a new approach for simultaneous detection of multiple targets and further expanding the application of gene editing in the analysis and sensing of multiple target substances.
Collapse
Affiliation(s)
- Huiping Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaomei Mu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jianniao Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
3
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Wang H. A Review of Nanotechnology in microRNA Detection and Drug Delivery. Cells 2024; 13:1277. [PMID: 39120308 PMCID: PMC11311607 DOI: 10.3390/cells13151277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in regulating gene expression. Dysfunction in miRNAs can lead to various diseases, including cancers, neurological disorders, and cardiovascular conditions. To date, approximately 2000 miRNAs have been identified in humans. These small molecules have shown promise as disease biomarkers and potential therapeutic targets. Therefore, identifying miRNA biomarkers for diseases and developing effective miRNA drug delivery systems are essential. Nanotechnology offers promising new approaches to addressing scientific and medical challenges. Traditional miRNA detection methods include next-generation sequencing, microarrays, Northern blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Nanotechnology can serve as an effective alternative to Northern blotting and RT-qPCR for miRNA detection. Moreover, nanomaterials exhibit unique properties that differ from larger counterparts, enabling miRNA therapeutics to more effectively enter target cells, reduce degradation in the bloodstream, and be released in specific tissues or cells. This paper reviews the application of nanotechnology in miRNA detection and drug delivery systems. Given that miRNA therapeutics are still in the developing stages, nanotechnology holds great promise for accelerating miRNA therapeutics development.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
5
|
Mohebbi S, Zoughi S, Faridbod F, Moradi S. Early fetal sex determination using a fluorescent DNA nanosensing platform capable of simultaneous detection of SRY and DYS14 sequences in cell-free fetal DNA. Heliyon 2024; 10:e33131. [PMID: 39022100 PMCID: PMC11252956 DOI: 10.1016/j.heliyon.2024.e33131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Early fetal sex determination is of crucial importance in the management of prenatal diagnosis of X-linked genetic abnormalities and congenital adrenal hyperplasia. The development of an efficient and simple method for high-sensitivity, affordable, and rapid screening of cell-free fetal DNA (cffDNA) is crucial for fetal sex determination in early pregnancy. In this study, single- and dual-fluorophore DNA biosensors based on multi-walled carbon nanotubes (MWCNT) were fabricated for the individual and simultaneous detection of the SRY gene and DYS14 marker in cffDNA obtained from maternal plasma samples. This nanosensing platform is based on the immobilization of single-stranded DNA (ssDNA) probes, labeled with ROX or FAM fluorophores, on MWCNT, resulting in the quenching of fluorescence emission in the absence of the targets. Upon the addition of the complementary target DNA (ctDNA) to the hybridization reaction, the fluorescence emission of fluorophore-labeled probes was significantly recovered to 79.5 % for ROX-labeled probes (i.e. SRY-specific probes), 81.5 % for FAM-labeled probes (i.e. DYS14-specific probes), and 65.9 % for dual-fluorophore biosensor compared to the quenching mode. The limit of detection (LOD) for ROX, and FAM was determined to be 4.5 nM, and 7.6 nM, respectively. For dual-color probes, LOD was found to be 5.4 (ROX) and 9.2 nM (FAM). Finally, the clinical applicability of the proposed method was confirmed through the detection of both biomarkers in maternal plasma samples, suggesting that the proposed nanosensing platform may be useful for the early detection of fetal sex using cffDNA.
Collapse
Affiliation(s)
- Saeed Mohebbi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sheida Zoughi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- miRas Biotech, Tehran, Iran
| |
Collapse
|
6
|
Gorgani L, Mohammadi M, Najafpour Darzi G, Raoof JB. Metal-organic framework (MOF)-based biosensors for miRNA detection. Talanta 2024; 273:125854. [PMID: 38447342 DOI: 10.1016/j.talanta.2024.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) play several crucial roles in the physiological and pathological processes of the human body. They are considered as important biomarkers for the diagnosis of various disorders. Thus, rapid, sensitive, selective, and affordable detection of miRNAs is of great importance. However, the small size, low abundance, and highly similar sequences of miRNAs impose major challenges to their accurate detection in biological samples. In recent years, metal-organic frameworks (MOFs) have been applied as promising sensing materials for the fabrication of different biosensors due to their distinctive characteristics, such as high porosity and surface area, tunable pores, outstanding adsorption affinities, and ease of functionalization. In this review, the applications of MOFs and MOF-derived materials in the fabrication of fluorescence, electrochemical, chemiluminescence, electrochemiluminescent, and photoelectrochemical biosensors for the detection of miRNAs and their detection principle and analytical performance are discussed. This paper attempts to provide readers with a comprehensive knowledge of the fabrication and sensing mechanisms of miRNA detection platforms.
Collapse
Affiliation(s)
- Leila Gorgani
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran; School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
7
|
Wang P, Wei X, Shen L, Xu K, Wen Z, Gao N, Fan T, Xun S, Zhu Q, Qu X, Zhu Y. Amplification-Free Analysis of Bladder Cancer MicroRNAs on Wrinkled Silica Nanoparticles with DNA-Functionalized Quantum Dots. Anal Chem 2024; 96:4860-4867. [PMID: 38478499 DOI: 10.1021/acs.analchem.3c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bladder cancer (BC) occurrence and progression are accompanied by alterations in microRNAs (miRNAs) expression levels. Simultaneous detection of multiple miRNAs contributes to the accuracy and reliability of the BC diagnosis. In this work, wrinkled silica nanoparticles (WSNs) were applied as the microreactor for multiplex miRNAs analysis without enzymes or nucleic acid amplification. Conjugated on the surface of WSNs, the S9.6 antibody was adopted as the universal module for binding DNA/miRNA duplexes, regardless of their sequence. Furthermore, single-stranded DNA (ssDNA) was labeled with quantum dots (QDs) for identifying a given miRNA to form QDs-ssDNA/miRNA, which enabled the specific capture of the corresponding QDs on the wrinkled surface of WSNs. Based on the detection of fluorescence signals that were ultimately focused on WSNs, target miRNAs could be sensitively identified to a femtomolar level (5 fM) with a wide dynamic range of up to 6 orders of magnitude. The proposed strategy achieved high specificity to obviously distinguish single-base mutation sequences and possessed multiplex assay capability. Moreover, the assay exhibited excellent practicability in the multiplex detection of miRNAs in clinical serum specimens.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xiaowei Wei
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Luming Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Kexin Xu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Zhongting Wen
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Nengjiao Gao
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Ting Fan
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Shenmei Xun
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xiaojun Qu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
8
|
Xue Y, Wang K, Jiang Y, Dai Y, Liu X, Pei B, Li H, Xu H, Zhao G. An ultrasensitive and multiplexed miRNA one-step real time RT-qPCR detection system and its application in esophageal cancer serum. Biosens Bioelectron 2024; 247:115927. [PMID: 38113694 DOI: 10.1016/j.bios.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
MicroRNAs (miRNAs) are increasingly recognized as promising biomarkers for early disease diagnosis and prognosis. Therefore, the need for rapid, robust methods for multiplex miRNA detection in biological research and clinical diagnosis is crucial. This study introduces a novel multiplex miRNA detection method, SMOS-qPCR (Sensitive and Multiplexed One-Step RT-qPCR). The method integrates multiplexed reverse transcription and TaqMan-based qPCR into a single tube, employing a one-step operation on a real-time PCR system. We investigated the effect of 3' end phosphorylation of the Linker, Linker concentration and probe concentration on the SMOS-qPCR, resulted in a wide linear range from 1 fM to 0.1 zM (R2 ≥ 0.99 for each miRNA), surpassing the capabilities of stem-loop RT-qPCR and SYBR Green One-step RT-qPCR. The method showed excellent performance in distinguishing mature miRNA from miRNA precursor, and successfully detected four miRNAs in a single tube without cross-interference. Its high specificity enables precise differentiation of less than 1% nonspecific signal. Finally, we demonstrated the effectiveness of the SMOS-qPCR system in detecting circulating miRNAs in serum samples, distinguishing between esophageal cancers and health individuals with high AUC values (>0.940). In conclusion, the proposed SMOS-qPCR system offers a straightforward and promising approach for miRNA profiling in future clinical applications.
Collapse
Affiliation(s)
- Ying Xue
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou Jiangsu 215000, China.
| | - Kai Wang
- Suzhou VersaBio Technologies Co. Ltd., Kunshan, Jiangsu 215300, China
| | - Yunli Jiang
- Department of Gastroenterology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, The Affiliated Hospital of China University of Mining and Technology, Xuzhou, Jiangsu, 221002, China
| | - Yanmiao Dai
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu, 215300, China
| | - Xiaoyu Liu
- Suzhou VersaBio Technologies Co. Ltd., Kunshan, Jiangsu 215300, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, 223800, China
| | - Hui Li
- Department of Gastroenterology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, The Affiliated Hospital of China University of Mining and Technology, Xuzhou, Jiangsu, 221002, China
| | - Hongwei Xu
- Department of Spleen and Stomach Diseases, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu, 215300, China.
| | - Guodong Zhao
- Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Suzhou VersaBio Technologies Co. Ltd., Kunshan, Jiangsu 215300, China; ZJUT Yinhu Research Institute of Innovation and Entrepreneurship, Zhejiang, Hangzhou 311400, China.
| |
Collapse
|
9
|
Zhang T, Huang C, Jiao Y, Shao L, Jiang D, Li F, Li W, Gao X. ICP-MS and fluorescence dual-mode detection of ZIKV-RNA based on quantum dot labeling with hybridization chain reaction. Talanta 2024; 269:125463. [PMID: 38016323 DOI: 10.1016/j.talanta.2023.125463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
The detection of Zika virus (ZIKV) is of great significance to human life and health. Herein, we presented an ICP-MS and fluorescent dual-mode sensor for quantitative analysis of Zika virus RNA fragments (ZIKV-RNA), which employed quantum dots (QDs) as signal tags and combined with hybridization chain reaction (HCR). The dual-mode sensor realized cross-checking of the analysis results and improved the assay accuracy. Firstly, the single-stranded DNA (ssDNA) was anchored on the surface of magnetic beads (MBs). Afterward, HCR was conducted with probe DNA-CdSe quantum dots conjugates (pDNA-QDs) and link DNA (lDNA), producing the MBs-ssDNA-[pDNA-QDs-lDNA]n conjugates. In the presence of target ZIKV-RNA, a strand displacement reaction occurred, leading to the dissociation of the [pDNA-QDs-lDNA]n labels from the conjugates into the solution. Finally, the signal intensity was detected using ICP-MS and fluorescence analysis, with achieved limits of detection of 131 pM and 152 pM, respectively. The inter-assay RSD values of fluorescence and ICP-MS were 3.94 % and 4.26 % at 10 nM level, respectively, showing that the method had good precision. This method showed high selectivity and was applied to the analysis of biological fluids. There was no significant difference between the results of ICP-MS modes and fluorescence mode. This method offers a new strategy for sensitivity analysis of ZIKV-RNA and exhibits promise in clinical applications for diagnosis.
Collapse
Affiliation(s)
- Tianran Zhang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China; Yantai Center for Disease Control and Prevention, Yantai, 264000, People's Republic of China
| | - Chao Huang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Yanni Jiao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China
| | - Lijun Shao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China
| | - Dafeng Jiang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China.
| | - Fenghua Li
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China
| | - Wei Li
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
10
|
Zhao YJ, Shen PF, Fu JH, Yang FR, Chen ZP, Yu RQ. A target-triggered fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular telomerase activity. Talanta 2024; 269:125469. [PMID: 38043337 DOI: 10.1016/j.talanta.2023.125469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Telomerase (TE) is a promising diagnostic and prognostic biomarker for many cancers. Quantification of TE activity in living cells is of great significance in biomedical and clinical research. Conventional fluorescence-based sensors for quantification of intracellular TE may suffer from problems of fast photobleaching and auto-fluorescence of some endogenous molecules, and hence are liable to produce false negative or positive results. To address this issue, a fluorescence-SERS dual-signal nano-system for real-time imaging of intracellular TE was designed by functionalizing a bimetallic Au@Ag nanostructure with 4-p-mercaptobenzoic acid (internal standard SERS tag) and a DNA hybrid complex consisted of a telomerase primer strand and its partially complimentary strand modified with Rhodamine 6G. The bimetallic Au@Ag nanostructure serves as an excellent SERS-enhancing and fluorescence-quenching substrate. Intracellular TE will trigger the extension of the primer strand and cause the shedding of Rhodamine 6G-modified complimentary strand from the nano-system through intramolecular DNA strand displacement, resulting in the recovery of the fluorescence of Rhodamine 6G and decrease in its SERS signal. Both the fluorescence of R6G and the ratio between the SERS signals of 4-p-mercaptobenzoic acid and Rhodamine 6G can be used for in situ imaging of intracellular TE. Experimental results showed that the proposed nano-system was featured with low background, excellent cell internalization efficiency, good biocompatibility, high sensitivity, good selectivity, and robustness to false positive results. It can be used to distinguish cancer cells from normal ones, identify different types of cancer cells, as well as perform absolute quantification of intracellular TE, which endows it with great potential in clinical diagnosis, target therapy and prognosis of cancer patients.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Ping-Fan Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Jing-Hao Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Feng-Rui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Zeng-Ping Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China.
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| |
Collapse
|
11
|
Li Y, Sun Q, Chen X, Peng S, Kong D, Liu C, Zhang Q, Shi Q, Chen Y. Simultaneous detection of AFB1 and aflD gene by "Y" shaped aptamer fluorescent biosensor based on double quantum dots. Anal Bioanal Chem 2024; 416:883-893. [PMID: 38052994 DOI: 10.1007/s00216-023-05074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
The developed method for simultaneous detection of aflatoxin B1 (AFB1) and aflD genes can effectively monitor from the source and reduce the safety problems and economic losses caused by the production of aflatoxin, which can be of great significance for food safety regulations. In this paper, we constructed a sensitive and convenient fluorescent biosensor to detect AFB1 and aflD genes simultaneously based on fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and a black hole quenching agent. A stable "Y" shaped aptasensor was employed as the detection platform and a double quantum dot labeled DNA fragment was utilized to be the sensing element in this work. When the targets of AFB1 and aflD genes were presented in the solution, the aptamer in the "Y" shaped probe is specifically recognized by the target. At this time, both Si-carbon quantum dots (Si-CDs) and CdTe QDs are far away from the BHQ1 and BHQ3 to recover the fluorescence. The linear range of the prepared fluorescence simultaneous detection method was as wide as 0.5-500 ng·mL-1 with detection lines of 0.64 ng·mL-1 for AFB1 and 0.5-500 nM with detection lines of 0.75 nM for aflD genes (3σ/k). This fabricated fluorescent biosensor was further validated in real rice flour and corn flour samples, which also achieved good results. The recoveries were calculated by comparing the known and found amounts of AFB1 which ranged from 88.4 to approximately 115.32% in the rice flour samples and 90.7 ~ 102.58% in the corn flour samples. The recoveries of aflD genes ranged from 84.32 to approximately 109.3% in the rice flour samples and 89.48 ~ 100.99% in the corn flour samples. Therefore, the proposed biosensor can significantly improve food safety and quality control through a simple, fast, and sensitive agricultural product monitoring and detection system.
Collapse
Affiliation(s)
- Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China.
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, People's Republic of China.
- Advanced Technology Institute of Suzhou, Suzhou, 215123, Jiangsu Province, People's Republic of China.
| | - Qingyue Sun
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Xin Chen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Shuangfeng Peng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu Province, People's Republic of China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei Province, People's Republic of China.
| |
Collapse
|
12
|
Tian R, Zhao W, Li H, Liu S, Yu R. Biosensor model based on single hairpin structure for highly sensitive detection of multiple targets. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4220-4225. [PMID: 37609764 DOI: 10.1039/d3ay01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nowadays, due to the genetic information carried by nucleic acids, they can serve as a biomarker for the early diagnosis of diseases, including tumors and cardiovascular disease, among others, making genetic testing a hotspot of biomedicine. Therefore, we have designed a universal fluorescence biosensor that can detect multiple DNA sequences with good performance. In our designed biosensor, λ exonuclease is used due to its ability to digest double-stranded DNA from the phosphorylated 5'- end and promote the targeted cycle. The exonuclease is introduced into a DNA hairpin containing a target recognition sequence. Hence, with the target, λ exonuclease-assisted targeted recycling can be activated. The hydrolyzed DNA hairpin triggers a strand displacement reaction between the hairpin probe (H1) and F-Q double DNA strand (F-Q), increasing the distance between the fluorescent chain (F) and quenching chain (Q); thus the fluorescence signal is emitted. It is exciting that the detection limit of the biosensor is 300 fM, which is relatively low, and there is an excellent linear relationship between fluorescence intensity and target concentration. Moreover, the biosensor we designed has universal applicability in the detection of other genes, and the range of RSD is 1.28-2.45%. Hence, it has good application prospects and practical value in the early detection of some diseases and the design of fluorescent biosensors.
Collapse
Affiliation(s)
- Ruiting Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Weihua Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Hongbo Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Shiwen Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang 330029, P. R. China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
13
|
Guo J, Zhang H, Yang J, Zhang Y, Wang J, Yan G. ssDNA-QDs/GO multicolor fluorescence system for synchronous screening of hepatitis virus DNA. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
14
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
15
|
A colorimetric biosensor based on peroxidase-like activity of CuO nanoparticles for simultaneous detection of microRNAs. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Sun Z, Li J, Yang Y, Tong Y, Li H, Wang C, Du L, Jiang Y. Ratiometric Fluorescent Biosensor Based on Self-Assembled Fluorescent Gold Nanoparticles and Duplex-Specific Nuclease-Assisted Signal Amplification for Sensitive Detection of Exosomal miRNA. Bioconjug Chem 2022; 33:1698-1706. [PMID: 35960898 DOI: 10.1021/acs.bioconjchem.2c00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sensitive detection of cancer-associated exosomal microRNAs shows enormous potential in cancer diagnosis. Herein, a ratiometric fluorescent biosensor based on self-assembled fluorescent gold nanoparticles (Au NPs) and duplex-specific nuclease (DSN)-assisted signal amplification was fabricated for sensitive detection of colorectal cancer (CRC)-associated exosomal miR-92a-3p. In this biosensing system, the hairpin DNA modified with sulfhydryl and fluorescent dye Atto-425 at both ends is conjugated to fluorescent Au NPs through Au-S bonds, resulting in the quenching of Atto-425. The miR-92a-3p can open the hairpin of DNA and forms an miR-92a-3p/DNA heteroduplex, triggering the specific cleavage of DSN for the DNA in the heteroduplex. As a result, Atto-425 leaves the fluorescent Au NPs and recovers the fluorescence emission. The released miR-92a-3p can hybridize with another hairpin DNA and lead to a stronger fluorescence recovery of Atto-425 to form a signal amplification cycle. The stable fluorescence of Au NPs and the changing fluorescence of Atto-425 constitute a ratiometric fluorescent system reflecting the concentration of miR-92a-3p. This biosensor exhibits excellent specificity and can distinguish CRC patients from healthy individuals by detecting miR-92a-3p extracted from clinical exosome samples, showing the potential in CRC diagnosis.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.,Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yufei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.,Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| |
Collapse
|
17
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
18
|
Abstract
Quantum dots (QDs) possess exceptional optoelectronic properties that enable their use in the most diverse applications, namely, in the medical field. The prevalence of cancer has increased and has been considered the major cause of death worldwide. Thus, there has been a great demand for new methodologies for diagnosing and monitoring cancer in cells to provide an earlier prognosis of the disease and contribute to the effectiveness of treatment. Several molecules in the human body can be considered relevant as cancer markers. Studies published over recent years have revealed that micro ribonucleic acids (miRNAs) play a crucial role in this pathology, since they are responsible for some physiological processes of the cell cycle and, most important, they are overexpressed in cancer cells. Thus, the analytical sensing of miRNA has gained importance to provide monitoring during cancer treatment, allowing the evaluation of the disease's evolution. Recent methodologies based on nanochemistry use fluorescent quantum dots for sensing of the miRNA. Combining the unique characteristics of QDs, namely, their fluorescence capacity, and the fact that miRNA presents an aberrant expression in cancer cells, the researchers created diverse strategies for miRNA monitoring. This review aims to present an overview of the recent use of QDs as biosensors in miRNA detection, also highlighting some tutorial descriptions of the synthesis methods of QDs, possible surface modification, and functionalization approaches.
Collapse
Affiliation(s)
- Catarina
S. M. Martins
- International
Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal,LAQV,
REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical
Sciences, Faculty of Pharmacy, University
of Porto, Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Alec P. LaGrow
- International
Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - João A. V. Prior
- LAQV,
REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical
Sciences, Faculty of Pharmacy, University
of Porto, Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal,
| |
Collapse
|
19
|
Hu O, Li Z, He Q, Tong Y, Tan Y, Chen Z. Fluorescence Biosensor for One-Step Simultaneous Detection of Mycobacterium tuberculosis Multidrug-Resistant Genes Using nanoCoTPyP and Double Quantum Dots. Anal Chem 2022; 94:7918-7927. [PMID: 35594337 DOI: 10.1021/acs.analchem.2c00723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The diagnosis of multidrug-resistant tuberculosis (MDR-TB) is crucial for the subsequent drug guidance to improve therapy and control the spread of this infectious disease. Herein, we developed a novel florescence biosensor for simultaneous detection of Mycobacterium tuberculosis (Mtb) multidrug-resistant genes (rpoB531 for rifampicin and katG315 for isoniazid) by using our synthesized nanocobalt 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (nanoCoTPyP) and double quantum dots (QDs). Several nanoCoTPyPs with different charges and morphology were successfully prepared via the surfactant-assisted method and their quenching ability and restoring efficiency for DNA detection were systematically analyzed. It was found that spherical nanoCoTPyP with positive charge exhibited excellent quenching effect and sensing performance for the two DNAs' detection due to its affinity differences towards single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). ssDNA attached on QDs (QDs-ssDNA) was specifically hybridized with targets to form QDs-dsDNA, resulting in fluorescence recovery due to the disruption of the interactions between nanoCoTPyP and ssDNA. Two drug-resistant genes could be simultaneously quantified in a single run and relatively low limits of detection (LODs) were obtained (24 pM for T1 and 20 pM for T2). Furthermore, the accuracy and reliability of our method were verified by testing clinical samples. This simple and low-cost approach had great potential to be applied in clinical diagnosis of MDR-TB.
Collapse
Affiliation(s)
- Ou Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zeyu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qidi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yanli Tong
- Guangdong Second Provincial General Hospital, Guangzhou 510317, P. R. China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, P. R. China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
20
|
Ke W, Lai Q, Yang Y, Qian J, Ji X, He Z. Ratiometric Fluorescence Determination of Avian Influenza a Virus Subtype H1N1 DNA with Functionalized Quantum Dots and Gold Nanoparticles. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2052306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Wenmin Ke
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Qizhen Lai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yixia Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Jingjing Qian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Jiang X, Zhao H, Li W. Microneedle-Mediated Transdermal Delivery of Drug-Carrying Nanoparticles. Front Bioeng Biotechnol 2022; 10:840395. [PMID: 35223799 PMCID: PMC8874791 DOI: 10.3389/fbioe.2022.840395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023] Open
Abstract
Drug-carrying nanoparticles have obtained great attention for disease treatments due to the fact that they can improve drug solubility, provide drug protection and prolong release duration, thus enhancing drug bioavailability and increasing therapeutic efficacy. Although nanoparticles containing drugs can be administered via different routes such as oral, intravenous and ocular, transdermal delivery of nanoparticles mediated by microneedles has attracted considerable interest due to the capability of circumventing enzymatic degradation caused by gastrointestinal track, and increasing patient compliance by reducing pain associated with hypodermic injection. In this review, we first introduce four types of nanoparticles that were used for drug delivery, and then summarize strategies that have been employed to facilitate delivery of drug-loaded nanoparticles via microneedles. Finally, we give a conclusion and provide our perspectives on the potential clinical translation of microneedle-facilitated nanoparticles delivery.
Collapse
Affiliation(s)
| | | | - Wei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|