1
|
Li R, Cheng R, Liu J, Bi Y, Song P, Hu Q, Yu L. Detection of H 2O 2 and catalase on a paper-based flow sensor constructed with borate cross-linked PVA hydrogel. Talanta 2024; 276:126244. [PMID: 38754185 DOI: 10.1016/j.talanta.2024.126244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The detections of H2O2 and catalase play an important role in daily life. This study introduces a paper-based flow sensor that is specifically designed to detect H2O2 and catalase. The sensor utilizes a hydrogel composed of cross-linked 4-carboxyphenylboronic acid and polyvinyl alcohol. When H2O2 is in contact with the hydrogel, the B-C bonds of the hydrogel undergo a reactive process, causing decomposition of the hydrogel. The pH indicator strip enables the visual monitoring of the viscosity change that occurs during the gel-sol transition. The quantification of H2O2 is accomplished by assessing the proportion of water coverage on the pH indicator strip. The sensor shows a detection limit of 0.077 wt% and is applicable for the quantitative measurement of H2O2 in routinely used disinfectants. Furthermore, the presence of catalase is effectively identified and the detection of catalase in milk is successfully fulfilled. In summary, this work proposes a simple, user-friendly, label-free, and cost-effective method for constructing a paper-based flow sensor using borate cross-linked polyvinyl alcohol hydrogel, showing great potential for detecting H2O2 and catalase in various practical scenarios.
Collapse
Affiliation(s)
- Ruotong Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Ranran Cheng
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Jinpeng Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Yanhui Bi
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Ping Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| |
Collapse
|
2
|
Qin M, Khan IM, Ding N, Qi S, Dong X, Zhang Y, Wang Z. Aptamer-modified paper-based analytical devices for the detection of food hazards: Emerging applications and future perspective. Biotechnol Adv 2024; 73:108368. [PMID: 38692442 DOI: 10.1016/j.biotechadv.2024.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Food analysis plays a critical role in assessing human health risks and monitoring food quality and safety. Currently, there is a pressing need for a reliable, portable, and quick recognition element for point-of-care testing (POCT) to better serve the demands of on-site food analysis. Aptamer-modified paper-based analytical devices (Apt-PADs) have excellent characteristics of high portability, high sensitivity, high specificity, and on-site detection, which have been widely used and concerned in the field of food safety. The article reviews the basic components and working principles of Apt-PADs, and introduces their representative applications detecting food hazards. Finally, the advantages, challenges, and future directions of Apt-PADs-based sensing performance are discussed, to provide new directions and insights for researchers to select appropriate Apt-PADs according to specific applications.
Collapse
Affiliation(s)
- Mingwei Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Ning Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Li S, Xu J, Li H. Highly sensitive detection of Pb 2+ in the environment with DNAzyme and rolling circle amplification reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124001. [PMID: 38335590 DOI: 10.1016/j.saa.2024.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/07/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Lead (Pb2+) is a toxic heavy metal that can severely pollute the environment and cause harm to public health. Therefore, the prompt and accurate monitoring of lead levels in the environment is vital. In this study, a novel DNAzyme-based cascade signal amplification biosensor that could detect Pb2+ with high sensitivity was designed through the combination of the strand displacement reaction (SDR) and rolling circle amplification (RCA). When Pb2+ is absent, RCA is triggered under the synergistic action of T4 DNA ligase and phi29 DNA polymerase with an artificially fluorophore-labeled S-chains being released to replace the upstream products generated by repeated RCA, thereby restoring the quenched fluorescence and emitting a strong fluorescent signal. After adding Pb2+, 8-17 DNAzyme binds specifically to Pb2+ and catalyzes the cleavage of the rA site on a single-stranded DNA with artificially modified rA site to restrict the RCA. The designed sensor provides a linear detection range for Pb2+ from 25 pM to 1 µM, with a low limit of detection 8.3 pM. Significantly, this sensor still demonstrates satisfactory performance when used for detecting Pb2+ in environment samples (e.g., river water). We consider that our study can provide reference values and ideas for the development of heavy metal ion detection methods.
Collapse
Affiliation(s)
- Sijiong Li
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066000, PR China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China; Key Laboratory of Energy Catalysis and Conversion of Nanchang, Nanchang 330022, PR China
| | - Hongbo Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China; Key Laboratory of Energy Catalysis and Conversion of Nanchang, Nanchang 330022, PR China.
| |
Collapse
|
4
|
Yin M, Zhang Y, Liang H, Liu C, Bi Y, Sun J, Guo W. Smart Free-Standing Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film-Based Sensing System Using Changes in Bending Angles as a Visual Signal Readout. Anal Chem 2024; 96:5215-5222. [PMID: 38506337 DOI: 10.1021/acs.analchem.3c05562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Stimuli-responsive DNA hydrogels have shown great potential in sensing applications due to their attractive properties such as programmable target responsiveness, excellent biocompatibility, and biodegradability. In contrast to the extensively developed DNA hydrogel sensing systems based on the stimuli-responsive hydrogel-to-solution phase transition of the hydrogel matrix, the quantitative sensing application of DNA hydrogels exhibiting smart shape deformations has rarely been explored. Moreover, bulk DNA hydrogel-based sensing systems also suffer from high material cost and slow response. Herein, free-standing bilayer polyacrylamide/DNA hybrid hydrogel films with programmable responsive properties directed by the sequence of functional DNA units have been constructed. Compared with bulk DNA hydrogels, these DNA hydrogel films with a thickness at the micrometer scale not only greatly reduce the consumption of DNA materials but also facilitate the mass transfer of biomacromolecular substances within the hydrogel network, thus favoring their sensing applications. Therefore, a target-responsive smart DNA hydrogel film-based sensor system is further demonstrated based on the large amplitude macroscopic shape deformation of the film as a visual signal readout. As a proof of concept, Pb2+ or UO22+ ion-responsive DNA units were introduced into the active layer of the bilayer hydrogel films. In the presence of Pb2+ or UO22+ ions, the occurrence of a cleavage reaction within the DNA units leads to the release of DNA segments from the hydrogel film, inducing a dramatic shape deformation of the film, and thus sensing of Pb2+ or UO22+ ions with high specificity is achieved based on measuring the bending angle changes of these smart free-standing films. These smart DNA hydrogel film sensors with target-programmable responsiveness, simple operation, and ease of storage may hold promise for future rapid on-site testing applications.
Collapse
Affiliation(s)
- Mengyuan Yin
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaxing Zhang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanxue Liang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanhui Bi
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Juanjuan Sun
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Wen J, Deng H, He D, Yuan Y. Dual-functional DNAzyme powered CRISPR-Cas12a sensor for ultrasensitive and high-throughput detection of Pb 2+ in freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168708. [PMID: 37992834 DOI: 10.1016/j.scitotenv.2023.168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Freshwater lead pollution has posed severe threat to the environment and human health, underscoring the urgent necessity for accurate and user-friendly detection methods. Herein, we introduce a novel Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas) sensor for highly sensitive Pb2+ detection. To accomplish this, we designed a dual-functional deoxyribozyme (df-DNAzyme) probe that functions as an activator for the CRISPR-Cas12a system while also recognizing Pb2+. The df-DNAzyme probe was subsequently combined with gold nanoparticles (AuNPs) to fabricate a DNAzyme/AuNP nanoprobe, facilitating the activation of CRISPR-Cas12a in a one-to-multiple manner. Upon exposure to Pb2+, the df-DNAzyme is cleaved, causing disintegration of the DNAzyme/AuNP nanoprobe from magnetic beads. The degraded DNAzyme/AuNP containing multiple double-stranded DNA activators efficiently triggers CRISPR-Cas12a activity, initiating cleavage of fluorescence-quenched reporter DNA and generating amplified signals accordingly. The amplified fluorescence signal is accurately quantified using a quantitative polymerase chain reaction (qPCR) instrument capable of measuring 96 or 384 samples simultaneously at the microliter scale. This technique demonstrates ultra-sensitive detection capability for Pb2+ at concentrations as low as 1 pg/L within a range from 1 pg/L to 10 μg/L, surpassing limits set by World Health Organization (WHO) and United States Environmental Protection Agency (US EPA) guidelines. This study offers an ultrasensitive and high-throughput method for the detection of Pb2+ in freshwater, thereby advancing a novel approach towards the development of precise and convenient techniques for detecting harmful contaminants.
Collapse
Affiliation(s)
- Junlin Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Hongjie Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Daigui He
- Guangdong Mechanical & Electrical Polytechnic, Guangzhou 510550, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Yang D, Hu C, Zhang H, Geng S. Recent Developments in Paper-Based Sensors with Instrument-Free Signal Readout Technologies (2020-2023). BIOSENSORS 2024; 14:36. [PMID: 38248413 PMCID: PMC10812998 DOI: 10.3390/bios14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Signal readout technologies that do not require any instrument are essential for improving the convenience and availability of paper-based sensors. Thanks to the remarkable progress in material science and nanotechnology, paper-based sensors with instrument-free signal readout have been developed for multiple purposes, such as biomedical detection, environmental pollutant tracking, and food analysis. In this review, the developments in instrument-free signal readout technologies for paper-based sensors from 2020 to 2023 are summarized. The instrument-free signal readout technologies, such as distance-based signal readout technology, counting-based signal readout technology, text-based signal readout technology, as well as other transduction technologies, are briefly introduced, respectively. On the other hand, the applications of paper-based sensors with instrument-free signal readout technologies are summarized, including biomedical analysis, environmental analysis, food analysis, and other applications. Finally, the potential and difficulties associated with the advancement of paper-based sensors without instruments are discussed.
Collapse
Affiliation(s)
- Danni Yang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
| | - Chengju Hu
- Health Management Center, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China;
| | - Hao Zhang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
| | - Shan Geng
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China
| |
Collapse
|
7
|
Li X, Duan Q, Khan M, Yang D, Liu Q, Yin F, Hu Q, Yu L. Development of the viscosity biosensor for the detection of DNase I based on the flow distance on the paper with DNA mucus. Talanta 2024; 266:124994. [PMID: 37536109 DOI: 10.1016/j.talanta.2023.124994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Deoxyribonuclease I (DNase I) is a biomarker which has important applications in various biological processes. Thus, it is highly important to develop a user-friendly method for the detection of DNase I. Here, we present a paper-based distance sensor for the rapid detection of DNase I based on changes in the viscosity of DNA mucus. The viscosity of DNA mucus varies with different concentrations of DNase I, showing different water flow lengths on the pH test papers, this makes the quantification of DNase I possible. This method has a wide linear range (0.01-10 U/mL), excellent sensitivity, remarkable specificity and excellent reproducibility. The detection limit reaches 0.003 U/mL. Additionally, it can be well applied to detection of DNase I inhibitors, assay of DNase I in human serum and quality evaluation of nucleic acid scavengers. In general, this study offers a brief, convenient, label-free, and economical method to construct paper-based distance sensors using DNA mucus, which is very promising in the detection of DNase I in various applications.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Mashooq Khan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Danhong Yang
- Shandong Kehong Medical Technology Co., Ltd., 2018, Dezhou, 253011, China
| | - Qian Liu
- Shandong Kehong Medical Technology Co., Ltd., 2018, Dezhou, 253011, China
| | - Fangchao Yin
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| |
Collapse
|
8
|
Li Y, Zhang H, Qi Y, You C. Recent Studies and Applications of Hydrogel-Based Biosensors in Food Safety. Foods 2023; 12:4405. [PMID: 38137209 PMCID: PMC10742584 DOI: 10.3390/foods12244405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Food safety has increasingly become a human health issue that concerns all countries in the world. Some substances in food that can pose a significant threat to human health include, but are not limited to, pesticides, biotoxins, antibiotics, pathogenic bacteria, food quality indicators, heavy metals, and illegal additives. The traditional methods of food contaminant detection have practical limitations or analytical defects, restricting their on-site application. Hydrogels with the merits of a large surface area, highly porous structure, good shape-adaptability, excellent biocompatibility, and mechanical stability have been widely studied in the field of food safety sensing. The classification, response mechanism, and recent application of hydrogel-based biosensors in food safety are reviewed in this paper. Furthermore, the challenges and future trends of hydrogel biosensors are also discussed.
Collapse
Affiliation(s)
- Yuzhen Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Hongfa Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| | - Yan Qi
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.L.); (H.Z.); (Y.Q.)
| |
Collapse
|
9
|
Gao J, Xu P, Qiao L, Tao Y, Xiao Y, Qin H, Zhu Y, Zhang Y. Triplex DNA Helix Sensor Based on Reduced Graphene Oxide and Electrodeposited Gold Nanoparticles for Sensitive Lead(II) Detection. TOXICS 2023; 11:795. [PMID: 37755805 PMCID: PMC10536607 DOI: 10.3390/toxics11090795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
A triplex DNA electrochemical sensor based on reduced graphene oxide (rGO) and electrodeposited gold nanoparticles (EAu) was simply fabricated for Pb2+ detection. The glass carbon electrode (GCE) sequentially electrodeposited with rGO and EAu was further modified with a triplex DNA helix that consisted of a guanine (G)-rich circle and a stem of triplex helix based on T-A•T base triplets. With the existence of Pb2+, the DNA configuration which was formed via the Watson-Crick and Hoogsteen base pairings was split and transformed into a G-quadruplex. An adequate electrochemical response signal was provided by the signal indicator methylene blue (MB). The proposed sensor demonstrated a linear relationship between the differential pulse voltammetry (DPV) peak currents and the logarithm of Pb2+ concentrations from 0.01 to 100.00 μM with a detection limit of 0.36 nM. The proposed sensor was also tested with tap water, river and medical wastewater samples with qualified recovery and accuracy and represented a promising method for Pb2+ detection.
Collapse
Affiliation(s)
- Jing Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Hong Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; (J.G.); (P.X.); (L.Q.); (Y.T.); (Y.X.); (H.Q.)
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Nie Y, Zhou F, Wang C. A 3D sliding-strip microfluidic device for the simultaneous determination of mta. Talanta 2023; 265:124821. [PMID: 37354626 DOI: 10.1016/j.talanta.2023.124821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
A simple paper-based microfluidic device was fabricated to simultaneously detect multiple targets. Microfluidic paper-based analytical devices (μPAD) comprise a single-layer moving sliding PAD (SPAD) to control the flow channel switch together with a folding origami PAD (OPAD) to test the target analytes. The facile assembly without any splicing materials avoids cross-contamination and non-specific adsorption of joining materials that may be caused by multi-target detection. The concentration of Fe(III), Ni(II), Cr(VI), and nitrite in standard solutions and actual aqueous solutions was successfully determined using the designed μPAD. The μPAD was able to achieve LOD of 3.3 mg/L, 1.3 mg/L, 0.35 mg/L, 0.28 mg/L for Fe (III), Ni (II), Cr (VI), and nitrite, respectively. The designed SOPAD exhibits improved stability, with a deviation of less than 7% compared to conventional analytical methods (ICP-OES and UV). Our work demonstrates that this 3D PAD holds great promise and a wide scope in environmental monitoring, biochemical analysis, food testing and other testing industries.
Collapse
Affiliation(s)
- Yunlong Nie
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Fang Zhou
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Chenye Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
11
|
Khan M, Zhao B, Wu W, Zhao M, Bi Y, Hu Q. Distance-based microfluidic assays for instrument-free visual point-of-care testing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|