1
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants exhibit chromosome segregation defects including chromatin bridges. Genetics 2023; 225:iyad169. [PMID: 37724751 PMCID: PMC10697819 DOI: 10.1093/genetics/iyad169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. Via forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO activation enzyme UbaB in the filamentous fungus Aspergillus nidulans. The ubaBQ247*, ΔubaB, and ΔsumO mutants all produce abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. The bridges are enclosed by nuclear membrane containing peripheral nuclear pore complex proteins that normally get dispersed during mitosis, and the bridges are also surrounded by cytoplasmic microtubules typical of interphase cells. Time-lapse sequences further indicate that most bridges persist through interphase prior to the next mitosis, and anaphase chromosome segregation can produce new bridges that persist into the next interphase. When the first mitosis happens at a higher temperature of 42°C, SUMOylation deficiency produces not only chromatin bridges but also many abnormally shaped single nuclei that fail to divide. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO targets being nuclear proteins. Finally, although the budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, loss of SUMOylation does not cause any obvious defect in dynein-mediated transport of nuclei and early endosomes, indicating that SUMOylation is unnecessary for dynein activation in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Baronger D Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Martin J Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants have normal dynein function but exhibit chromatin bridges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537086. [PMID: 37131833 PMCID: PMC10153134 DOI: 10.1101/2023.04.16.537086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. The budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, but dynein-pathway components were not identified as SUMO-targets in the filamentous fungus Aspergillus nidulans. Via A. nidulans forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO-activation enzyme UbaB. Colonies of the ubaBQ247*, ΔubaB and ΔsumO mutants looked similar and less healthy than the wild-type colony. In these mutants, about 10% of nuclei are connected by abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. Nuclei connected by chromatin bridges are mostly in interphase, suggesting that these bridges do not prevent cell-cycle progression. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO-targets being nuclear proteins, for example, topoisomerase II whose SUMOylation defect gives rise to chromatin bridges in mammalian cells. Unlike in mammalian cells, however, loss of SUMOylation in A. nidulans does not apparently affect the metaphase-to-anaphase transition, further highlighting differences in the requirements of SUMOylation in different cell types. Finally, loss of UbaB or SumO does not affect dynein- and LIS1-mediated early-endosome transport, indicating that SUMOylation is unnecessary for dynein or LIS1 function in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Baronger D. Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Martin J. Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| |
Collapse
|
3
|
Campbell IW, Zhou X, Amon A. The Mitotic Exit Network integrates temporal and spatial signals by distributing regulation across multiple components. eLife 2019; 8:41139. [PMID: 30672733 PMCID: PMC6363386 DOI: 10.7554/elife.41139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
GTPase signal transduction pathways control cellular decision making by integrating multiple cellular events into a single signal. The Mitotic Exit Network (MEN), a Ras-like GTPase signaling pathway, integrates spatial and temporal cues to ensure that cytokinesis only occurs after the genome has partitioned between mother and daughter cells during anaphase. Here we show that signal integration does not occur at a single step of the pathway. Rather, sequential components of the pathway are controlled in series by different signals. The spatial signal, nuclear position, regulates the MEN GTPase Tem1. The temporal signal, commencement of anaphase, is mediated by mitotic cyclin-dependent kinase (CDK) phosphorylation of the GTPase's downstream kinases. We propose that integrating multiple signals through sequential steps in the GTPase pathway represents a generalizable principle in GTPase signaling and explains why intracellular signal transmission is a multi-step process. Serial signal integration rather than signal amplification makes multi-step signal transduction necessary.
Collapse
Affiliation(s)
- Ian Winsten Campbell
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Xiaoxue Zhou
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | | |
Collapse
|
4
|
Vitulo N, Vezzi A, Galla G, Citterio S, Marino G, Ruperti B, Zermiani M, Albertini E, Valle G, Barcaccia G. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confirming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals five distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.
Collapse
Affiliation(s)
- Nicola Vitulo
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Alessandro Vezzi
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Giulio Galla
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova - Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Sandra Citterio
- Dipartimento di Scienze dell'Ambiente e del Territorio, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Giada Marino
- Dipartimento di Scienze dell'Ambiente e del Territorio, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Benedetto Ruperti
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Monica Zermiani
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100, Udine, Italy
| | - Emidio Albertini
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Borgo XX Giugno, 06121, Perugia, Italy
| | - Giorgio Valle
- Dipartimento di Biologia, University of Padova, Viale G. Colombo 3, 35121, Padova
| | - Gianni Barcaccia
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali, University of Padova - Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|
5
|
Melloy PG, Rose MD. Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae. Exp Cell Res 2017; 358:390-396. [PMID: 28711459 DOI: 10.1016/j.yexcr.2017.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 11/30/2022]
Abstract
Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there.
Collapse
Affiliation(s)
- Patricia G Melloy
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Department of Biological and Allied Health Sciences, Fairleigh Dickinson University, Madison, NJ, United States.
| | - Mark D Rose
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
6
|
Abstract
In budding yeast cells, cytokinesis is achieved by the successful division of the cytoplasm into two daughter cells, but the precise mechanisms of cell division and its regulation are still rather poorly understood. The Mitotic Exit Network (MEN) is the signaling cascade that is responsible for the release of Cdc14 phosphatase leading to the inactivation of the kinase activity associated to cyclin-dependent kinases (CDK), which drives exit from mitosis and a rapid and efficient cytokinesis. Mitotic CDK impairs the activation of MEN before anaphase, and activation of MEN in anaphase leads to the inactivation of CDK, which presents a challenge to determine the contribution that each pathway makes to the successful onset of cytokinesis. To determine CDK and MEN contribution to cytokinesis irrespectively of each other, here we present methods to induce cytokinesis after the inactivation of CDK activity in temperature sensitive mutants of the MEN pathway. An array of methods to monitor the cellular events associated with the successful cytokinesis is included.
Collapse
Affiliation(s)
- Magdalena Foltman
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, c/ Albert Einstein 22, Santander, 39011, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria s/n, Santander, 39011, Spain
| | - Alberto Sanchez-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, c/ Albert Einstein 22, Santander, 39011, Spain.
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria s/n, Santander, 39011, Spain.
| |
Collapse
|
7
|
Sethi K, Palani S, Cortés JCG, Sato M, Sevugan M, Ramos M, Vijaykumar S, Osumi M, Naqvi NI, Ribas JC, Balasubramanian M. A New Membrane Protein Sbg1 Links the Contractile Ring Apparatus and Septum Synthesis Machinery in Fission Yeast. PLoS Genet 2016; 12:e1006383. [PMID: 27749909 PMCID: PMC5066963 DOI: 10.1371/journal.pgen.1006383] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/23/2016] [Indexed: 01/14/2023] Open
Abstract
Cytokinesis in many organisms requires a plasma membrane anchored actomyosin ring, whose contraction facilitates cell division. In yeast and fungi, actomyosin ring constriction is also coordinated with division septum assembly. How the actomyosin ring interacts with the plasma membrane and the plasma membrane-localized septum synthesizing machinery remains poorly understood. In Schizosaccharomyces pombe, an attractive model organism to study cytokinesis, the β-1,3-glucan synthase Cps1p / Bgs1p, an integral membrane protein, localizes to the plasma membrane overlying the actomyosin ring and is required for primary septum synthesis. Through a high-dosage suppressor screen we identified an essential gene, sbg1+ (suppressor of beta glucan synthase 1), which suppressed the colony formation defect of Bgs1-defective cps1-191 mutant at higher temperatures. Sbg1p, an integral membrane protein, localizes to the cell ends and to the division site. Sbg1p and Bgs1p physically interact and are dependent on each other to localize to the division site. Loss of Sbg1p results in an unstable actomyosin ring that unravels and slides, leading to an inability to deposit a single contiguous division septum and an important reduction of the β-1,3-glucan proportion in the cell wall, coincident with that observed in the cps1-191 mutant. Sbg1p shows genetic and / or physical interaction with Rga7p, Imp2p, Cdc15p, and Pxl1p, proteins known to be required for actomyosin ring integrity and efficient septum synthesis. This study establishes Sbg1p as a key member of a group of proteins that link the plasma membrane, the actomyosin ring, and the division septum assembly machinery in fission yeast. Cell division in many organisms requires the function of an actomyosin ring, an apparatus that resembles the force generating machinery in the muscle. This ring apparatus is attached to the cell periphery (cell membranes) such that when it contracts, it brings the cell periphery together with it, leading to cell division. How the actomyosin ring is attached to the cell membrane at the division site is unknown. In this manuscript, we identify and describe Sbg1, a protein that links the actomyosin ring and the cell membranes since Sbg1 has a sequence that allows it to be inserted into the cell membrane. Sbg1 specifically localizes to the cell division site and also cooperates with a cell wall biosynthetic enzyme Bgs1 to achieve cell division. Consistently, in the absence of Sbg1, cells fail to divide leading to lethality. Sbg1 interacts with a number of cell division proteins, such as Cdc15, Rga7, Imp2, and Pxl1, to achieve its function as a bridge between the cell membrane and the actomyosin ring. Our work identifies a direct molecular link between the actomyosin ring and the cell membranes, explaining how ring contraction leads to inward movement of the cell periphery.
Collapse
Affiliation(s)
- Kriti Sethi
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Saravanan Palani
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Juan C. G. Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Cinetificas/Universidad de Salamanca, Salamanca, Spain
| | - Mamiko Sato
- Laboratory of Electron Microscopy/Bio-imaging Centre, and Department of Chemical and Biological Sciences, Faculty of Sciences, Japan Women’s University, Mejirodai, Bunkyo-ku, Tokyo, Japan
| | - Mayalagu Sevugan
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore
| | - Mariona Ramos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Cinetificas/Universidad de Salamanca, Salamanca, Spain
| | - Shruthi Vijaykumar
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Masako Osumi
- Laboratory of Electron Microscopy/Bio-imaging Centre, and Department of Chemical and Biological Sciences, Faculty of Sciences, Japan Women’s University, Mejirodai, Bunkyo-ku, Tokyo, Japan
- NPO Integrated Imaging Research Support, Hirakawa-cho, Chiyoda-ku, Tokyo, Japan
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Juan Carlos Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Cinetificas/Universidad de Salamanca, Salamanca, Spain
| | - Mohan Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
The N-terminal domains determine cellular localization and functions of the Doa4 and Ubp5 deubiquitinating enzymes. Biochem Biophys Res Commun 2015; 467:570-6. [PMID: 26427873 DOI: 10.1016/j.bbrc.2015.09.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 11/24/2022]
Abstract
Ubiquitination is involved in numerous cellular regulatory mechanisms including the cell cycle, signal transduction and quality control. Ubiquitin modifies proteins by consecutive actions of ubiquitin-activating/conjugating enzymes. Attachment of ubiquitin is reversible. Deubiquitinating enzymes are responsible for removal of ubiquitin from ubiquitin-protein conjugates. Genome of the yeast Saccharomyces cerevisiae encodes structurally related but functionally distinct enzymes - Doa4 and Ubp5. Doa4 is involved in general ubiquitin-dependent proteolysis and is responsible for deubiquitination of ubiquitin-protein conjugates at the cytoplasmic face of the late endosome. The N-terminal domain targets the enzyme to the endosome membrane after ESCRT-III complex has formed there. By contrast, corresponding region of homologous Ubp5 is critical for its bud neck localization in dividing cells. Conceivably, Ubp5 plays an essential role in cytokinesis. Here we show that Doa4 physically interacts with the ESCRT-III component Snf7 and preferentially cleaves Lys63-linked ubiquitin oligomers involved in membrane protein trafficking. We also demonstrate that the unstable regulator of cytokinesis Hof1 accumulates in proteasomal mutants and is required for cellular localization of Ubp5.
Collapse
|
9
|
G. Cortés JC, Pujol N, Sato M, Pinar M, Ramos M, Moreno B, Osumi M, Ribas JC, Pérez P. Cooperation between Paxillin-like Protein Pxl1 and Glucan Synthase Bgs1 Is Essential for Actomyosin Ring Stability and Septum Formation in Fission Yeast. PLoS Genet 2015; 11:e1005358. [PMID: 26132084 PMCID: PMC4489101 DOI: 10.1371/journal.pgen.1005358] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 06/13/2015] [Indexed: 01/19/2023] Open
Abstract
In fungal cells cytokinesis requires coordinated closure of a contractile actomyosin ring (CAR) and synthesis of a special cell wall structure known as the division septum. Many CAR proteins have been identified and characterized, but how these molecules interact with the septum synthesis enzymes to form the septum remains unclear. Our genetic study using fission yeast shows that cooperation between the paxillin homolog Pxl1, required for ring integrity, and Bgs1, the enzyme responsible for linear β(1,3)glucan synthesis and primary septum formation, is required for stable anchorage of the CAR to the plasma membrane before septation onset, and for cleavage furrow formation. Thus, lack of Pxl1 in combination with Bgs1 depletion, causes failure of ring contraction and lateral cell wall overgrowth towards the cell lumen without septum formation. We also describe here that Pxl1 concentration at the CAR increases during cytokinesis and that this increase depends on the SH3 domain of the F-BAR protein Cdc15. In consequence, Bgs1 depletion in cells carrying a cdc15ΔSH3 allele causes ring disassembly and septation blockage, as it does in cells lacking Pxl1. On the other hand, the absence of Pxl1 is lethal when Cdc15 function is affected, generating a large sliding of the CAR with deposition of septum wall material along the cell cortex, and suggesting additional functions for both Pxl1 and Cdc15 proteins. In conclusion, our findings indicate that CAR anchorage to the plasma membrane through Cdc15 and Pxl1, and concomitant Bgs1 activity, are necessary for CAR maintenance and septum formation in fission yeast. Cytokinesis requires assembly of an actomyosin ring adjacent to the plasma membrane, which upon contraction pulls the membrane to form a cleavage furrow. In fungi ring closure is coordinated with the synthesis of a cell wall septum. Knowledge about the molecules anchoring the ring to the membrane is very limited. We have found that fission yeast paxillin, located at the ring, and Bgs1, the enzyme responsible for primary septum formation, located at the membrane, cooperate during cytokinesis. Both are required to anchor the ring to the membrane and to maintain it during cytokinesis. Moreover, both proteins cooperate to form the septum. Accordingly, paxillin is essential when Bgs1 is depleted. When both proteins are missing, the contractile ring forms but the lateral cell wall overgrows inwards without a defined cleavage furrow and septum formation. During cytokinesis there is an increase of paxillin which depends on the SH3 domain of the F-BAR protein Cdc15. Consequently the absence of this domain mimics the phenotype of paxillin absence in Bgs1-depleted cells. Interestingly, a decreased function of both Cdc15 and paxillin uncouples the septum synthesis from the ring contraction, indicating an essential cooperation between these proteins and Bgs1 for proper cytokinesis.
Collapse
Affiliation(s)
- Juan C. G. Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| | - Nuria Pujol
- Department of Ciències Mèdiques, Bàsiques,Institut de Recerca Biomèdica (IRB) de Lleida, Faculty of Medicine, University of Lleida, Lleida, Spain
| | - Mamiko Sato
- Laboratory of Electron Microscopy/Open Research Centre, and Department of Chemical and Biological Sciences, Japan Women’s University, Mejirodai, Bunkyo-ku, Tokyo, Japan
| | - Mario Pinar
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariona Ramos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Universidad de Salamanca, Salamanca, Spain
| | - Belén Moreno
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Universidad de Salamanca, Salamanca, Spain
| | - Masako Osumi
- Laboratory of Electron Microscopy/Open Research Centre, and Department of Chemical and Biological Sciences, Japan Women’s University, Mejirodai, Bunkyo-ku, Tokyo, Japan
| | - Juan Carlos Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Universidad de Salamanca, Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Hill TW, Jackson-Hayes L, Wang X, Hoge BL. A mutation in the converter subdomain of Aspergillus nidulans MyoB blocks constriction of the actomyosin ring in cytokinesis. Fungal Genet Biol 2015; 75:72-83. [PMID: 25645080 DOI: 10.1016/j.fgb.2015.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 01/11/2015] [Accepted: 01/22/2015] [Indexed: 12/17/2022]
Abstract
We have identified a mutant allele of the Aspergillus nidulans homologue of myosin II (myoB; AN4706), which prevents normal septum formation. This is the first reported myosin II mutation in a filamentous fungus. Strains expressing the myoB(G843D) allele produce mainly aberrant septa at 30 °C and are completely aseptate at temperatures above 37 °C. Conidium formation is greatly reduced at 30 °C and progressively impaired with increasing temperature. Sequencing of the myoB(G843D) allele identified a point mutation predicted to result in a glycine-to-aspartate amino acid substitution at residue 843 in the myosin II converter domain. This residue is conserved in all fungal, plant, and animal myosin sequences that we have examined. The mutation does not prevent localization of the myoB(G843D) gene product to contractile rings, but it does block ring constriction. MyoB(G843D) rings at sites of abortive septation disassemble after an extended period and dissipate into the cytoplasm. During contractile ring formation, both wild type and mutant MyoB::GFP colocalize with actin--an association that begins at the pre-ring "string" stage. Down-regulation of wild-type myoB expression under control of the alcA promoter blocks septation but does not prevent actin from aggregating at putative septation sites--the actin rings, however, do not fully coalesce. Both septation and targeting of MyoB are blocked by disruption of filamentous actin using latrunculin B. We propose a model in which myosin assembly at septation sites depends upon the presence of F-actin, but assembly of the actin component of contractile rings depends upon normal levels of myosin only for the final stages of ring compaction.
Collapse
Affiliation(s)
- Terry W Hill
- Department of Biology, Rhodes College, Memphis, TN 38112, USA.
| | | | - Xiao Wang
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Brianna L Hoge
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| |
Collapse
|
11
|
Ren L, Willet AH, Roberts-Galbraith RH, McDonald NA, Feoktistova A, Chen JS, Huang H, Guillen R, Boone C, Sidhu SS, Beckley JR, Gould KL. The Cdc15 and Imp2 SH3 domains cooperatively scaffold a network of proteins that redundantly ensure efficient cell division in fission yeast. Mol Biol Cell 2014; 26:256-69. [PMID: 25428987 PMCID: PMC4294673 DOI: 10.1091/mbc.e14-10-1451] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The fission yeast F-BAR proteins Cdc15 and Imp2 and their combined SH3-domain partners appear to act as “molecular glue” to stabilize the interaction between the plasma membrane and a complex network of proteins at the division site that mediates cell division. Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in numerous biological processes, including cytokinesis, typically by bridging the plasma membrane via their F-BAR domains to the actin cytoskeleton. Two SH3 domain–containing PCH family members, Cdc15 and Imp2, play critical roles in S. pombe cytokinesis. Although both proteins localize to the contractile ring, with Cdc15 preceding Imp2, only cdc15 is an essential gene. Despite these distinct roles, the SH3 domains of Cdc15 and Imp2 cooperate in the essential process of recruiting other proteins to stabilize the contractile ring. To better understand the connectivity of this SH3 domain–based protein network at the CR and its function, we used a biochemical approach coupled to proteomics to identify additional proteins (Rgf3, Art1, Spa2, and Pos1) that are integrated into this network. Cell biological and genetic analyses of these SH3 partners implicate them in a range of activities that ensure the fidelity of cell division, including promoting cell wall metabolism and influencing cell morphogenesis.
Collapse
Affiliation(s)
- Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Anna Feoktistova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Haiming Huang
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Rodrigo Guillen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Charles Boone
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Sachdev S Sidhu
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
12
|
Eslami H, Khorramizadeh MR, Pourmand MR, Moazeni M, Rezaie S. Down-regulation of sidB gene by use of RNA interference in Aspergillus nidulans. IRANIAN BIOMEDICAL JOURNAL 2014; 18:55-9. [PMID: 24375164 DOI: 10.6091/ibj.1217.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Introduction of the RNA interference (RNAi) machinery has guided the researchers to discover the function of essential vital or virulence factor genes in the microorganisms such as fungi. In the filamentous fungus Aspergillus nidulans, the gene sidB plays an essential role in septation, conidiation and vegetative hyphal growth. In the present study, we benefited from the RNAi strategy for down-regulating a vital gene, sidB, in the fungus A. nidulans. METHODS The 21-nucleotide small interfering RNA (siRNA) was designed based on the cDNA sequence of the sidB gene in A. nidulans. Transfection was performed through taking up siRNA from medium by 6 hour-germinated spores. To evaluate the morphologic effects of siRNA on the fungus, germ tube elongation was followed. Moreover, total RNA was extracted and quantitative changes in expression of the sidB gene were analyzed by measuring the cognate sidB mRNA level by use of a quantitative real-time RT-PCR assay. RESULTS Compared to untreated-siRNA samples, a significant inhibition in germ tube elongation was observed in the presence of 25 nM of siRNA (42 VS 21 µM). In addition, at the concentration of 25 nM, a considerable decrease in sidB gene expression was revealed. CONCLUSION Usage of RNAi as a kind of post-transcriptional gene silencing methods is a promising approach for designing new antifungal agents and discovering new drug delivery systems.
Collapse
Affiliation(s)
- Hamid Eslami
- Dept. of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Khorramizadeh
- Dept. of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Pourmand
- Dept. of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Moazeni
- Invasive Fungi Research Center/ Dept. of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sassan Rezaie
- Dept. of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Dept. of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wang N, Lo Presti L, Zhu YH, Kang M, Wu Z, Martin SG, Wu JQ. The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis. ACTA ACUST UNITED AC 2014; 205:357-75. [PMID: 24798735 PMCID: PMC4018781 DOI: 10.1083/jcb.201308146] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, 2 Department of Molecular and Cellular Biochemistry, and 3 Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In fission yeast, the septation initiation network (SIN) is thought to promote cytokinesis by downstream activation of Rho1, a conserved GTPase that controls cell growth and division. Here we show that Etd1 and PP2A-Pab1, antagonistic regulators of SIN, are Rho1 regulators. Our genetic and biochemical studies indicate that a C-terminal region of Etd1 may activate Rho1 by directly binding it, whereas an N-terminal domain confers its ability to localize at the growing tips and the division site where Rho1 functions. In opposition to Etd1, our results indicate that PP2A-Pab1 inhibits Rho1. The SIN cascade is upstream-regulated by the Spg1 GTPase. In the absence of Etd1, activity of Spg1 drops down prematurely, thereby inactivating SIN. Interestingly, we find that ectopic activation of Rho1 restores Spg1 activity in Etd1-depleted cells. By using a cytokinesis block strategy, we show that Rho1 is essential to feedback-activate Spg1 during actomyosin ring constriction. Therefore, activation of Spg1 by Rho1, which in turn is regulated by Etd1, uncovers a novel feedback loop mechanism that ensures SIN activity while cytokinesis is progressing.
Collapse
|
15
|
Bajpai A, Feoktistova A, Chen JS, McCollum D, Sato M, Carazo-Salas RE, Gould KL, Csikász-Nagy A. Dynamics of SIN asymmetry establishment. PLoS Comput Biol 2013; 9:e1003147. [PMID: 23874188 PMCID: PMC3708865 DOI: 10.1371/journal.pcbi.1003147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/05/2013] [Indexed: 01/18/2023] Open
Abstract
Timing of cell division is coordinated by the Septation Initiation Network (SIN) in fission yeast. SIN activation is initiated at the two spindle pole bodies (SPB) of the cell in metaphase, but only one of these SPBs contains an active SIN in anaphase, while SIN is inactivated in the other by the Cdc16-Byr4 GAP complex. Most of the factors that are needed for such asymmetry establishment have been already characterized, but we lack the molecular details that drive such quick asymmetric distribution of molecules at the two SPBs. Here we investigate the problem by computational modeling and, after establishing a minimal system with two antagonists that can drive reliable asymmetry establishment, we incorporate the current knowledge on the basic SIN regulators into an extended model with molecular details of the key regulators. The model can capture several peculiar earlier experimental findings and also predicts the behavior of double and triple SIN mutants. We experimentally tested one prediction, that phosphorylation of the scaffold protein Cdc11 by a SIN kinase and the core cell cycle regulatory Cyclin dependent kinase (Cdk) can compensate for mutations in the SIN inhibitor Cdc16 with different efficiencies. One aspect of the prediction failed, highlighting a potential hole in our current knowledge. Further experimental tests revealed that SIN induced Cdc11 phosphorylation might have two separate effects. We conclude that SIN asymmetry is established by the antagonistic interactions between SIN and its inhibitor Cdc16-Byr4, partially through the regulation of Cdc11 phosphorylation states.
Collapse
Affiliation(s)
- Archana Bajpai
- The Microsoft Research-University of Trento Centre for Computational Systems Biology, Piazza Manifattura 1, Rovereto, Italy
| | - Anna Feoktistova
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jun-Song Chen
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dannel McCollum
- Department of Microbiology and Physiological Systems and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Masamitsu Sato
- Department of Biophysics and Biochemistry, University of Tokyo, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | | | - Kathleen L. Gould
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Attila Csikász-Nagy
- The Microsoft Research-University of Trento Centre for Computational Systems Biology, Piazza Manifattura 1, Rovereto, Italy
- Department of Computational Biology, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Randall Division of Cell and Molecular Biophysics and Institute for Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
In vitro contraction of cytokinetic ring depends on myosin II but not on actin dynamics. Nat Cell Biol 2013; 15:853-9. [PMID: 23770677 DOI: 10.1038/ncb2781] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 05/09/2013] [Indexed: 01/17/2023]
Abstract
Cytokinesis in many eukaryotes involves the contraction of an actomyosin-based contractile ring. However, the detailed mechanism of contractile ring contraction is not fully understood. Here, we establish an experimental system to study contraction of the ring to completion in vitro. We show that the contractile ring of permeabilized fission yeast cells undergoes rapid contraction in an ATP- and myosin-II-dependent manner in the absence of other cytoplasmic constituents. Surprisingly, neither actin polymerization nor its disassembly is required for contraction of the contractile ring, although addition of exogenous actin-crosslinking proteins blocks ring contraction. Using contractile rings generated from fission yeast cytokinesis mutants, we show that not all proteins required for assembly of the ring are required for its contraction in vitro. Our work provides the beginnings of the definition of a minimal contraction-competent cytokinetic ring apparatus.
Collapse
|
17
|
Hof1 and Rvs167 have redundant roles in actomyosin ring function during cytokinesis in budding yeast. PLoS One 2013; 8:e57846. [PMID: 23469085 PMCID: PMC3585203 DOI: 10.1371/journal.pone.0057846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/28/2013] [Indexed: 11/19/2022] Open
Abstract
The Hof1 protein (Homologue of Fifteen) regulates formation of the primary septum during cytokinesis in the budding yeast Saccharomyces cerevisiae, whereas the orthologous Cdc15 protein in fission yeast regulates the actomyosin ring by using its F-BAR domain to recruit actin nucleators to the cleavage site. Here we show that budding yeast Hof1 also contributes to actin ring assembly in parallel with the Rvs167 protein. Simultaneous deletion of the HOF1 and RVS167 genes is lethal, and cells fail to assemble the actomyosin ring as they progress through mitosis. Although Hof1 and Rvs167 are not orthologues, they both share an analogous structure, with an F-BAR or BAR domain at the amino terminus, capable of inducing membrane curvature, and SH3 domains at the carboxyl terminus that bind to specific proline-rich targets. The SH3 domain of Rvs167 becomes essential for assembly of the actomyosin ring in cells lacking Hof1, suggesting that it helps to recruit a regulator of the actin cytoskeleton. This new function of Rvs167 appears to be independent of its known role as a regulator of the Arp2/3 actin nucleator, as actin ring assembly is not abolished by the simultaneous inactivation of Hof1 and Arp2/3. Instead we find that recruitment to the bud-neck of the Iqg1 actin regulator is defective in cells lacking Hof1 and Rvs167, though future studies will be needed to determine if this reflects a direct interaction between these factors. The redundant role of Hof1 in actin ring assembly suggests that the mechanism of actin ring assembly has been conserved to a greater extent across evolution than anticipated previously.
Collapse
|
18
|
Huang J, Huang Y, Yu H, Subramanian D, Padmanabhan A, Thadani R, Tao Y, Tang X, Wedlich-Soldner R, Balasubramanian MK. Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast. ACTA ACUST UNITED AC 2013. [PMID: 23185032 PMCID: PMC3514790 DOI: 10.1083/jcb.201209044] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly.
Collapse
Affiliation(s)
- Junqi Huang
- Cell Division Laboratory, Temasek Life Sciences Laboratory, Singapore 117604
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Actin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis. Dev Cell 2012; 22:1247-60. [PMID: 22698284 DOI: 10.1016/j.devcel.2012.04.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/27/2012] [Accepted: 04/19/2012] [Indexed: 01/21/2023]
Abstract
Actin filaments and myosin II are evolutionarily conserved force-generating components of the contractile ring during cytokinesis. Here we show that in budding yeast, actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuate actomyosin ring constriction. Deletion of myosin II motor domain or the myosin regulatory light chain reduced the contraction rate and also the rate of actin depolymerization in the ring. We constructed a quantitative microscopic model of actomyosin ring constriction via filament sliding driven by both actin depolymerization and myosin II motor activity. Model simulations based on experimental measurements support the notion that actin depolymerization is the predominant mechanism for ring constriction. The model predicts invariability of total contraction time regardless of the initial ring size, as originally reported for C. elegans embryonic cells. This prediction was validated in yeast cells of different sizes due to different ploidies.
Collapse
|
20
|
Sharifmoghadam MR, Curto MÁ, Hoya M, de León N, Martin-Garcia R, Doncel C, Valdivieso MH. The integrity of the cytokinesis machinery under stress conditions requires the glucan synthase Bgs1p and its regulator Cfh3p. PLoS One 2012; 7:e42726. [PMID: 22905165 PMCID: PMC3419747 DOI: 10.1371/journal.pone.0042726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/10/2012] [Indexed: 12/29/2022] Open
Abstract
In yeast, cytokinesis requires coordination between nuclear division, acto-myosin ring contraction, and septum synthesis. We studied the role of the Schizosaccharomyces pombe Bgs1p and Cfh3p proteins during cytokinesis under stress conditions. Cfh3p formed a ring in the septal area that contracted during mitosis; Cfh3p colocalized and co-immunoprecipitated with Cdc15p, showing that Cfh3p interacted with the contractile acto-myosin ring. In a wild-type strain, a significant number of contractile rings collapsed under stress conditions and this number increased dramatically in the cfh3Δ, bgs1cps1-191, and cfh3Δ bgs1/cps1-191. Our results show that after osmotic shock Cfh3p is essential for the stability of the (1,3) glucan synthase Bgs1p in the septal area, but not at the cell poles. Finally, cells adapted to stress; they repaired their contractile rings and re-localized Bgs1p to the cell surface some time after osmotic shock. A detailed analysis of the cytokinesis machinery in the presence of KCl revealed that the actomyosin ring collapsed before Bgs1p was internalized, and that it was repaired before Bgs1p re-localized to the cell surface. In the cfh3Δ, bgs1/cps1-191, and cfh3Δ bgs1/cps1-191 mutants, which have reduced glucan synthesis, the damage produced to the ring had stronger consequences, suggesting that an intact primary septum contributes to ring stability. The results show that the contractile actomyosin ring is very sensitive to stress, and that cells have efficient mechanisms to remedy the damage produced in this structure.
Collapse
Affiliation(s)
- Mohammad Reza Sharifmoghadam
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
- Faculty of Veterinary Medicine, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - M.-Ángeles Curto
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Marta Hoya
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Nagore de León
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Rebeca Martin-Garcia
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Cristina Doncel
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca, Spain
- * E-mail:
| |
Collapse
|
21
|
Sanchez-Diaz A, Nkosi PJ, Murray S, Labib K. The Mitotic Exit Network and Cdc14 phosphatase initiate cytokinesis by counteracting CDK phosphorylations and blocking polarised growth. EMBO J 2012; 31:3620-34. [PMID: 22872148 DOI: 10.1038/emboj.2012.224] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/17/2012] [Indexed: 01/27/2023] Open
Abstract
Polarisation of the actin cytoskeleton must cease during cytokinesis, to support efficient assembly and contraction of the actomyosin ring at the site of cell division, but the underlying mechanisms are still understood poorly in most species. In budding yeast, the Mitotic Exit Network (MEN) releases Cdc14 phosphatase from the nucleolus during anaphase, leading to the inactivation of mitotic forms of cyclin-dependent kinase (CDK) and the onset of septation, before G1-CDK can be reactivated and drive re-polarisation of the actin cytoskeleton to a new bud. Here, we show that premature inactivation of mitotic CDK, before release of Cdc14, allows G1-CDK to divert the actin cytoskeleton away from the actomyosin ring to a new site of polarised growth, thereby delaying progression through cytokinesis. Our data indicate that cells normally avoid this problem via the MEN-dependent release of Cdc14, which counteracts all classes of CDK-mediated phosphorylations during cytokinesis and blocks polarised growth. The dephosphorylation of CDK targets is therefore central to the mechanism by which the MEN and Cdc14 initiate cytokinesis and block polarised growth during late mitosis.
Collapse
Affiliation(s)
- Alberto Sanchez-Diaz
- Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
22
|
Grewal C, Hickmott J, Rentas S, Karagiannis J. A conserved histone deacetylase with a role in the regulation of cytokinesis in Schizosaccharomyces pombe. Cell Div 2012; 7:13. [PMID: 22559741 PMCID: PMC3485120 DOI: 10.1186/1747-1028-7-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/20/2012] [Indexed: 11/12/2022] Open
Abstract
Background In Schizosaccharomyces pombe the SET domain protein, Set3p - together with its interacting partners, Snt1p, and Hif2p - form a complex that aids in preventing cell division failure upon mild cytokinetic stress. Intriguingly, the human orthologs of these proteins (MLL5, NCOR2, and TBL1X) are also important for the faithful completion of cytokinesis in tissue culture cells. Since MLL5, NCOR2, and TBL1X form a complex with the histone deacetylase, HDAC3, we sought to determine if an orthologous counterpart played a regulatory role in fission yeast cytokinesis. Results In this report we identify the hos2 gene as the fission yeast HDAC3 ortholog. We show that Hos2p physically interacts with Set3p, Snt1p, and Hif2p, and that hos2∆ mutants are indeed compromised in their ability to reliably complete cell division in the presence of mild cytokinetic stresses. Furthermore, we demonstrate that over-expression of hos2 causes severe morphological and cytokinetic defects. Lastly, through recombinase mediated cassette exchange, we show that expression of human HDAC3 complements the cytokinetic defects exhibited by hos2∆ cells. Conclusions These data support a model in which Hos2p functions as an essential component of the Set3p-Snt1p-Hif2p complex with respect to the regulation of cytokinesis. The ability of human HDAC3 to complement the cytokinesis defects associated with the deletion of the hos2 gene suggests that further analysis of this system could provide insight into the role of HDAC3 in both the regulation of cell division, as well as other biological processes influenced by HDAC3 deacetylation.
Collapse
Affiliation(s)
- Charnpal Grewal
- Department of Biology, University of Western Ontario, London, Ontario N6A-5B7, Canada.
| | | | | | | |
Collapse
|
23
|
Hsp90 interaction with Cdc2 and Plo1 kinases contributes to actomyosin ring condensation in fission yeast. Curr Genet 2012; 58:191-203. [DOI: 10.1007/s00294-012-0376-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 04/02/2012] [Accepted: 04/13/2012] [Indexed: 12/13/2022]
|
24
|
Mishra M, Huang Y, Srivastava P, Srinivasan R, Sevugan M, Shlomovitz R, Gov N, Rao M, Balasubramanian M. Cylindrical cellular geometry ensures fidelity of division site placement in fission yeast. J Cell Sci 2012; 125:3850-7. [PMID: 22505610 DOI: 10.1242/jcs.103788] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Successful cytokinesis requires proper assembly of the contractile actomyosin ring, its stable positioning on the cell surface and proper constriction. Over the years, many of the key molecular components and regulators of the assembly and positioning of the actomyosin ring have been elucidated. Here we show that cell geometry and mechanics play a crucial role in the stable positioning and uniform constriction of the contractile ring. Contractile rings that assemble in locally spherical regions of cells are unstable and slip towards the poles. By contrast, actomyosin rings that assemble on locally cylindrical portions of the cell under the same conditions do not slip, but uniformly constrict the cell surface. The stability of the rings and the dynamics of ring slippage can be described by a simple mechanical model. Using fluorescence imaging, we verify some of the quantitative predictions of the model. Our study reveals an intimate interplay between geometry and actomyosin dynamics, which are likely to apply in a variety of cellular contexts.
Collapse
|
25
|
Feoktistova A, Morrell-Falvey J, Chen JS, Singh NS, Balasubramanian MK, Gould KL. The fission yeast septation initiation network (SIN) kinase, Sid2, is required for SIN asymmetry and regulates the SIN scaffold, Cdc11. Mol Biol Cell 2012; 23:1636-45. [PMID: 22419817 PMCID: PMC3338431 DOI: 10.1091/mbc.e11-09-0792] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Some components of the fission yeast septation initiation network (SIN) localize asymmetrically to spindle pole bodies during anaphase. Symmetric localization of these proteins correlates with cytokinesis defects. It is shown that the SIN-kinase Sid2 mediates SIN asymmetry, in part via the scaffold Cdc11, revealing a previously unknown feedback loop operating to generate SIN asymmetry. The Schizosaccharomyces pombe septation initiation network (SIN) is an Spg1-GTPase–mediated protein kinase cascade that triggers actomyosin ring constriction, septation, and cell division. The SIN is assembled at the spindle pole body (SPB) on the scaffold proteins Cdc11 and Sid4, with Cdc11 binding directly to SIN signaling components. Proficient SIN activity requires the asymmetric distribution of its signaling components to one of the two SPBs during anaphase, and Cdc11 hyperphosphorylation correlates with proficient SIN activity. In this paper, we show that the last protein kinase in the signaling cascade, Sid2, feeds back to phosphorylate Cdc11 during mitosis. The characterization of Cdc11 phosphomutants provides evidence that Sid2-mediated Cdc11 phosphorylation promotes the association of the SIN kinase, Cdc7, with the SPB and maximum SIN signaling during anaphase. We also show that Sid2 is crucial for the establishment of SIN asymmetry, indicating a positive-feedback loop is an important element of the SIN.
Collapse
Affiliation(s)
- Anna Feoktistova
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | | | | | | | | | | |
Collapse
|
26
|
Tekletsadik YK, Sonn R, Osman MA. A conserved role of IQGAP1 in regulating TOR complex 1. J Cell Sci 2012; 125:2041-52. [PMID: 22328503 DOI: 10.1242/jcs.098947] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Defining the mechanisms that control cell growth and division is crucial to understanding cell homeostasis, which impacts human diseases such as cancer and diabetes. IQGAP1, a widely conserved effector and/or regulator of the GTPase CDC42, is a putative oncoprotein that controls cell proliferation; however, its mechanism in tumorigenesis is unknown. The mechanistic target of rapamycin (mTOR) pathway, the center of cell growth control, is commonly activated in human cancers, but has proved to be an ineffective clinical target because of an incomplete understanding of its mechanisms in cell growth inhibition. Using complementary studies in yeast and mammalian cells, we examined a potential role for IQGAP1 in regulating the negative feedback loop (NFL) of mTOR complex 1 (mTORC1) that controls cell growth. Two-hybrid screens identified the yeast TORC1-specific subunit Tco89p as an Iqg1p-binding partner, sharing roles in rapamycin-sensitive growth, axial-bud-site selection and cytokinesis, thus coupling cell growth and division. Mammalian IQGAP1 binds mTORC1 and Akt1 and in response to epidermal growth factor (EGF), cells expressing the mTORC1-Akt1-binding region (IQGAP1(IR-WW)) contained attenuated phosphorylated ERK1/2 (ERK1/2-P) activity and inactive glycogen synthase kinase 3α/β (GSK3α/β), which control apoptosis. Interestingly, these cells displayed a high level of Akt1 S473-P, but an attenuated level of the mTORC1-dependent kinase S6K1 T389-P and induced mTORC1-Akt1- and EGF-dependent transformed phenotypes. Moreover, IQGAP1 appears to influence cell abscission and its activity is elevated in carcinoma cell lines. These findings support the hypothesis that IQGAP1 acts upstream on the mTORC1-S6K1→Akt1 NFL and downstream of it, to couple cell growth and division, and thus like a rheostat, regulates cell homeostasis, dysregulation of which leads to tumorigenesis or other diseases. These results could have implications for the development of the next generation of anticancer therapeutics.
Collapse
Affiliation(s)
- Yemsrach K Tekletsadik
- Institute for Biotechnology and Life Sciences, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
27
|
Balazs A, Batta G, Miklos I, Acs-Szabo L, Vazquez de Aldana CR, Sipiczki M. Conserved regulators of the cell separation process in Schizosaccharomyces. Fungal Genet Biol 2012; 49:235-49. [PMID: 22300943 DOI: 10.1016/j.fgb.2012.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 02/07/2023]
Abstract
The fission yeasts (Schizosaccharomyces) representing a highly divergent phylogenetic branch of Fungi evolved from filamentous ancestors by gradual transition from mycelial growth to yeast morphology. For the transition, a mechanism had been developed that separates the sister cells after the completion of cytokinesis. Numerous components of the separation mechanism have been characterised in Schizosaccharomycespombe, including the zinc-finger transcription factor Ace2p and the fork-head transcription factor Sep1p. Here we show that both regulators have regions conserved within the genus. The most conserved parts contain the DNA-binding domains whose amino-acid sequences perfectly reflect the phylogenetic positions of the species. The less conserved parts of the proteins contain sequence blocks specific for the whole genus or only for the species propagating predominantly or exclusively as yeasts. Inactivation of either gene in the dimorphic species Schizosaccharomycesjaponicus abolished cell separation in the yeast phase conferring hypha-like morphology but did not change the growth pattern to unipolar and did not cause extensive polar vacuolation characteristic of the true mycelium. Neither mutation affected the mycelial phase, but both mutations hampered the hyphal fragmentation at the mycelium-to-yeast transition. Ace2p(Sj) acts downstream of Sep1p(Sj) and regulates the orthologues of the Ace2p-dependent S.pombe genes agn1(+) (1,3-alpha-glucanase) and eng1(+) (1,3-beta-glucanase) but does not regulate the orthologue of cfh4(+) (chitin synthase regulatory factor). These results and the complementation of the cell separation defects of the ace2(-) and sep1(-) mutations of S.pombe by heterologously expressed ace2(Sj) and sep1(Sj) indicate that the cell separation mechanism is conserved in the Schizosaccharomyces genus.
Collapse
Affiliation(s)
- Anita Balazs
- Department of Genetics and Applied Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
28
|
Characterization of ypa1 and ypa2, the Schizosaccharomyces pombe orthologs of the peptidyl proyl isomerases that activate PP2A, reveals a role for Ypa2p in the regulation of cytokinesis. Genetics 2012; 190:1235-50. [PMID: 22267499 DOI: 10.1534/genetics.111.138040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis. Cdc7p is the first kinase in the core SIN; we have screened genetically for SIN regulators by isolating cold-sensitive suppressors of cdc7-24. Our screen yielded a mutant in SPAC1782.05, one of the two fission yeast orthologs of mammalian phosphotyrosyl phosphatase activator. We have characterized this gene and its ortholog SPAC4F10.04, which we have named ypa2 and ypa1, respectively. We find that Ypa2p is the major form of protein phosphatase type 2A activator in S. pombe. A double ypa1-Δ ypa2-Δ null mutant is inviable, indicating that the two gene products have at least one essential overlapping function. Individually, the ypa1 and ypa2 genes are essential for survival only at low temperatures. The ypa2-Δ mutant divides at a reduced cell size and displays aberrant cell morphology and cytokinesis. Genetic analysis implicates Ypa2p as an inhibitor of the septation initiation network. We also isolated a cold-sensitive allele of ppa2, the major protein phosphatase type 2A catalytic subunit, implicating this enzyme as a regulator of the septation initiation network.
Collapse
|
29
|
Padmanabhan A, Bakka K, Sevugan M, Naqvi N, D'souza V, Tang X, Mishra M, Balasubramanian M. IQGAP-Related Rng2p Organizes Cortical Nodes and Ensures Position of Cell Division in Fission Yeast. Curr Biol 2011; 21:467-72. [DOI: 10.1016/j.cub.2011.01.059] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/22/2010] [Accepted: 01/24/2011] [Indexed: 12/01/2022]
|
30
|
Kovar DR, Sirotkin V, Lord M. Three's company: the fission yeast actin cytoskeleton. Trends Cell Biol 2011; 21:177-87. [PMID: 21145239 PMCID: PMC3073536 DOI: 10.1016/j.tcb.2010.11.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 10/22/2010] [Accepted: 11/04/2010] [Indexed: 11/20/2022]
Abstract
How the actin cytoskeleton assembles into different structures to drive diverse cellular processes is a fundamental cell biological question. In addition to orchestrating the appropriate combination of regulators and actin-binding proteins, different actin-based structures must insulate themselves from one another to maintain specificity within a crowded cytoplasm. Actin specification is particularly challenging in complex eukaryotes where a multitude of protein isoforms and actin structures operate within the same cell. Fission yeast Schizosaccharomyces pombe possesses a single actin isoform that functions in three distinct structures throughout the cell cycle. In this review we explore recent studies in fission yeast that help unravel how different actin structures operate in cells.
Collapse
Affiliation(s)
- David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
31
|
Goyal A, Takaine M, Simanis V, Nakano K. Dividing the spoils of growth and the cell cycle: The fission yeast as a model for the study of cytokinesis. Cytoskeleton (Hoboken) 2011; 68:69-88. [PMID: 21246752 PMCID: PMC3044818 DOI: 10.1002/cm.20500] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 12/12/2022]
Abstract
Cytokinesis is the final stage of the cell cycle, and ensures completion of both genome segregation and organelle distribution to the daughter cells. Cytokinesis requires the cell to solve a spatial problem (to divide in the correct place, orthogonally to the plane of chromosome segregation) and a temporal problem (to coordinate cytokinesis with mitosis). Defects in the spatiotemporal control of cytokinesis may cause cell death, or increase the risk of tumor formation [Fujiwara et al., 2005 (Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. 2005. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047); reviewed by Ganem et al., 2007 (Ganem NJ, Storchova Z, Pellman D. 2007. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162.)]. Asymmetric cytokinesis, which permits the generation of two daughter cells that differ in their shape, size and properties, is important both during development, and for cellular homeostasis in multicellular organisms [reviewed by Li, 2007 (Li R. 2007. Cytokinesis in development and disease: variations on a common theme. Cell Mol Life Sci 64:3044–3058)]. The principal focus of this review will be the mechanisms of cytokinesis in the mitotic cycle of the yeast Schizosaccharomyces pombe. This simple model has contributed significantly to our understanding of how the cell cycle is regulated, and serves as an excellent model for studying aspects of cytokinesis. Here we will discuss the state of our knowledge of how the contractile ring is assembled and disassembled, how it contracts, and what we know of the regulatory mechanisms that control these events and assure their coordination with chromosome segregation.
Collapse
Affiliation(s)
- Anupama Goyal
- EPFL SV ISREC UPSIMSV2.1830, Station 19, CH 1015 Lausanne, Switzerland
| | - Masak Takaine
- Structural Biosciences, Graduate School of Environmental and Life Sciences, University of Tsukuba1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| | - Viesturs Simanis
- EPFL SV ISREC UPSIMSV2.1830, Station 19, CH 1015 Lausanne, Switzerland
| | - Kentaro Nakano
- Structural Biosciences, Graduate School of Environmental and Life Sciences, University of Tsukuba1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
32
|
The fungal type II myosin in Penicillium marneffei, MyoB, is essential for chitin deposition at nascent septation sites but not actin localization. EUKARYOTIC CELL 2010; 10:302-12. [PMID: 21131434 DOI: 10.1128/ec.00201-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokinesis is essential for proliferative growth but also plays equally important roles during morphogenesis and development. The human pathogen Penicillium marneffei is capable of dimorphic switching in response to temperature, growing in a multicellular filamentous hyphal form at 25°C and in a unicellular yeast form at 37°C. P. marneffei also undergoes asexual development at 25°C to produce multicellular differentiated conidiophores. Thus, P. marneffei exhibits cell division with and without cytokinesis and division by budding and fission, depending on the cell type. The type II myosin gene, myoB, from P. marneffei plays important roles in the morphogenesis of these cell types. Deletion of myoB leads to chitin deposition defects at sites of cell division without perturbing actin localization. In addition to aberrant hyphal cells, distinct conidiophore cell types are lacking due to malformed septa and nuclear division defects. At 37°C, deletion of myoB prevents uninucleate yeast cell formation, instead producing long filaments resembling hyphae at 25°C. The ΔmyoB cells also often lyse due to defects in cell wall biogenesis. Thus, MyoB is essential for correct morphogenesis of all cell types regardless of division mode (budding or fission) and defines differences between the different types of growth.
Collapse
|
33
|
Laporte D, Zhao R, Wu JQ. Mechanisms of contractile-ring assembly in fission yeast and beyond. Semin Cell Dev Biol 2010; 21:892-8. [PMID: 20708088 PMCID: PMC2991471 DOI: 10.1016/j.semcdb.2010.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/28/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022]
Abstract
Most eukaryotes including fungi, amoebas, and animal cells assemble an actin/myosin-based contractile ring during cytokinesis. The majority of proteins implied in ring formation, maturation, and constriction are evolutionarily conserved, suggesting that common mechanisms exist among these divergent eukaryotes. Here, we review the recent advances in positioning and assembly of the actomyosin ring in the fission yeast Schizosaccharomyces pombe, the budding yeast Saccharomyces cerevisiae, and animal cells. In particular, major findings have been made recently in understanding ring formation in genetically tractable S. pombe, revealing a dynamic and robust search, capture, pull, and release mechanism.
Collapse
Affiliation(s)
- Damien Laporte
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ran Zhao
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jian-Qiu Wu
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Hacquard S, Delaruelle C, Legué V, Tisserant E, Kohler A, Frey P, Martin F, Duplessis S. Laser capture microdissection of uredinia formed by Melampsora larici-populina revealed a transcriptional switch between biotrophy and sporulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1275-86. [PMID: 20831407 DOI: 10.1094/mpmi-05-10-0111] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The foliar rust caused by the basidiomycete Melampsora larici-populina is the main disease affecting poplar plantations in Europe. The biotrophic status of rust fungi is a major limitation to study gene expression of cell or tissue types during host infection. At the uredinial stage, infected poplar leaves contain distinct rust tissues such as haustoria, infection hyphae, and uredinia with sporogenous hyphae and newly formed asexual urediniospores. Laser capture microdissection (LCM) was used to isolate three areas corresponding to uredinia and subjacent zones in the host mesophyll for expression analysis with M. larici-populina whole-genome exon oligoarrays. Optimization of tissue preparation prior to LCM allowed isolation of RNA of good integrity for genome-wide expression profiling. Our results indicate that the poplar rust uredinial stage is marked by distinct genetic programs related to biotrophy in the host palisade mesophyll and to sporulation in the uredinium. A strong induction of transcripts encoding small secreted proteins, likely containing rust effectors, is observed in the mesophyll, suggesting a late maintenance of suppression of host defense in the tissue containing haustoria and infection hyphae. On the other hand, cell cycle and cell defense rescue transcripts are strongly accumulated in the sporulation area. This combined LCM-transcriptomic approach brings new insights on the molecular mechanisms underlying urediniospore formation in rust fungi.
Collapse
Affiliation(s)
- Stéphane Hacquard
- Unité Mixte de Recherche 1136 INRA/Nancy Université Interactions Arbres/Micro-organismes, Champenoux, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Antagonistic roles of PP2A-Pab1 and Etd1 in the control of cytokinesis in fission yeast. Genetics 2010; 186:1261-70. [PMID: 20876564 DOI: 10.1534/genetics.110.121368] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Schizosaccharomyces pombe, Etd1 is a positive regulator of the septation initiation network (SIN), a conserved GTPase-regulated kinase cascade that triggers cytokinesis. Here we show that a mutation in the pab1 gene, which encodes the B-regulatory subunit of the protein phosphatase 2A (PP2A), suppresses mutations in the etd1 gene. Etd1 is required for the function of the GTPase Spg1, a key regulator of SIN signaling. Interestingly, the loss of Pab1 function restored the activity of Spg1 in Etd1-deficient cells. This result suggests that PP2A-Pab1-mediated dephosphorylation inhibits Spg1, thus antagonizing Etd1 function. The loss of pab1 function also rescues the lethality of mutants of other genes in the SIN cascade such as mob1, sid1, and cdc11. Two-hybrid assays indicate that Pab1 physically interacts with Mob1, Sid1, Sid2, and Cdc11, suggesting that the phosphatase 2A B-subunit is a component of the SIN complex. Together, our results indicate that PP2A-Pab1 plays a novel role in cytokinesis, regulating SIN activity at different levels. Pab1 is also required to activate polarized cell growth. Thus, PP2A-Pab1 may be involved in coordinating polar growth and cytokinesis.
Collapse
|
36
|
Roberts-Galbraith RH, Ohi MD, Ballif BA, Chen JS, McLeod I, McDonald WH, Gygi SP, Yates JR, Gould KL. Dephosphorylation of F-BAR protein Cdc15 modulates its conformation and stimulates its scaffolding activity at the cell division site. Mol Cell 2010; 39:86-99. [PMID: 20603077 PMCID: PMC2916701 DOI: 10.1016/j.molcel.2010.06.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 03/22/2010] [Accepted: 04/16/2010] [Indexed: 01/11/2023]
Abstract
Cytokinesis in Schizosaccharomyces pombe requires the function of Cdc15, the founding member of the pombe cdc15 homology (PCH) family of proteins. As an early, abundant contractile ring component with multiple binding partners, Cdc15 plays a key role in organizing the ring. We demonstrate that Cdc15 phosphorylation at many sites generates a closed conformation, inhibits Cdc15 assembly at the division site in interphase, and precludes interaction of Cdc15 with its binding partners. Cdc15 dephosphorylation induces an open conformation, oligomerization, and scaffolding activity during mitosis. Cdc15 mutants with reduced phosphorylation precociously appear at the division site in filament-like structures and display increased association with protein partners and the membrane. Our results indicate that Cdc15 phosphoregulation impels both assembly and disassembly of the contractile apparatus and suggest a regulatory strategy that PCH family and BAR superfamily members might broadly employ to achieve temporal specificity in their roles as linkers between membrane and cytoskeleton.
Collapse
Affiliation(s)
- Rachel H Roberts-Galbraith
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Young BA, Buser C, Drubin DG. Isolation and partial purification of the Saccharomyces cerevisiae cytokinetic apparatus. ACTA ACUST UNITED AC 2010; 67:13-22. [PMID: 19790107 DOI: 10.1002/cm.20412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytokinesis is the process by which a cell physically divides in two at the conclusion of a cell cycle. In animal and fungal cells, this process is mediated by a conserved set of proteins including actin, type II myosin, IQGAP proteins, F-BAR proteins, and the septins. To facilitate biochemical and ultrastructural analysis of cytokinesis, we have isolated and partially purified the Saccharomyces cerevisiae cytokinetic apparatus. The isolated apparatus contains all components of the actomyosin ring for which we tested-actin, myosin heavy and light chain, and IQGAP-as well as septins and the cytokinetic F-BAR protein, Hof1p. We also present evidence indicating that the actomyosin rings associated with isolated cytokinetic apparati may be contractile in vitro, and show preliminary electron microscopic imaging of the cytokinetic apparatus. This first successful isolation of the cytokinetic apparatus from a genetically tractable organism promises to make possible a deeper understanding of cytokinesis.
Collapse
Affiliation(s)
- Brian A Young
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
38
|
Roncero C, Sánchez Y. Cell separation and the maintenance of cell integrity during cytokinesis in yeast: the assembly of a septum. Yeast 2010; 27:521-30. [DOI: 10.1002/yea.1779] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
39
|
Coffman VC, Nile AH, Lee IJ, Liu H, Wu JQ. Roles of formin nodes and myosin motor activity in Mid1p-dependent contractile-ring assembly during fission yeast cytokinesis. Mol Biol Cell 2010; 20:5195-210. [PMID: 19864459 DOI: 10.1091/mbc.e09-05-0428] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two prevailing models have emerged to explain the mechanism of contractile-ring assembly during cytokinesis in the fission yeast Schizosaccharomyces pombe: the spot/leading cable model and the search, capture, pull, and release (SCPR) model. We tested some of the basic assumptions of the two models. Monte Carlo simulations of the SCPR model require that the formin Cdc12p is present in >30 nodes from which actin filaments are nucleated and captured by myosin-II in neighboring nodes. The force produced by myosin motors pulls the nodes together to form a compact contractile ring. Live microscopy of cells expressing Cdc12p fluorescent fusion proteins shows for the first time that Cdc12p localizes to a broad band of 30-50 dynamic nodes, where actin filaments are nucleated in random directions. The proposed progenitor spot, essential for the spot/leading cable model, usually disappears without nucleating actin filaments. alpha-Actinin ain1 deletion cells form a normal contractile ring through nodes in the absence of the spot. Myosin motor activity is required to condense the nodes into a contractile ring, based on slower or absent node condensation in myo2-E1 and UCS rng3-65 mutants. Taken together, these data provide strong support for the SCPR model of contractile-ring formation in cytokinesis.
Collapse
Affiliation(s)
- Valerie C Coffman
- Department of Molecular Genetics, Graduate Program of Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
40
|
Stark BC, Sladewski TE, Pollard LW, Lord M. Tropomyosin and myosin-II cellular levels promote actomyosin ring assembly in fission yeast. Mol Biol Cell 2010; 21:989-1000. [PMID: 20110347 PMCID: PMC2836979 DOI: 10.1091/mbc.e09-10-0852] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A combination of in vivo and in vitro approaches were used to show how tropomyosin and myosin-II contribute to contractile ring assembly in fission yeast. Ring assembly is sensitive to changes in the cellular levels of myosin-II, and tropomyosin works to maximize myosin-II motor function during this process by stabilizing actomyosin interactions. Myosin-II (Myo2p) and tropomyosin are essential for contractile ring formation and cytokinesis in fission yeast. Here we used a combination of in vivo and in vitro approaches to understand how these proteins function at contractile rings. We find that ring assembly is delayed in Myo2p motor and tropomyosin mutants, but occurs prematurely in cells engineered to express two copies of myo2. Thus, the timing of ring assembly responds to changes in Myo2p cellular levels and motor activity, and the emergence of tropomyosin-bound actin filaments. Doubling Myo2p levels suppresses defects in ring assembly associated with a tropomyosin mutant, suggesting a role for tropomyosin in maximizing Myo2p function. Correspondingly, tropomyosin increases Myo2p actin affinity and ATPase activity and promotes Myo2p-driven actin filament gliding in motility assays. Tropomyosin achieves this by favoring the strong actin-bound state of Myo2p. This mode of regulation reflects a role for tropomyosin in specifying and stabilizing actomyosin interactions, which facilitates contractile ring assembly in the fission yeast system.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
41
|
Maerz S, Dettmann A, Ziv C, Liu Y, Valerius O, Yarden O, Seiler S. Two NDR kinase-MOB complexes function as distinct modules during septum formation and tip extension in Neurospora crassa. Mol Microbiol 2009; 74:707-23. [PMID: 19788544 DOI: 10.1111/j.1365-2958.2009.06896.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
NDR kinases are important for growth and differentiation and require interaction with MOB proteins for activity and function. We characterized the NDR kinases and MOB activators in Neurospora crassa and identified two NDR kinases (COT1 and DBF2) and four MOB proteins (MOB1, MOB2A, MOB2B and MOB3/phocein) that form two functional NDR-MOB protein complexes. The MOB1-DBF2 complex is not only essential for septum formation in vegetative cells and during conidiation, but also functions during sexual fruiting body development and ascosporogenesis. The two MOB2-type proteins interact with both COT1 isoforms and control polar tip extension and branching by regulating COT1 activity. The conserved region directly preceding the kinase domain of COT1 is sufficient for the formation of COT1-MOB2 heterodimers, but also for kinase homodimerization. An additional N-terminal extension that is poorly conserved, but present in most fungal NDR kinases, is required for further stabilization of both types of interactions and for stimulating COT1 activity. COT1 lacking this region is degraded in a mob-2 background. We propose a specific role of MOB3/phocein during vegetative cell fusion, fruiting body development and ascosporogenesis that is unrelated to the three other MOB proteins and NDR kinase signalling.
Collapse
Affiliation(s)
- Sabine Maerz
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie, Universität Gottingen Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Alao JP, Olesch J, Sunnerhagen P. Inhibition of type I histone deacetylase increases resistance of checkpoint-deficient cells to genotoxic agents through mitotic delay. Mol Cancer Ther 2009; 8:2606-15. [PMID: 19723888 DOI: 10.1158/1535-7163.mct-09-0218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone deacetylase (HDAC) inhibitors potently inhibit tumor growth and are currently being evaluated for their efficacy as chemosensitizers and radiosensitizers. This efficacy is likely to be limited by the fact that HDAC inhibitors also induce cell cycle arrest. Deletion of the class I HDAC Rpd3 has been shown to specifically suppress the sensitivity of Saccharomyces cerevisiae DNA damage checkpoint mutants to UV and hydroxyurea. We show that in the fission yeast Schizosaccharomyces pombe, inhibition of the homologous class I HDAC specifically suppresses the DNA damage sensitivity of checkpoint mutants. Importantly, the prototype HDAC inhibitor Trichostatin A also suppressed the sensitivity of DNA damage checkpoint but not of DNA repair mutants to UV and HU. TSA suppressed DNA damage activity independently of the mitogen-activated protein kinase-dependent and spindle checkpoint pathways. We show that TSA delays progression into mitosis and propose that this is the main mechanism for suppression of the DNA damage sensitivity of S. pombe checkpoint mutants, partially compensating for the loss of the G(2) checkpoint pathway. Our studies also show that the ability of HDAC inhibitors to suppress DNA damage sensitivity is not species specific. Class I HDACs are the major target of HDAC inhibitors and cancer cells are often defective in checkpoint activation. Effective use of these agents as chemosensitizers and radiosensitizers may require specific treatment schedules that circumvent their inhibition of cell cycle progression.
Collapse
Affiliation(s)
- John P Alao
- Department of Cell and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-405 30 Göteborg, Sweden
| | | | | |
Collapse
|
43
|
Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, Elias M, Idnurm A, Lang BF, Sone T, Abe A, Calvo SE, Corrochano LM, Engels R, Fu J, Hansberg W, Kim JM, Kodira CD, Koehrsen MJ, Liu B, Miranda-Saavedra D, O'Leary S, Ortiz-Castellanos L, Poulter R, Rodriguez-Romero J, Ruiz-Herrera J, Shen YQ, Zeng Q, Galagan J, Birren BW, Cuomo CA, Wickes BL. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 2009; 5:e1000549. [PMID: 19578406 PMCID: PMC2699053 DOI: 10.1371/journal.pgen.1000549] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 06/04/2009] [Indexed: 01/12/2023] Open
Abstract
Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99-880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin-proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14alpha-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.
Collapse
Affiliation(s)
- Li-Jun Ma
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Ashraf S. Ibrahim
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Christopher Skory
- Bioproducts and Biocatalysis Research, National Center for Agricultural Utilization Research, USDA-ARS, Midwest Area, Peoria, Illinois, United States of America
| | - Manfred G. Grabherr
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Gertraud Burger
- Department of Biochemistry, Université de Montréal, Montreal, Canada
| | - Margi Butler
- Department of Biochemistry, University of Otago, Otago, New Zealand
| | - Marek Elias
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri, United States of America
| | - B. Franz Lang
- Department of Biochemistry, Université de Montréal, Montreal, Canada
| | - Teruo Sone
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ayumi Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sarah E. Calvo
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Reinhard Engels
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jianmin Fu
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jung-Mi Kim
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Chinnappa D. Kodira
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Michael J. Koehrsen
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bo Liu
- Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | | | - Sinead O'Leary
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Russell Poulter
- Department of Biochemistry, University of Otago, Otago, New Zealand
| | | | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Yao-Qing Shen
- Department of Biochemistry, Université de Montréal, Montreal, Canada
| | - Qiandong Zeng
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - James Galagan
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bruce W. Birren
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christina A. Cuomo
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Brian L. Wickes
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
44
|
Sladewski TE, Previs MJ, Lord M. Regulation of fission yeast myosin-II function and contractile ring dynamics by regulatory light-chain and heavy-chain phosphorylation. Mol Biol Cell 2009; 20:3941-52. [PMID: 19570908 DOI: 10.1091/mbc.e09-04-0346] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We investigated the role of regulatory light-chain (Rlc1p) and heavy-chain phosphorylation in controlling fission yeast myosin-II (Myo2p) motor activity and function during cytokinesis. Phosphorylation of Rlc1p leads to a fourfold increase in Myo2p's in vitro motility rate, which ensures effective contractile ring constriction and function. Surprisingly, unlike with smooth muscle and nonmuscle myosin-II, RLC phosphorylation does not influence the actin-activated ATPase activity of Myo2p. A truncated form of Rlc1p lacking its extended N-terminal regulatory region (including phosphorylation sites) supported maximal Myo2p in vitro motility rates and normal contractile ring function. Thus, the unphosphorylated N-terminal extension of Rlc1p can uncouple the ATPase and motility activities of Myo2p. We confirmed the identity of one out of two putative heavy-chain phosphorylation sites previously reported to control Myo2p function and cytokinesis. Although in vitro studies indicated that phosphorylation at Ser-1444 is not needed for Myo2p motor activity, phosphorylation at this site promotes the initiation of contractile ring constriction.
Collapse
Affiliation(s)
- Thomas E Sladewski
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
45
|
González-Novo A, Labrador L, Pablo-Hernando ME, Correa-Bordes J, Sánchez M, Jiménez J, Vázquez de Aldana CR. Dbf2 is essential for cytokinesis and correct mitotic spindle formation in Candida albicans. Mol Microbiol 2009; 72:1364-78. [PMID: 19460099 DOI: 10.1111/j.1365-2958.2009.06729.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have characterized the DBF2 gene, encoding a protein kinase of the NDR family in Candida albicans, and demonstrate that this gene is essential for cell viability. Conditional mutants were constructed by using the MET3 promoter to analyse the phenotype of cells lacking this kinase. The absence of Dbf2 resulted in cells arrested as large-budded pairs that failed to contract the actomyosin ring, a function similar to that described for its Saccharomyces cerevisiae orthologue. In addition to its role in cytokinesis, Dbf2 regulates mitotic spindle organization and nuclear segregation as Dbf2-depleted cells have abnormal microtubules and severe defects in nuclear migration to the daughter cell, which results in a cell cycle block during mitosis. Taken together, these results imply that Dbf2 performs several functions during exit from mitosis and cytokinesis. Consistent with a role in spindle organization, the protein localizes to the mitotic spindle during anaphase, and it interacts physically with tubulin, as indicated by immunoprecipitation experiments. Finally, DBF2 depletion also resulted in impaired true hyphal growth.
Collapse
Affiliation(s)
- Alberto González-Novo
- Dpto. Microbiología y Genética, Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Avda. Doctores de la Reina s/n. 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Kim JM, Zeng CJT, Nayak T, Shao R, Huang AC, Oakley BR, Liu B. Timely septation requires SNAD-dependent spindle pole body localization of the septation initiation network components in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 2009; 20:2874-84. [PMID: 19386763 DOI: 10.1091/mbc.e08-12-1177] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the filamentous fungus Aspergillus nidulans, cytokinesis/septation is triggered by the septation initiation network (SIN), which first appears at the spindle pole body (SPB) during mitosis. The coiled-coil protein SNAD is associated with the SPB and is required for timely septation and conidiation. We have determined that SNAD acted as a scaffold protein that is required for the localization of the SIN proteins of SIDB and MOBA to the SPB. Another scaffold protein SEPK, whose localization at the SPB was dependent on SNAD, was also required for SIDB and MOBA localization to the SPB. In the absence of either SEPK or SNAD, SIDB/MOBA successfully localized to the septation site, indicating that their earlier localization at SPB was not essential for their later appearance at the division site. Unlike their functional counterparts in fission yeast, SEPK and SNAD were not required for vegetative growth but only for timely septation. Furthermore, down-regulation of negative regulators of the SIN suppressed the septation and conidiation phenotypes due to the loss of SNAD. Therefore, we conclude that SPB localization of SIN components is not essential for septation per se, but critical for septation to take place in a timely manner in A. nidulans.
Collapse
Affiliation(s)
- Jung-Mi Kim
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Hachet O, Simanis V. Mid1p/anillin and the septation initiation network orchestrate contractile ring assembly for cytokinesis. Genes Dev 2009; 22:3205-16. [PMID: 19056897 DOI: 10.1101/gad.1697208] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In both animal cells and fungi, cytokinesis proceeds via a contractile actomyosin ring (CAR). Many CAR components and regulators are evolutionarily conserved. In Schizosaccharomyces pombe, the spatial cue for cytokinesis is provided by Mid1p/Anillin, whereas temporal coordination is ensured by the septation initiation network (SIN). However, neither Mid1p nor the SIN is considered to be essential for CAR assembly per se. Here, using 4D imaging, we reveal an unanticipated, novel role for the SIN in CAR assembly. We demonstrate that CAR assembly involves three, genetically separable steps: establishment of a cortical network of CAR proteins, its lateral condensation, and finally, the formation of a homogeneous CAR. We show that SIN mutants fail to form a homogeneous CAR; we identify hypophosphorylation and recruitment of the conserved PCH-family protein Cdc15p to the CAR as critical steps requiring SIN function. Furthermore, we show that in the absence of Mid1p, CAR assembly proceeds via an actomyosin filament, rather than a cortical network of CAR proteins. This mode of assembly is totally dependent on SIN signaling, thereby demonstrating a direct role for the SIN in CAR formation. Taken together, these data establish that Mid1p and the SIN are the key regulators that orchestrate CAR assembly.
Collapse
Affiliation(s)
- Olivier Hachet
- Cell Cycle Control Laboratory, Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1066 Epalinges s/Lausanne, Switzerland
| | | |
Collapse
|
48
|
Roberts-Galbraith RH, Gould KL. Stepping into the ring: the SIN takes on contractile ring assembly. Genes Dev 2009; 22:3082-8. [PMID: 19056889 DOI: 10.1101/gad.1748908] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The septation initiation network (SIN) regulates the timing of septum formation in Schizosaccharomyces pombe. However, whether and how the SIN functions in contractile ring formation has remained unclear. In this issue of Genes & Development, Hachet and Simanis (3205-3216) demonstrate that the SIN acts downstream from the Plo1 kinase to control a final step in contractile ring assembly. Furthermore, their careful analysis of contractile ring formation may help bridge two existing models of cytokinetic ring formation.
Collapse
Affiliation(s)
- Rachel H Roberts-Galbraith
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
49
|
Alsop GB, Chen W, Foss M, Tseng KF, Zhang D. Redistribution of actin during assembly and reassembly of the contractile ring in grasshopper spermatocytes. PLoS One 2009; 4:e4892. [PMID: 19287500 PMCID: PMC2654139 DOI: 10.1371/journal.pone.0004892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 02/17/2009] [Indexed: 11/19/2022] Open
Abstract
Cytokinesis in animal cells requires the assembly of an actomyosin contractile ring to cleave the cell. The ring is highly dynamic; it assembles and disassembles during each cell cleavage, resulting in the recurrent redistribution of actin. To investigate this process in grasshopper spermatocytes, we mechanically manipulated the spindle to induce actin redistribution into ectopic contractile rings, around reassembled lateral spindles. To enhance visualization of actin, we folded the spindle at its equator to convert the remnants of the partially assembled ring into a concentrated source of actin. Filaments from the disintegrating ring aligned along reorganizing spindle microtubules, suggesting that their incorporation into the new ring was mediated by microtubules. We tracked incorporation by speckling actin filaments with Qdots and/or labeling them with Alexa 488-phalloidin. The pattern of movement implied that actin was transported along spindle microtubules, before entering the ring. By double-labeling dividing cells, we imaged actin filaments moving along microtubules near the contractile ring. Together, our findings indicate that in one mechanism of actin redistribution, actin filaments are transported along spindle microtubule tracks in a plus-end–directed fashion. After reaching the spindle midzone, the filaments could be transported laterally to the ring. Notably, actin filaments undergo a dramatic trajectory change as they enter the ring, implying the existence of a pulling force. Two other mechanisms of actin redistribution, cortical flow and de novo assembly, are also present in grasshopper, suggesting that actin converges at the nascent contractile ring from diffuse sources within the cytoplasm and cortex, mediated by spindle microtubules.
Collapse
Affiliation(s)
- G. Bradley Alsop
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Wei Chen
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Margit Foss
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kuo-Fu Tseng
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Dahong Zhang
- Department of Zoology, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing (CGRB), Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
50
|
Satoh R, Morita T, Takada H, Kita A, Ishiwata S, Doi A, Hagihara K, Taga A, Matsumura Y, Tohda H, Sugiura R. Role of the RNA-binding protein Nrd1 and Pmk1 mitogen-activated protein kinase in the regulation of myosin mRNA stability in fission yeast. Mol Biol Cell 2009; 20:2473-85. [PMID: 19279143 DOI: 10.1091/mbc.e08-09-0893] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myosin II is an essential component of the actomyosin contractile ring and plays a crucial role in cytokinesis by generating the forces necessary for contraction of the actomyosin ring. Cdc4 is an essential myosin II light chain in fission yeast and is required for cytokinesis. In various eukaryotes, the phosphorylation of myosin is well documented as a primary means of activating myosin II, but little is known about the regulatory mechanisms of Cdc4. Here, we isolated Nrd1, an RNA-binding protein with RNA-recognition motifs, as a multicopy suppressor of cdc4 mutants. Notably, we demonstrated that Nrd1 binds and stabilizes Cdc4 mRNA, thereby suppressing the cytokinesis defects of the cdc4 mutants. Importantly, Pmk1 mitogen-activated protein kinase (MAPK) directly phosphorylates Nrd1, thereby negatively regulating the binding activity of Nrd1 to Cdc4 mRNA. Consistently, the inactivation of Pmk1 MAPK signaling, as well as Nrd1 overexpression, stabilized the Cdc4 mRNA level, thereby suppressing the cytokinesis defects associated with the cdc4 mutants. In addition, we demonstrated the cell cycle-dependent regulation of Pmk1/Nrd1 signaling. Together, our results indicate that Nrd1 plays a role in the regulation of Cdc4 mRNA stability; moreover, our study is the first to demonstrate the posttranscriptional regulation of myosin expression by MAPK signaling.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, and Laboratory of Pharmaceutical Analytical Chemistry, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka 577-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|