1
|
Chrupcala ML, Moseley JB. PP2A-B56 regulates Mid1 protein levels for proper cytokinesis in fission yeast. Mol Biol Cell 2025; 36:ar52. [PMID: 40042941 PMCID: PMC12005099 DOI: 10.1091/mbc.e24-08-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/12/2025] Open
Abstract
Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In fission yeast cells, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1∆ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide toward cell tips. These par1∆ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1∆ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.
Collapse
Affiliation(s)
- Madeline L. Chrupcala
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
2
|
Chrupcala ML, Moseley JB. PP2A-B56 regulates Mid1 protein levels for proper cytokinesis in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.28.601230. [PMID: 38979265 PMCID: PMC11230426 DOI: 10.1101/2024.06.28.601230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Protein phosphorylation regulates many steps in the cell division process including cytokinesis. In fission yeast cells, the anillin-like protein Mid1 sets the cell division plane and is regulated by phosphorylation. Multiple protein kinases act on Mid1, but no protein phosphatases have been shown to regulate Mid1. Here, we discovered that the conserved protein phosphatase PP2A-B56 is required for proper cytokinesis by promoting Mid1 protein levels. We find that par1Δ cells lacking the primary B56 subunit divide asymmetrically due to the assembly of misplaced cytokinetic rings that slide towards cell tips. These par1Δ mutants have reduced whole-cell levels of Mid1 protein, leading to reduced Mid1 at the cytokinetic ring. Restoring proper Mid1 expression suppresses par1Δ cytokinesis defects. This work identifies a new PP2A-B56 pathway regulating cytokinesis through Mid1, with implications for control of cytokinesis in other organisms.
Collapse
Affiliation(s)
- Madeline L. Chrupcala
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover NH
| |
Collapse
|
3
|
Fishburn AT, Florio CJ, Lopez NJ, Link NL, Shah PS. Molecular functions of ANKLE2 and its implications in human disease. Dis Model Mech 2024; 17:dmm050554. [PMID: 38691001 PMCID: PMC11103583 DOI: 10.1242/dmm.050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Ankyrin repeat and LEM domain-containing 2 (ANKLE2) is a scaffolding protein with established roles in cell division and development, the dysfunction of which is increasingly implicated in human disease. ANKLE2 regulates nuclear envelope disassembly at the onset of mitosis and its reassembly after chromosome segregation. ANKLE2 dysfunction is associated with abnormal nuclear morphology and cell division. It regulates the nuclear envelope by mediating protein-protein interactions with barrier to autointegration factor (BANF1; also known as BAF) and with the kinase and phosphatase that modulate the phosphorylation state of BAF. In brain development, ANKLE2 is crucial for proper asymmetric division of neural progenitor cells. In humans, pathogenic loss-of-function mutations in ANKLE2 are associated with primary congenital microcephaly, a condition in which the brain is not properly developed at birth. ANKLE2 is also linked to other disease pathologies, including congenital Zika syndrome, cancer and tauopathy. Here, we review the molecular roles of ANKLE2 and the recent literature on human diseases caused by its dysfunction.
Collapse
Affiliation(s)
- Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Cole J. Florio
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nick J. Lopez
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nichole L. Link
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Chemical Engineering, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
4
|
Kommer DC, Stamatiou K, Vagnarelli P. Cell Cycle-Specific Protein Phosphatase 1 (PP1) Substrates Identification Using Genetically Modified Cell Lines. Methods Mol Biol 2024; 2740:37-61. [PMID: 38393468 DOI: 10.1007/978-1-0716-3557-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The identification of protein phosphatase 1 (PP1) holoenzyme substrates has proven to be a challenging task. PP1 can form different holoenzyme complexes with a variety of regulatory subunits, and many of those are cell cycle regulated. Although several methods have been used to identify PP1 substrates, their cell cycle specificity is still an unmet need. Here, we present a new strategy to investigate PP1 substrates throughout the cell cycle using clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 genome editing and generate cell lines with endogenously tagged PP1 regulatory subunit (regulatory interactor of protein phosphatase one, RIPPO). RIPPOs are tagged with the auxin-inducible degron (AID) or ascorbate peroxidase 2 (APEX2) modules, and PP1 substrate identification is conducted by SILAC proteomic-based approaches. Proteins in close proximity to RIPPOs are first identified through mass spectrometry (MS) analyses using the APEX2 system; then a list of differentially phosphorylated proteins upon RIPPOs rapid degradation (achieved via the AID system) is compiled via SILAC phospho-mass spectrometry. The "in silico" overlap between the two proteomes will be enriched for PP1 putative substrates. Several methods including fluorescence resonance energy transfer (FRET), proximity ligation assays (PLA), and in vitro assays can be used as substrate validations approaches.
Collapse
Affiliation(s)
- Dorothee C Kommer
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | | | - Paola Vagnarelli
- College of Health, Medicine and Life Science, Brunel University London, London, UK.
| |
Collapse
|
5
|
Clementi L, Sabetta S, Zelli V, Compagnoni C, Tessitore A, Mattei V, Angelucci A. Mitotic phosphorylation of Tau/MAPT modulates cell cycle progression in prostate cancer cells. J Cancer Res Clin Oncol 2023; 149:7689-7701. [PMID: 37000265 PMCID: PMC10374748 DOI: 10.1007/s00432-023-04721-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE Tau/MAPT (microtubule associated protein tau) protein is actively studied for the pathologic consequences of its aberrant proteostasis in central nervous system leading to neurodegenerative diseases. Besides its ability to generate insoluble toxic oligomers, Tau homeostasis has attracted attention for its involvement in the formation of the mitotic spindle. This evidence, in association with the description of Tau expression in extra-neuronal tissues, and mainly in cancer tissues, constitutes the rationale for a more in-depth investigation of Tau role also in neoplastic diseases. METHODS In our study, we investigated the expression of phosphorylated Tau in prostate cancer cell lines with particular focus on the residue Thr231 present in microtubule binding domain. RESULTS The analysis of prostate cancer cells synchronized with nocodazole demonstrated that the expression of Tau protein phosphorylated at residue Thr231 is restricted to G2/M cell cycle phase. The phosphorylated form was unable to bind tubulin and it does not localize on mitotic spindle. As demonstrated by the use of specific inhibitors, the phosphorylation status of Tau is under the direct control of cdk5 and PP2A, while cdk1 activation was able to exert an indirect control. These mechanisms were also active in cells treated with docetaxel, where counteracting the expression of the dephosphorylated form, by kinase inhibition or protein silencing, determined resistance to drug toxicity. CONCLUSIONS We hypothesize that phosphorylation status of Tau is a key marker for G2/M phase in prostate cancer cells and that the forced modulation of Tau phosphorylation can interfere with the capacity of cell to efficiently progress through G2/M phase.
Collapse
Affiliation(s)
- Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Samantha Sabetta
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, 67100, L'Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, 67100, L'Aquila, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center "Sabina Universitas", 02100, Rieti, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| |
Collapse
|
6
|
Zhang Y, Lv M, Jiang H, Li H, Li R, Yang C, Huang Y, Zhou H, Mei Y, Gao J, Cao X. Mitotic defects lead to unreduced sperm formation in cdk1 -/- mutants. Int J Biol Macromol 2023:125171. [PMID: 37271265 DOI: 10.1016/j.ijbiomac.2023.125171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Unreduced gametes, that are important for species evolution and agricultural development, are generally believed to be formed by meiotic defects. However, we found that male diploid loach (Misgurnus anguillicaudatus) could produce not only haploid sperms, but also unreduced sperms, after cyclin-dependent kinase 1 gene (cdk1, one of the most important kinases in regulating cell mitosis) deletion. Observations on synaptonemal complexes of spermatocyte in prophase of meiosis and spermatogonia suggested that the number of chromosomes in some spermatogonia of cdk1-/- loach doubled, leading to unreduced diploid sperm production. Then, transcriptome analysis revealed aberrant expressions of some cell cycle-related genes (such as ppp1c and gadd45) in spermatogonia of cdk1-/- loach relative to wild-type loach. An in vitro and in vivo experiment further validated that Cdk1 deletion in diploid loach resulted in mitotic defects, leading to unreduced diploid sperm formation. In addition, we found that cdk1-/- zebrafish could also produce unreduced diploid sperms. This study provides important information on revealing the molecular mechanisms behind unreduced gamete formation through mitotic defects, and lays the foundation for a novel strategy for fish polyploidy creation by using cdk1 mutants to produce unreduced sperms, which can then be used to obtain polyploidy, proposed to benefit aquaculture.
Collapse
Affiliation(s)
- Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China
| | - Meiqi Lv
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanjun Jiang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Rongyun Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Yang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuwei Huang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - He Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China.
| |
Collapse
|
7
|
Fontanillo M, Trebacz M, Reinkemeier CD, Avilés Huerta D, Uhrig U, Sehr P, Köhn M. Short peptide pharmacophores developed from protein phosphatase-1 disrupting peptides (PDPs). Bioorg Med Chem 2022; 65:116785. [PMID: 35525109 PMCID: PMC7613447 DOI: 10.1016/j.bmc.2022.116785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
PP1 is a major phosphoserine/threonine-specific phosphatase that is involved in diseases such as heart insufficiency and diabetes. PP1-disrupting peptides (PDPs) are selective modulators of PP1 activity that release its catalytic subunit, which then dephosphorylates nearby substrates. Recently, PDPs enabled the creation of phosphatase-recruiting chimeras, which are bifunctional molecules that guide PP1 to a kinase to dephosphorylate and inactivate it. However, PDPs are 23mer peptides, which is not optimal for their use in therapy due to potential stability and immunogenicity issues. Therefore, we present here the sequence optimization of the 23mer PDP to a 5mer peptide, involving several attempts considering structure-based virtual screening, high throughput screening and peptide sequence optimization. We provide here a strong pharmacophore as lead structure to enable PP1 targeting in therapy or its use in phosphatase-recruiting chimeras in the future.
Collapse
Affiliation(s)
| | - Malgorzata Trebacz
- Centres for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | | | | | - Ulrike Uhrig
- Chemical Biology Core Facility, EMBL, Heidelberg, Germany
| | - Peter Sehr
- Chemical Biology Core Facility, EMBL, Heidelberg, Germany
| | - Maja Köhn
- Genome Biology Unit, EMBL, Heidelberg, Germany; Centres for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany.
| |
Collapse
|
8
|
Protein phosphatase 1 regulates atypical mitotic and meiotic division in Plasmodium sexual stages. Commun Biol 2021; 4:760. [PMID: 34145386 PMCID: PMC8213788 DOI: 10.1038/s42003-021-02273-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
PP1 is a conserved eukaryotic serine/threonine phosphatase that regulates many aspects of mitosis and meiosis, often working in concert with other phosphatases, such as CDC14 and CDC25. The proliferative stages of the malaria parasite life cycle include sexual development within the mosquito vector, with male gamete formation characterized by an atypical rapid mitosis, consisting of three rounds of DNA synthesis, successive spindle formation with clustered kinetochores, and a meiotic stage during zygote to ookinete development following fertilization. It is unclear how PP1 is involved in these unusual processes. Using real-time live-cell and ultrastructural imaging, conditional gene knockdown, RNA-seq and proteomic approaches, we show that Plasmodium PP1 is implicated in both mitotic exit and, potentially, establishing cell polarity during zygote development in the mosquito midgut, suggesting that small molecule inhibitors of PP1 should be explored for blocking parasite transmission.
Collapse
|
9
|
Hernansaiz-Ballesteros RD, Földi C, Cardelli L, Nagy LG, Csikász-Nagy A. Evolution of opposing regulatory interactions underlies the emergence of eukaryotic cell cycle checkpoints. Sci Rep 2021; 11:11122. [PMID: 34045495 PMCID: PMC8159995 DOI: 10.1038/s41598-021-90384-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
In eukaryotes the entry into mitosis is initiated by activation of cyclin-dependent kinases (CDKs), which in turn activate a large number of protein kinases to induce all mitotic processes. The general view is that kinases are active in mitosis and phosphatases turn them off in interphase. Kinases activate each other by cross- and self-phosphorylation, while phosphatases remove these phosphate groups to inactivate kinases. Crucial exceptions to this general rule are the interphase kinase Wee1 and the mitotic phosphatase Cdc25. Together they directly control CDK in an opposite way of the general rule of mitotic phosphorylation and interphase dephosphorylation. Here we investigate why this opposite system emerged and got fixed in almost all eukaryotes. Our results show that this reversed action of a kinase-phosphatase pair, Wee1 and Cdc25, on CDK is particularly suited to establish a stable G2 phase and to add checkpoints to the cell cycle. We show that all these regulators appeared together in LECA (Last Eukaryote Common Ancestor) and co-evolved in eukaryotes, suggesting that this twist in kinase-phosphatase regulation was a crucial step happening at the emergence of eukaryotes.
Collapse
Affiliation(s)
- Rosa D Hernansaiz-Ballesteros
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
- Faculty of Medicine, Institute for Computational Biomedicine, Bioquant, Heidelberg University, 69120, Heidelberg, Germany
| | - Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
| | - Luca Cardelli
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
| | - Attila Csikász-Nagy
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, Budapest, 1083, Hungary.
| |
Collapse
|
10
|
Ukegbu CV, Christophides GK, Vlachou D. Identification of Three Novel Plasmodium Factors Involved in Ookinete to Oocyst Developmental Transition. Front Cell Infect Microbiol 2021; 11:634273. [PMID: 33791240 PMCID: PMC8005625 DOI: 10.3389/fcimb.2021.634273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Plasmodium falciparum malaria remains a major cause of global morbidity and mortality, mainly in sub-Saharan Africa. The numbers of new malaria cases and deaths have been stable in the last years despite intense efforts for disease elimination, highlighting the need for new approaches to stop disease transmission. Further understanding of the parasite transmission biology could provide a framework for the development of such approaches. We phenotypically and functionally characterized three novel genes, PIMMS01, PIMMS57, and PIMMS22, using targeted disruption of their orthologs in the rodent parasite Plasmodium berghei. PIMMS01 and PIMMS57 are specifically and highly expressed in ookinetes, while PIMMS22 transcription starts already in gametocytes and peaks in sporozoites. All three genes show strong phenotypes associated with the ookinete to oocyst transition, as their disruption leads to very low numbers of oocysts and complete abolishment of transmission. PIMMS22 has a secondary essential function in the oocyst. Our results enrich the molecular understanding of the parasite-vector interactions and identify PIMMS01, PIMMS57, and PIMMS22 as new targets of transmission blocking interventions.
Collapse
Affiliation(s)
- Chiamaka V Ukegbu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - George K Christophides
- Department of Life Sciences, Imperial College London, London, United Kingdom.,The Cyprus Institute, Nicosia, Cyprus
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London, United Kingdom.,The Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|
11
|
Zhang X, Park JE, Kim EH, Hong J, Hwang KT, Kim YA, Jang CY. Wip1 controls the translocation of the chromosomal passenger complex to the central spindle for faithful mitotic exit. Cell Mol Life Sci 2021; 78:2821-2838. [PMID: 33067654 PMCID: PMC11072438 DOI: 10.1007/s00018-020-03665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Dramatic cellular reorganization in mitosis critically depends on the timely and temporal phosphorylation of a broad range of proteins, which is mediated by the activation of the mitotic kinases and repression of counteracting phosphatases. The mitosis-to-interphase transition, which is termed mitotic exit, involves the removal of mitotic phosphorylation by protein phosphatases. Although protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) drive this reversal in animal cells, the phosphatase network associated with ordered bulk dephosphorylation in mitotic exit is not fully understood. Here, we describe a new mitotic phosphatase relay in which Wip1/PPM1D phosphatase activity is essential for chromosomal passenger complex (CPC) translocation to the anaphase central spindle after release from the chromosome via PP1-mediated dephosphorylation of histone H3T3. Depletion of endogenous Wip1 and overexpression of the phosphatase-dead mutant disturbed CPC translocation to the central spindle, leading to failure of cytokinesis. While Wip1 was degraded in early mitosis, its levels recovered in anaphase and the protein functioned as a Cdk1-counteracting phosphatase at the anaphase central spindle and midbody. Mechanistically, Wip1 dephosphorylated Thr-59 in inner centromere protein (INCENP), which, subsequently bound to MKLP2 and recruited other components to the central spindle. Furthermore, Wip1 overexpression is associated with the overall survival rate of patients with breast cancer, suggesting that Wip1 not only functions as a weak oncogene in the DNA damage network but also as a tumor suppressor in mitotic exit. Altogether, our findings reveal that sequential dephosphorylation of mitotic phosphatases provides spatiotemporal regulation of mitotic exit to prevent tumor initiation and progression.
Collapse
Affiliation(s)
- Xianghua Zhang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ji Eun Park
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Jihee Hong
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ki-Tae Hwang
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Young A Kim
- Department of Pathology, Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Chang-Young Jang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
12
|
Xin G, Fu J, Luo J, Deng Z, Jiang Q, Zhang C. Aurora B regulates PP1γ-Repo-Man interactions to maintain the chromosome condensation state. J Biol Chem 2020; 295:14780-14788. [PMID: 32938714 DOI: 10.1074/jbc.ac120.012772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 09/12/2020] [Indexed: 11/06/2022] Open
Abstract
The mitotic kinase Aurora B regulates the condensation of chromatin into chromosomes by phosphorylating chromatin proteins during early mitosis, whereas the phosphatase PP1γ performs the opposite function. The roles of Aurora B and PP1γ must be tightly coordinated to maintain chromosomes at a high phosphorylation state, but the precise mechanisms regulating their function remain largely unclear. Here, mainly through immunofluorescence microscopy and co-immunoprecipitation assays, we find that dissociation of PP1γ from chromosomes is essential for maintaining chromosome phosphorylation. We uncover that PP1γ is recruited to mitotic chromosomes by its regulatory subunit Repo-Man in the absence of Aurora B activity and that Aurora B regulates dissociation of PP1γ by phosphorylating and disrupting PP1γ-Repo-Man interactions on chromatin. Overexpression of Repo-Man mutants that cannot be phosphorylated or inhibition of Aurora B kinase activity resulted in the retention of PP1γ on chromatin and prolonged the chromatin condensation process; a similar outcome was caused by the ectopic targeting of PP1γ to chromatin. Together, our findings reveal a novel regulation mechanism of chromatin condensation in which Aurora B counteracts PP1γ activity by releasing PP1γ from Repo-Man and may have important implications for understanding the regulations of dynamic structural changes of the chromosomes in mitosis.
Collapse
Affiliation(s)
- Guangwei Xin
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | - Jingyan Fu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | - Jia Luo
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | - Zhaoxuan Deng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | - Qing Jiang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China
| | - Chuanmao Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
13
|
Fujimura A, Hayashi Y, Kato K, Kogure Y, Kameyama M, Shimamoto H, Daitoku H, Fukamizu A, Hirota T, Kimura K. Identification of a novel nucleolar protein complex required for mitotic chromosome segregation through centromeric accumulation of Aurora B. Nucleic Acids Res 2020; 48:6583-6596. [PMID: 32479628 PMCID: PMC7337965 DOI: 10.1093/nar/gkaa449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
The nucleolus is a membrane-less nuclear structure that disassembles when cells undergo mitosis. During mitosis, nucleolar factors are thus released from the nucleolus and dynamically change their subcellular localization; however, their functions remain largely uncharacterised. Here, we found that a nucleolar factor called nucleolar protein 11 (NOL11) forms a protein complex with two tryptophan-aspartic acid (WD) repeat proteins named WD-repeat protein 43 (WDR43) and Cirhin in mitotic cells. This complex, referred to here as the NWC (NOL11-WDR43-Cirhin) complex, exists in nucleoli during interphase and translocates to the periphery of mitotic chromosomes, i.e., perichromosomal regions. During mitotic progression, both the congression of chromosomes to the metaphase plate and sister chromatid cohesion are impaired in the absence of the NWC complex, as it is required for the centromeric enrichment of Aurora B and the associating phosphorylation of histone H3 at threonine 3. These results reveal the characteristics of a novel protein complex consisting of nucleolar proteins, which is required for regulating kinetochores and centromeres to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
- Akiko Fujimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Yuki Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Kazashi Kato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Yuichiro Kogure
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Mutsuro Kameyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Haruka Shimamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Toru Hirota
- Cancer Institute of the Japanese Foundation for Cancer Research, Division of Experimental Pathology, 3-8-1 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Keiji Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| |
Collapse
|
14
|
Keshri R, Rajeevan A, Kotak S. PP2A--B55γ counteracts Cdk1 and regulates proper spindle orientation through the cortical dynein adaptor NuMA. J Cell Sci 2020; 133:jcs243857. [PMID: 32591484 PMCID: PMC7406356 DOI: 10.1242/jcs.243857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Proper orientation of the mitotic spindle is critical for accurate development and morphogenesis. In human cells, spindle orientation is regulated by the evolutionarily conserved protein NuMA, which interacts with dynein and enriches it at the cell cortex. Pulling forces generated by cortical dynein orient the mitotic spindle. Cdk1-mediated phosphorylation of NuMA at threonine 2055 (T2055) negatively regulates its cortical localization. Thus, only NuMA not phosphorylated at T2055 localizes at the cell cortex. However, the identity and the mechanism of action of the phosphatase complex involved in T2055 dephosphorylation remains elusive. Here, we characterized the PPP2CA-B55γ (PPP2R2C)-PPP2R1B complex that counteracts Cdk1 to orchestrate cortical NuMA for proper spindle orientation. In vitro reconstitution experiments revealed that this complex is sufficient for T2055 dephosphorylation. Importantly, we identified polybasic residues in NuMA that are critical for T2055 dephosphorylation, and for maintaining appropriate cortical NuMA levels for accurate spindle elongation. Furthermore, we found that Cdk1-mediated phosphorylation and PP2A-B55γ-mediated dephosphorylation at T2055 are reversible events. Altogether, this study uncovers a novel mechanism by which Cdk1 and its counteracting PP2A-B55γ complex orchestrate spatiotemporal levels of cortical force generators for flawless mitosis.
Collapse
Affiliation(s)
- Riya Keshri
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Ashwathi Rajeevan
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| |
Collapse
|
15
|
Paul AS, Miliu A, Paulo JA, Goldberg JM, Bonilla AM, Berry L, Seveno M, Braun-Breton C, Kosber AL, Elsworth B, Arriola JSN, Lebrun M, Gygi SP, Lamarque MH, Duraisingh MT. Co-option of Plasmodium falciparum PP1 for egress from host erythrocytes. Nat Commun 2020; 11:3532. [PMID: 32669539 PMCID: PMC7363832 DOI: 10.1038/s41467-020-17306-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Asexual proliferation of the Plasmodium parasites that cause malaria follows a developmental program that alternates non-canonical intraerythrocytic replication with dissemination to new host cells. We carried out a functional analysis of the Plasmodium falciparum homolog of Protein Phosphatase 1 (PfPP1), a universally conserved cell cycle factor in eukaryotes, to investigate regulation of parasite proliferation. PfPP1 is indeed required for efficient replication, but is absolutely essential for egress of parasites from host red blood cells. By phosphoproteomic and chemical-genetic analysis, we isolate two functional targets of PfPP1 for egress: a HECT E3 protein-ubiquitin ligase; and GCα, a fusion protein composed of a guanylyl cyclase and a phospholipid transporter domain. We hypothesize that PfPP1 regulates lipid sensing by GCα and find that phosphatidylcholine stimulates PfPP1-dependent egress. PfPP1 acts as a key regulator that integrates multiple cell-intrinsic pathways with external signals to direct parasite egress from host cells.
Collapse
Affiliation(s)
- Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Alexandra Miliu
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Jonathan M Goldberg
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Arianna M Bonilla
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Laurence Berry
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Marie Seveno
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Catherine Braun-Breton
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Aziz L Kosber
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Jose S N Arriola
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, 02115, MA, USA
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interaction (LPHI), UMR5235, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34095, Montpellier, France.
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
16
|
Zhou Y, Yan F, Huo X, Niu MM. Discovery of a Potent PLK1-PBD Small-Molecule Inhibitor as an Anticancer Drug Candidate through Structure-Based Design. Molecules 2019; 24:E4351. [PMID: 31795214 PMCID: PMC6930574 DOI: 10.3390/molecules24234351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
Polo-box domain of polo-like kinase 1 (PLK1-PBD) has a pivotal role in cell proliferation and could be implicated as a potential anticancer target. Although some small-molecule inhibitors have been developed, their clinical application has been restricted by the poor selectivity. Therefore, there is an urgent need to develop effective PLK1-PBD inhibitors. Herein, we have developed a virtual screening protocol to find PLK1-PBD inhibitors by using combination of structure-based pharmacophore modeling and molecular docking. This protocol was successfully applied to screen PLK1-PBD inhibitors from specs database. MTT assay indicated that five screened hits suppressed the growth of HeLa cells. Particularly, hit-5, as a selective PLK1 inhibitor targeting PLK1-PBD, significantly inhibited the progression of HeLa cells-derived xenograft, with no obvious side effects. This work demonstrates that hit-5 may be a potential anticancer agent.
Collapse
Affiliation(s)
- Yunjiang Zhou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (F.Y.); (X.H.)
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Yan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (F.Y.); (X.H.)
| | - Xiangyun Huo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (F.Y.); (X.H.)
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (F.Y.); (X.H.)
| |
Collapse
|
17
|
Crncec A, Hochegger H. Triggering mitosis. FEBS Lett 2019; 593:2868-2888. [PMID: 31602636 DOI: 10.1002/1873-3468.13635] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Entry into mitosis is triggered by the activation of cyclin-dependent kinase 1 (Cdk1). This simple reaction rapidly and irreversibly sets the cell up for division. Even though the core step in triggering mitosis is so simple, the regulation of this cellular switch is highly complex, involving a large number of interconnected signalling cascades. We do have a detailed knowledge of most of the components of this network, but only a poor understanding of how they work together to create a precise and robust system that ensures that mitosis is triggered at the right time and in an orderly fashion. In this review, we will give an overview of the literature that describes the Cdk1 activation network and then address questions relating to the systems biology of this switch. How is the timing of the trigger controlled? How is mitosis insulated from interphase? What determines the sequence of events, following the initial trigger of Cdk1 activation? Which elements ensure robustness in the timing and execution of the switch? How has this system been adapted to the high levels of replication stress in cancer cells?
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
18
|
Játiva S, Calabria I, Moyano-Rodriguez Y, Garcia P, Queralt E. Cdc14 activation requires coordinated Cdk1-dependent phosphorylation of Net1 and PP2A-Cdc55 at anaphase onset. Cell Mol Life Sci 2019; 76:3601-3620. [PMID: 30927017 PMCID: PMC11105415 DOI: 10.1007/s00018-019-03086-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
Abstract
Exit from mitosis and completion of cytokinesis require the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. In budding yeast, Cdc14 phosphatase is a key mitotic regulator that is activated in anaphase to counteract Cdk activity. In metaphase, Cdc14 is kept inactive in the nucleolus, where it is sequestered by its inhibitor, Net1. At anaphase onset, downregulation of PP2ACdc55 phosphatase by separase and Zds1 protein promotes Net1 phosphorylation and, consequently, Cdc14 release from the nucleolus. The mechanism by which PP2ACdc55 activity is downregulated during anaphase remains to be elucidated. Here, we demonstrate that Cdc55 regulatory subunit is phosphorylated in anaphase in a Cdk1-Clb2-dependent manner. Interestingly, cdc55-ED phosphomimetic mutant inactivates PP2ACdc55 phosphatase activity towards Net1 and promotes Cdc14 activation. Separase and Zds1 facilitate Cdk-dependent Net1 phosphorylation and Cdc14 release from the nucleolus by modulating PP2ACdc55 activity via Cdc55 phosphorylation. In addition, human Cdk1-CyclinB1 phosphorylates human B55, indicating that the mechanism is conserved in higher eukaryotes.
Collapse
Affiliation(s)
- Soraya Játiva
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Genomics Unit, Medical Research Institute La Fe, Valencia, Spain
| | - Yolanda Moyano-Rodriguez
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Patricia Garcia
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
19
|
Kim HJ, Shin J, Lee S, Kim TW, Jang H, Suh MY, Kim JH, Hwang IY, Hwang DS, Cho EJ, Youn HD. Cyclin-dependent kinase 1 activity coordinates the chromatin associated state of Oct4 during cell cycle in embryonic stem cells. Nucleic Acids Res 2019; 46:6544-6560. [PMID: 29901724 PMCID: PMC6061841 DOI: 10.1093/nar/gky371] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 04/30/2018] [Indexed: 11/23/2022] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is indispensable for embryonic stem cell (ESC) maintenance and embryo development. Even though some reports have described a connection between Cdk1 and Oct4, there is no evidence that Cdk1 activity is directly linked to the ESC pluripotency transcription program. We recently reported that Aurkb/PP1-mediated Oct4 resetting is important to cell cycle maintenance and pluripotency in mouse ESCs (mESCs). In this study, we show that Cdk1 is an upstream regulator of the Oct4 phosphorylation state during cell cycle progression, and it coordinates the chromatin associated state of Oct4 for pluripotency-related gene expression within the cell cycle. Upon entry into mitosis, Aurkb in the chromosome passenger complex becomes fully activated and PP1 activity is inhibited downstream of Cdk1 activation, leading to sustaining Oct4(S229) phosphorylation and dissociation of Oct4 from chromatin during the mitotic phase. Cdk1 inhibition at the mitotic phase abnormally results in Oct4 dephosphorylation, chromosome decondensation and chromatin association of Oct4, even in replicated chromosome. Our study results suggest a molecular mechanism by which Cdk1 directly links the cell cycle to the pluripotency transcription program in mESCs.
Collapse
Affiliation(s)
- Hye Ji Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihoon Shin
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sangho Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Tae Wan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyonchol Jang
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Min Young Suh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jae-Hwan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - In-Young Hwang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Deog Su Hwang
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
20
|
Ahn JH, Cho MG, Sohn S, Lee JH. Inhibition of PP2A activity by H 2O 2 during mitosis disrupts nuclear envelope reassembly and alters nuclear shape. Exp Mol Med 2019; 51:1-18. [PMID: 31164634 PMCID: PMC6548778 DOI: 10.1038/s12276-019-0260-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023] Open
Abstract
Many types of cancer cells exhibit abnormal nuclear shapes induced by various molecular changes. However, whether reactive oxygen species (ROS) induce nuclear deformation has not been fully addressed. Here, we show that hydrogen peroxide (H2O2) treatment induced concentration-dependent alterations in nuclear shape that were abolished by pretreatment with the antioxidant N-acetyl-L-cysteine or by catalase overexpression. Interestingly, treatment with H2O2 induced nuclear shape alterations significantly more frequently in mitotic cells than in asynchronous cells, suggesting that H2O2 mainly affects nuclear envelope disassembly and/or reassembly processes. Because protein phosphatase 2 A (PP2A) activity is reported to be involved in nuclear envelope reassembly during mitosis, we investigated the possible involvement of PP2A. Indeed, H2O2 reduced the activity of PP2A, an effect that was mimicked by the PP1 and PP2A inhibitor okadaic acid. Moreover, overexpression of PP2A but not PP1 or PP4 partially rescued H2O2-induced alterations in nuclear shape, indicating that the decrease in PP2A activity induced by H2O2 is specifically involved in the observed nuclear shape alterations. We further show that treatment of mitotic cells with H2O2 induced the mislocalization of BAF (barrier-to-autointegration factor), a substrate of PP2A, during telophase. This effect was associated with Lamin A/C mislocalization and was rescued by PP2A overexpression. Collectively, our findings suggest that H2O2 preferentially affects mitotic cells through PP2A inhibition, which induces the subsequent mislocalization of BAF and Lamin A/C during nuclear envelope reassembly, leading to the formation of an abnormal nuclear shape. A class of harmful chemical compounds produces morphological abnormalities in the nucleus that may help promote tumor growth. Reactive oxygen species (ROS) are DNA- and protein-damaging molecules that originate both from environmental contaminants and as a byproduct of cellular metabolism or stress. Jae-Ho Lee and colleagues at Ajou University, Suwon, South Korea have now identified a mechanism by which ROS can disrupt the shape and structure of the nucleus. They show that ROS exposure reduces the ativity of an enzyme called PP2A, which is required for the targeted recruitment of proteins that rebuild the membrane envelope surrounding the nucleus after cell division. Perturbations in this envelope can potentially contribute to damage to the chromosomal DNA within the nucleus, creating conditions that can trigger or accelerate the process of tumorigenesis.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea
| | - Min-Guk Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea
| | - Seonghyang Sohn
- Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, 443-721, South Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea. .,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea. .,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea.
| |
Collapse
|
21
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
22
|
Wang F, Wang L, Fisher LA, Li C, Wang W, Peng A. Phosphatase 1 Nuclear Targeting Subunit (PNUTS) Regulates Aurora Kinases and Mitotic Progression. Mol Cancer Res 2018; 17:10-19. [PMID: 30190438 DOI: 10.1158/1541-7786.mcr-17-0670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022]
Abstract
Mitotic progression is regulated largely by reversible phosphorylation events that are mediated by mitotic kinases and phosphatases. Protein phosphatase 1 (PP1) has been shown to play a crucial role in regulation of mitotic entry, progression, and exit. We previously observed, in Xenopus egg extracts, that phosphatase 1 nuclear targeting subunit (PPP1R10/PNUTS) acts as a mitotic regulator by negatively modulating PP1. This study investigates the role of PNUTS in mitotic progression in mammalian cells, and demonstrates that PNUTS expression is elevated in mitosis and depletion partially blocks mitotic entry. Cells that enter mitosis after PNUTS knockdown exhibit frequent chromosome mis-segregation. Aurora A/B kinase complexes and several kinetochore components are identified as PNUTS-associated proteins. PNUTS depletion suppresses the activation of Aurora A/B kinases, and disrupts the spatiotemporal regulation of the chromosomal passenger complex (CPC). PNUTS dynamically localizes to kinetochores, and is required for the activation of the spindle assembly checkpoint. Finally, PNUTS depletion sensitizes the tumor cell response to Aurora inhibition, suggesting that PNUTS is a potential drug target in combination anticancer therapy. IMPLICATIONS: Delineation of how PNUTS governs the mitotic activation and function of Aurora kinases will improve the understanding of the complex phospho-regulation in mitotic progression, and suggest new options to enhance the therapeutic efficacy of Aurora inhibitors.
Collapse
Affiliation(s)
- Feifei Wang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska.,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ling Wang
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska
| | - Laura A Fisher
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska.
| |
Collapse
|
23
|
Zhao L, Lu Z, He X, Mughal MN, Fang R, Zhou Y, Zhao J, Gasser RB, Grevelding CG, Ye Q, Hu M. Serine/threonine protein phosphatase 1 (PP1) controls growth and reproduction in Schistosoma japonicum. FASEB J 2018; 32:fj201800725R. [PMID: 29879373 DOI: 10.1096/fj.201800725r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schistosomiasis is a human parasitic disease caused by flatworms of the genus Schistosoma. Adult female schistosomes produce numerous eggs that are responsible for the pathogenesis and transmission of the disease, and the maturation of female gonads depends on the permanent pairing of females and males. Signaling protein kinases have been proven to control female gonad differentiation after pairing; however, little is known about the roles of protein phosphatases in the developmental and reproductive biology of schistosomes. Here we explored 3 genes encoding catalytic subunits of serine/threonine protein phosphatase 1 (PP1c) that were structurally and evolutionarily conserved in Schistosoma japonicum. In situ hybridization showed transcripts of 3 Sj-pp1c genes mainly localized in the reproductive organs and tissues. Triple knockdown of Sj-pp1c genes by RNA interference caused stunted growth and decreased pairing stability of worm pairs, as well as a remarkable reduction in cell proliferation activity and defects in reproductive maturation and fecundity. Transcriptomic analysis post-RNA interference suggested that Sj-pp1c genes are involved in controlling worm development and maturation mainly by regulating cell proliferation, eggshell synthesis, nutritional metabolism, cytoskeleton organization, and neural process. Our study provides the first insight into the fundamental contribution of Sj-PP1c to molecular mechanisms underlying the reproductive biology of schistosomes.-Zhao, L., Lu, Z., He, X., Mughal, M. N., Fang, R., Zhou, Y., Zhao, J., Gasser, R. B., Grevelding, C. G., Ye, Q., Hu, M. Serine/threonine protein phosphatase 1 (PP1) controls growth and reproduction in Schistosoma japonicum.
Collapse
Affiliation(s)
- Lu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhigang Lu
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| | - Xin He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mudassar N Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Robin B Gasser
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, Australia
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Rombouts J, Vandervelde A, Gelens L. Delay models for the early embryonic cell cycle oscillator. PLoS One 2018; 13:e0194769. [PMID: 29579091 PMCID: PMC5868829 DOI: 10.1371/journal.pone.0194769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/09/2018] [Indexed: 11/19/2022] Open
Abstract
Time delays are known to play a crucial role in generating biological oscillations. The early embryonic cell cycle in the frog Xenopus laevis is one such example. Although various mathematical models of this oscillating system exist, it is not clear how to best model the required time delay. Here, we study a simple cell cycle model that produces oscillations due to the presence of an ultrasensitive, time-delayed negative feedback loop. We implement the time delay in three qualitatively different ways, using a fixed time delay, a distribution of time delays, and a delay that is state-dependent. We analyze the dynamics in all cases, and we use experimental observations to interpret our results and put constraints on unknown parameters. In doing so, we find that different implementations of the time delay can have a large impact on the resulting oscillations.
Collapse
Affiliation(s)
- Jan Rombouts
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Alexandra Vandervelde
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
- * E-mail:
| |
Collapse
|
25
|
Protein interactomes of protein phosphatase 2A B55 regulatory subunits reveal B55-mediated regulation of replication protein A under replication stress. Sci Rep 2018; 8:2683. [PMID: 29422626 PMCID: PMC5805732 DOI: 10.1038/s41598-018-21040-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/24/2018] [Indexed: 11/24/2022] Open
Abstract
The specific function of PP2A, a major serine/threonine phosphatase, is mediated by regulatory targeting subunits, such as members of the B55 family. Although implicated in cell division and other pathways, the specific substrates and functions of B55 targeting subunits are largely undefined. In this study we identified over 100 binding proteins of B55α and B55β in Xenopus egg extracts that are involved in metabolism, mitochondria function, molecular trafficking, cell division, cytoskeleton, DNA replication, DNA repair, and cell signaling. Among the B55α and B55β-associated proteins were numerous mitotic regulators, including many substrates of CDK1. Consistently, upregulation of B55α accelerated M-phase exit and inhibited M-phase entry. Moreover, specific substrates of CDK2, including factors of DNA replication and chromatin remodeling were identified within the interactomes of B55α and B55β, suggesting a role for these phosphatase subunits in DNA replication. In particular, we confirmed in human cells that B55α binds RPA and mediates the dephosphorylation of RPA2. The B55-RPA association is disrupted after replication stress, consistent with the induction of RPA2 phosphorylation. Thus, we report here a new mechanism that accounts for both how RPA phosphorylation is modulated by PP2A and how the phosphorylation of RPA2 is abruptly induced after replication stress.
Collapse
|
26
|
Sivakumar S, Gorbsky GJ. Phosphatase-regulated recruitment of the spindle- and kinetochore-associated (Ska) complex to kinetochores. Biol Open 2017; 6:1672-1679. [PMID: 28982702 PMCID: PMC5703607 DOI: 10.1242/bio.026930] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinetochores move chromosomes on dynamic spindle microtubules and regulate signaling of the spindle checkpoint. The spindle- and kinetochore-associated (Ska) complex, a hexamer composed of two copies of Ska1, Ska2 and Ska3, has been implicated in both roles. Phosphorylation of kinetochore components by the well-studied mitotic kinases Cdk1, Aurora B, Plk1, Mps1, and Bub1 regulate chromosome movement and checkpoint signaling. Roles for the opposing phosphatases are more poorly defined. Recently, we showed that the C terminus of Ska1 recruits protein phosphatase 1 (PP1) to kinetochores. Here we show that PP1 and protein phosphatase 2A (PP2A) both promote accumulation of Ska at kinetochores. Depletion of PP1 or PP2A by siRNA reduces Ska binding at kinetochores, impairs alignment of chromosomes to the spindle midplane, and causes metaphase delay or arrest, phenotypes that are also seen after depletion of Ska. Artificial tethering of PP1 to the outer kinetochore protein Nuf2 promotes Ska recruitment to kinetochores, and it reduces but does not fully rescue chromosome alignment and metaphase arrest defects seen after Ska depletion. We propose that Ska has multiple functions in promoting mitotic progression and that kinetochore-associated phosphatases function in a positive feedback cycle to reinforce Ska complex accumulation at kinetochores. Summary: Feedback between protein phosphatases and the spindle- and kinetochore-associated (Ska) complex regulates chromosome movement and the metaphase-to-anaphase cell cycle transition. This article has an associated First Person interview with the first author of the paper as part of the supplementary information.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
27
|
Zhu S, Fisher LA, Bessho T, Peng A. Protein phosphatase 1 and phosphatase 1 nuclear targeting subunit-dependent regulation of DNA-dependent protein kinase and non-homologous end joining. Nucleic Acids Res 2017; 45:10583-10594. [PMID: 28985363 PMCID: PMC5737533 DOI: 10.1093/nar/gkx686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/28/2017] [Indexed: 12/29/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a key role in mediating non-homologous end joining (NHEJ), a major repair pathway for DNA double-strand breaks (DSBs). The activation, function and dynamics of DNA-PKcs is regulated largely by its reversible phosphorylation at numerous residues, many of which are targeted by DNA-PKcs itself. Interestingly, these DNA-PKcs phosphorylation sites function in a distinct, and sometimes opposing manner, suggesting that they are differentially regulated via complex actions of both kinases and phosphatases. In this study we identified several phosphatase subunits as potential DSB-associated proteins. In particular, protein phosphatase 1 (PP1) is recruited to a DSB-mimicking substrate in Xenopus egg extracts and sites of laser microirradiation in human cells. Depletion of PP1 impairs NHEJ in both Xenopus egg extracts and human cells. PP1 binds multiple motifs of DNA-PKcs, regulates DNA-PKcs phosphorylation, and is required for DNA-PKcs activation after DNA damage. Interestingly, phosphatase 1 nuclear targeting subunit (PNUTS), an inhibitory regulator of PP1, is also recruited to DNA damage sites to promote NHEJ. PNUTS associates with the DNA-PK complex and is required for DNA-PKcs phosphorylation at Ser-2056 and Thr-2609. Thus, PNUTS and PP1 together fine-tune the dynamic phosphorylation of DNA-PKcs after DNA damage to mediate NHEJ.
Collapse
Affiliation(s)
- Songli Zhu
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Laura A Fisher
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| | - Tadayoshi Bessho
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aimin Peng
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583, USA
| |
Collapse
|
28
|
Rogers S, McCloy R, Watkins DN, Burgess A. Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit. Bioessays 2017; 38 Suppl 1:S24-32. [PMID: 27417119 DOI: 10.1002/bies.201670905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022]
Abstract
Entry into mitosis is driven by the activity of kinases, which phosphorylate over 7000 proteins on multiple sites. For cells to exit mitosis and segregate their genome correctly, these phosphorylations must be removed in a specific temporal order. This raises a critical and important question: how are specific phosphorylation sites on an individual protein removed? Traditionally, the temporal order of dephosphorylation was attributed to decreasing kinase activity. However, recent evidence in human cells has identified unique patterns of dephosphorylation during mammalian mitotic exit that cannot be fully explained by the loss of kinase activity. This suggests that specificity is determined in part by phosphatases. In this review, we explore how the physicochemical properties of an individual phosphosite and its surrounding amino acids can affect interactions with a phosphatase. These positive and negative interactions in turn help determine the specific pattern of dephosphorylation required for correct mitotic exit.
Collapse
Affiliation(s)
- Samuel Rogers
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Rachael McCloy
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - D Neil Watkins
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia.,Department of Thoracic Medicine, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| | - Andrew Burgess
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia
| |
Collapse
|
29
|
Samofalova DO, Karpov PA, Raevsky AV, Blume YB. Protein phosphatases potentially associated with regulation of microtubules, their spatial structure reconstruction and analysis. Cell Biol Int 2017; 43:1081-1090. [PMID: 28653783 DOI: 10.1002/cbin.10810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/24/2017] [Indexed: 11/12/2022]
Abstract
According to the sequence and profile comparison with known catalytic domains, where identified protein phosphatases potentially involved in regulation of microtubule dynamics and structure from Arabidopsis thaliana, Nicotiana tabacum, Medicago sativa, Oryza sativa subsp. japonica, Zea mays, and Triticum aestivum. Selected proteins were related to classical non-receptor, serine/threonine-specific and dual protein phosphatases. By application of template structures of human protein phosphatases, it was performed homology modelling of the catalytic domains of 17 plant protein phosphatases. Based on the results of the structural alignment, molecular dynamics, and conservatism in positions of functionally importance, it was confirmed homology of selected plant proteins and known protein phosphatases regulating structure and dynamics of microtubules.
Collapse
Affiliation(s)
- Dariya O Samofalova
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sci. of Ukraine, Osipovskogo str. 2a, Kyiv, 04123, Ukraine
| | - Pavel A Karpov
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sci. of Ukraine, Osipovskogo str. 2a, Kyiv, 04123, Ukraine
| | - Alexey V Raevsky
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sci. of Ukraine, Osipovskogo str. 2a, Kyiv, 04123, Ukraine
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sci. of Ukraine, Osipovskogo str. 2a, Kyiv, 04123, Ukraine
| |
Collapse
|
30
|
Barnoud T, Schmidt ML, Donninger H, Clark GJ. The role of the NORE1A tumor suppressor in Oncogene-Induced Senescence. Cancer Lett 2017; 400:30-36. [PMID: 28455242 PMCID: PMC5502528 DOI: 10.1016/j.canlet.2017.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
The Ras genes are the most frequently mutated oncogenes in human cancer. However, Ras biology is quite complex. While Ras promotes tumorigenesis by regulating numerous growth promoting pathways, activated Ras can paradoxically also lead to cell cycle arrest, death, and Oncogene-Induced Senescence (OIS). OIS is thought to be a critical pathway that serves to protect cells against aberrant Ras signaling. Multiple reports have highlighted the importance of the p53 and Rb tumor suppressors in Ras mediated OIS. However, until recently, the molecular mechanisms connecting Ras to these proteins remained unknown. The RASSF family of tumor suppressors has recently been identified as direct effectors of Ras. One of these members, NORE1A (RASSF5), may be the missing link between Ras-induced senescence and the regulation of p53 and Rb. This occurs both quantitatively, by promoting protein stability, as well as qualitatively via promoting critical pro-senescent post-translational modifications. Here we review the mechanisms by which NORE1A can activate OIS as a barrier against Ras-mediated transformation, and how this could lead to improved therapeutic strategies against cancers having lost NORE1A expression.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia PA 19104, USA
| | - M Lee Schmidt
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA
| | | | - Geoffrey J Clark
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA.
| |
Collapse
|
31
|
Bonner AM, Hawley RS. A Nucleoporin at the Meiotic Kinetochore. Dev Cell 2017; 38:447-8. [PMID: 27623378 DOI: 10.1016/j.devcel.2016.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this issue of Developmental Cell, Hattersley et al. (2016) use the unique biology of meiosis I, in which the cell can exit the division without reforming the nuclear envelope, to uncover an intriguing role of the nucleoporin MEL-28 in mediating chromosome segregation via its interaction with PP1 at the kinetochore.
Collapse
Affiliation(s)
- Amanda M Bonner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
32
|
Ren D, Fisher LA, Zhao J, Wang L, Williams BC, Goldberg ML, Peng A. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B. J Biol Chem 2017; 292:10026-10034. [PMID: 28446604 DOI: 10.1074/jbc.m117.778233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Indexed: 11/06/2022] Open
Abstract
Greatwall (Gwl) kinase plays an essential role in the regulation of mitotic entry and progression. Mitotic activation of Gwl requires both cyclin-dependent kinase 1 (CDK1)-dependent phosphorylation and its autophosphorylation at an evolutionarily conserved serine residue near the carboxyl terminus (Ser-883 in Xenopus). In this study we show that Gwl associates with protein phosphatase 1 (PP1), particularly PP1γ, which mediates the dephosphorylation of Gwl Ser-883. Consistent with the mitotic activation of Gwl, its association with PP1 is disrupted in mitotic cells and egg extracts. During mitotic exit, PP1-dependent dephosphorylation of Gwl Ser-883 occurs prior to dephosphorylation of other mitotic substrates; replacing endogenous Gwl with a phosphomimetic S883E mutant blocks mitotic exit. Moreover, we identified PP1 regulatory subunit 3B (PPP1R3B) as a targeting subunit that can direct PP1 activity toward Gwl. PPP1R3B bridges PP1 and Gwl association and promotes Gwl Ser-883 dephosphorylation. Consistent with the cell cycle-dependent association of Gwl and PP1, Gwl and PPP1R3B dissociate in M phase. Interestingly, up-regulation of PPP1R3B facilitates mitotic exit and blocks mitotic entry. Thus, our study suggests PPP1R3B as a new cell cycle regulator that functions by governing Gwl dephosphorylation.
Collapse
Affiliation(s)
- Dapeng Ren
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Laura A Fisher
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Jing Zhao
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Ling Wang
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Byron C Williams
- the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Michael L Goldberg
- the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Aimin Peng
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| |
Collapse
|
33
|
de Gooijer MC, van den Top A, Bockaj I, Beijnen JH, Würdinger T, van Tellingen O. The G2 checkpoint-a node-based molecular switch. FEBS Open Bio 2017; 7:439-455. [PMID: 28396830 PMCID: PMC5377395 DOI: 10.1002/2211-5463.12206] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
Tight regulation of the eukaryotic cell cycle is paramount to ensure genomic integrity throughout life. Cell cycle checkpoints are present in each phase of the cell cycle and prevent cell cycle progression when genomic integrity is compromised. The G2 checkpoint is an intricate signaling network that regulates the progression of G2 to mitosis (M). We propose here a node-based model of G2 checkpoint regulation, in which the action of the central CDK1-cyclin B1 node is determined by the concerted but opposing activities of the Wee1 and cell division control protein 25C (CDC25C) nodes. Phosphorylation of both Wee1 and CDC25C at specific sites determines their subcellular localization, driving them either toward activity within the nucleus or to the cytoplasm and subsequent ubiquitin-mediated proteasomal degradation. In turn, this subcellular balance of the Wee1 and CDC25C nodes is directed by the action of the PLK1 and CHK1 nodes via what we have termed the 'nuclear and cytoplasmic decision states' of Wee1 and CDC25C. The proposed node-based model provides an intelligible structure of the complex interactions that govern the decision to delay or continue G2/M progression. The model may also aid in predicting the effects of agents that target these G2 checkpoint nodes.
Collapse
Affiliation(s)
- Mark C. de Gooijer
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Arnout van den Top
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Irena Bockaj
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/Slotervaart HospitalAmsterdamThe Netherlands
- Division of Drug ToxicologyFaculty of PharmacyUtrecht UniversityThe Netherlands
- Division of Biomedical AnalysisFaculty of ScienceUtrecht UniversityThe Netherlands
| | - Thomas Würdinger
- Neuro‐oncology Research GroupDepartments of Neurosurgery and Pediatric Oncology/HematologyCancer Center AmsterdamVU University Medical CenterThe Netherlands
- Molecular Neurogenetics UnitDepartments of Neurology and RadiologyMassachusetts General HospitalBostonMAUSA
- Neuroscience ProgramHarvard Medical SchoolBostonMAUSA
| | - Olaf van Tellingen
- Division of Pharmacology/Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
34
|
MASTL is essential for anaphase entry of proliferating primordial germ cells and establishment of female germ cells in mice. Cell Discov 2017; 3:16052. [PMID: 28224044 PMCID: PMC5301161 DOI: 10.1038/celldisc.2016.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
In mammals, primordial germ cells (PGCs) are the embryonic cell population that serve as germ cell precursors in both females and males. During mouse embryonic development, the majority of PGCs are arrested at the G2 phase when they migrate into the hindgut at 7.75–8.75 dpc (days post coitum). It is after 9.5 dpc that the PGCs undergo proliferation with a doubling time of 12.6 h. The molecular mechanisms underlying PGC proliferation are however not well studied. In this work. Here we studied how MASTL (microtubule-associated serine/threonine kinase-like)/Greatwall kinase regulates the rapid proliferation of PGCs. We generated a mouse model where we specifically deleted Mastl in PGCs and found a significant loss of PGCs before the onset of meiosis in female PGCs. We further revealed that the deletion of Mastl in PGCs did not prevent mitotic entry, but led to a failure of the cells to proceed beyond metaphase-like stage, indicating that MASTL-mediated molecular events are indispensable for anaphase entry in PGCs. These mitotic defects further led to the death of Mastl-null PGCs by 12.5 dpc. Moreover, the defect in mitotic progression observed in the Mastl-null PGCs was rescued by simultaneous deletion of Ppp2r1a (α subunit of PP2A). Thus, our results demonstrate that MASTL, PP2A, and therefore regulated phosphatase activity have a fundamental role in establishing female germ cell population in gonads by controlling PGC proliferation during embryogenesis.
Collapse
|
35
|
Araujo AR, Gelens L, Sheriff RSM, Santos SDM. Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events. Mol Cell 2016; 64:362-375. [PMID: 27768873 PMCID: PMC5077699 DOI: 10.1016/j.molcel.2016.09.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 09/14/2016] [Indexed: 10/27/2022]
Abstract
Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems.
Collapse
Affiliation(s)
- Ana Rita Araujo
- Quantitative Cell Biology Lab, MRC-Clinical Sciences Centre (CSC), London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Rahuman S M Sheriff
- Quantitative Cell Biology Lab, MRC-Clinical Sciences Centre (CSC), London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; European Bioinformatics Institute, EMBL-EBI, Hinxton, Cambridge CB10 1SD, UK
| | - Silvia D M Santos
- Quantitative Cell Biology Lab, MRC-Clinical Sciences Centre (CSC), London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
36
|
Garda T, Kónya Z, Tándor I, Beyer D, Vasas G, Erdődi F, Vereb G, Papp G, Riba M, M-Hamvas M, Máthé C. Microcystin-LR induces mitotic spindle assembly disorders in Vicia faba by protein phosphatase inhibition and not reactive oxygen species induction. JOURNAL OF PLANT PHYSIOLOGY 2016; 199:1-11. [PMID: 27186862 DOI: 10.1016/j.jplph.2016.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
We aimed to reveal the mechanisms of mitotic spindle anomalies induced by microcystin-LR (MCY-LR), a cyanobacterial toxin in Vicia faba, a well-known model in plant cell and molecular biology. MCY-LR inhibits type 1 and 2A phosphoserine/threonine specific protein phosphatases (PP1 and PP2A) and induces reactive oxygen species (ROS) formation. The cytoskeleton is one of the main targets of the cyanotoxin during cytopathogenesis. Histochemical-immunohistochemical and biochemical methods were used. A significant number of MCY-LR induced spindle alterations are described for the first time. Disrupted, multipolar spindles and missing kinetochore fibers were detected both in metaphase and anaphase cells. Additional polar microtubule (MT) bundles, hyperbundling of spindle MTs, monopolar spindles, C-S- shaped, additional and asymmetric spindles were detected in metaphase, while midplane kinetochore fibers were detected in anaphase cells only. Several spindle anomalies induced mitotic disorders, i.e. they occurred concomitantly with altered sister chromatid separation. Alterations were dependent on the MCY-LR dose and exposure time. Under long-term (2 and mainly 6 days') exposure they were detected in the concentration range of 0.1-20μgmL(-1) MCY-LR that inhibited PP1 and PP2A significantly without significant ROS induction. Elevated peroxidase/catalase activities indicated that MCY-LR treated V. faba plants showed efficient defense against oxidative stress. Thus, although the elevation of ROS is known to induce cytoskeletal aberrations in general, this study shows that long-term protein phosphatase inhibition is the primary cause of MCY-LR induced spindle disorders.
Collapse
Affiliation(s)
- Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Zoltán Kónya
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Ildikó Tándor
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Dániel Beyer
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Georgina Papp
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Milán Riba
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| |
Collapse
|
37
|
Ko CI, Fan Y, de Gannes M, Wang Q, Xia Y, Puga A. Repression of the Aryl Hydrocarbon Receptor Is Required to Maintain Mitotic Progression and Prevent Loss of Pluripotency of Embryonic Stem Cells. Stem Cells 2016; 34:2825-2839. [DOI: 10.1002/stem.2456] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Chia-I Ko
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Matthew de Gannes
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Qin Wang
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Ying Xia
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| |
Collapse
|
38
|
Hégarat N, Rata S, Hochegger H. Bistability of mitotic entry and exit switches during open mitosis in mammalian cells. Bioessays 2016; 38:627-43. [PMID: 27231150 DOI: 10.1002/bies.201600057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitotic entry and exit are switch-like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.
Collapse
Affiliation(s)
- Nadia Hégarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Scott Rata
- Department of Biochemistry, Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| |
Collapse
|
39
|
Ritter A, Kreis NN, Louwen F, Wordeman L, Yuan J. Molecular insight into the regulation and function of MCAK. Crit Rev Biochem Mol Biol 2016; 51:228-45. [DOI: 10.1080/10409238.2016.1178705] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Closing a gap in the nuclear envelope. Curr Opin Cell Biol 2016; 40:90-97. [PMID: 27016712 DOI: 10.1016/j.ceb.2016.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/13/2016] [Accepted: 03/05/2016] [Indexed: 11/22/2022]
Abstract
The nuclear envelope (NE) ensures nucleo-cytoplasmic compartmentalization, with trafficking of macromolecules across this double membrane controlled by embedded nuclear pore complexes (NPCs). The NE and associated proteins are dismantled during open mitosis and reestablishment of this barrier during mitotic exit requires dynamic remodeling of endoplasmic reticulum (ER) membranes and coordination with NPC reformation, with NPC deposition continuing during subsequent interphase. In this review, we discuss recent progress in our understanding of NE reformation and nuclear pore complex generation, with special focus on work implicating the endosomal sorting complex required for transport (ESCRT) membrane remodeling machinery in these events.
Collapse
|
41
|
de Castro IJ, Gokhan E, Vagnarelli P. Resetting a functional G1 nucleus after mitosis. Chromosoma 2016; 125:607-19. [PMID: 26728621 PMCID: PMC5023730 DOI: 10.1007/s00412-015-0561-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022]
Abstract
The maintenance of the correct cellular information goes beyond the simple transmission of an intact genetic code from one generation to the next. Epigenetic changes, topological cues and correct protein-protein interactions need to be re-established after each cell division to allow the next cell cycle to resume in the correct regulated manner. This process begins with mitotic exit and re-sets all the changes that occurred during mitosis thus restoring a functional G1 nucleus in preparation for the next cell cycle. Mitotic exit is triggered by inactivation of mitotic kinases and the reversal of their phosphorylation activities on many cellular components, from nuclear lamina to transcription factors and chromatin itself. To reverse all these phosphorylations, phosphatases act during mitotic exit in a timely and spatially controlled manner directing the events that lead to a functional G1 nucleus. In this review, we will summarise the recent developments on the control of phosphatases and their known substrates during mitotic exit, and the key steps that control the restoration of chromatin status, nuclear envelope reassembly and nuclear body re-organisation. Although pivotal work has been conducted in this area in yeast, due to differences between the mitotic exit network between yeast and vertebrates, we will mainly concentrate on the vertebrate system.
Collapse
Affiliation(s)
- Ines J de Castro
- College of Health and Life Science, Research Institute of Environment Health and Society, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Ezgi Gokhan
- College of Health and Life Science, Research Institute of Environment Health and Society, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute of Environment Health and Society, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
42
|
Powers BL, Melesse M, Eissler CL, Charbonneau H, Hall MC. Measuring Activity and Specificity of Protein Phosphatases. Methods Mol Biol 2016; 1342:221-235. [PMID: 26254927 DOI: 10.1007/978-1-4939-2957-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reversible protein phosphorylation plays essential roles in coordinating cell division and many other biological processes. Cell cycle regulation by opposing kinase and protein phosphatase activities is often complex and major challenges exist in identifying the direct substrates of these enzymes and the specific sites at which they act. While cell cycle kinases are known to exhibit strict substrate specificities important for coordinating the complex events of cell division, phosphatases have only recently been recognized to exert similarly precise regulatory control over cell cycle events through timely dephosphorylation of specific substrates. The molecular determinants for substrate recognition by many phosphatases that function in cell division are still poorly delineated. To understand phosphatase specificity, it is critical to employ methods that monitor the dephosphorylation of individual phosphorylation sites on physiologically relevant substrates. Here, using the cell cycle phosphatase Cdc14 as an example, we describe two methods for studying phosphatase specificity, one using synthetic phosphopeptide substrates and the other using intact phosphoprotein substrates. These methods are useful for targeted characterization of small substrate sets and are also adaptable to large-scale applications for global specificity studies.
Collapse
Affiliation(s)
- Brendan L Powers
- Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | |
Collapse
|
43
|
Qian J, Beullens M, Huang J, De Munter S, Lesage B, Bollen M. Cdk1 orders mitotic events through coordination of a chromosome-associated phosphatase switch. Nat Commun 2015; 6:10215. [PMID: 26674376 PMCID: PMC4703885 DOI: 10.1038/ncomms10215] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023] Open
Abstract
RepoMan is a scaffold for signalling by mitotic phosphatases at the chromosomes. During (pro)metaphase, RepoMan-associated protein phosphatases PP1 and PP2A-B56 regulate the chromosome targeting of Aurora-B kinase and RepoMan, respectively. Here we show that this task division is critically dependent on the phosphorylation of RepoMan by protein kinase Cyclin-dependent kinase 1 (Cdk1), which reduces the binding of PP1 but facilitates the recruitment of PP2A-B56. The inactivation of Cdk1 in early anaphase reverses this phosphatase switch, resulting in the accumulation of PP1-RepoMan to a level that is sufficient to catalyse its own chromosome targeting in a PP2A-independent and irreversible manner. Bulk-targeted PP1-RepoMan also inactivates Aurora B and initiates nuclear-envelope reassembly through dephosphorylation-mediated recruitment of Importin β. Bypassing the Cdk1 regulation of PP1-RepoMan causes the premature dephosphorylation of its mitotic-exit substrates in prometaphase. Hence, the regulation of RepoMan-associated phosphatases by Cdk1 is essential for the timely dephosphorylation of their mitotic substrates. RepoMan is a signalling scaffold for mitotic phosphatases PP1 and PP2A-B56, which regulate targeting of Aurora B and RepoMan respectively, to the chromosomes. Here Qian et al. show that Cdk1 phosphorylates RepoMan to modulate the binding of PP1 and PP2A-B56, contributing to orderly mitotic progression.
Collapse
Affiliation(s)
- Junbin Qian
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium
| | - Jin Huang
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium.,Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Sofie De Munter
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium
| | - Bart Lesage
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling &Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 901, Leuven B-3000, Belgium
| |
Collapse
|
44
|
Abstract
Mutations in the Ras oncogene are one of the most frequent events in human cancer. Although Ras regulates numerous growth-promoting pathways to drive transformation, it can paradoxically promote an irreversible cell cycle arrest known as oncogene-induced senescence. Although senescence has clearly been implicated as a major defense mechanism against tumorigenesis, the mechanisms by which Ras can promote such a senescent phenotype remain poorly defined. We have shown recently that the Ras death effector NORE1A plays a critical role in promoting Ras-induced senescence and connects Ras to the regulation of the p53 tumor suppressor. We now show that NORE1A also connects Ras to the regulation of a second major prosenescent tumor suppressor, the retinoblastoma (Rb) protein. We show that Ras induces the formation of a complex between NORE1A and the phosphatase PP1A, promoting the activation of the Rb tumor suppressor by dephosphorylation. Furthermore, suppression of Rb reduces NORE1A senescence activity. These results, together with our previous findings, suggest that NORE1A acts as a critical tumor suppressor node, linking Ras to both the p53 and the Rb pathways to drive senescence.
Collapse
Affiliation(s)
| | | | - Geoffrey J Clark
- Pharmacology and Toxicology, James Graham Brown Cancer Center, Molecular Targets Program, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
45
|
Rebelo S, Santos M, Martins F, da Cruz e Silva EF, da Cruz e Silva OA. Protein phosphatase 1 is a key player in nuclear events. Cell Signal 2015; 27:2589-98. [DOI: 10.1016/j.cellsig.2015.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
|
46
|
Winkler C, De Munter S, Van Dessel N, Lesage B, Heroes E, Boens S, Beullens M, Van Eynde A, Bollen M. The selective inhibition of protein phosphatase-1 results in mitotic catastrophe and impaired tumor growth. J Cell Sci 2015; 128:4526-37. [PMID: 26542020 DOI: 10.1242/jcs.175588] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/26/2015] [Indexed: 01/07/2023] Open
Abstract
The serine/threonine protein phosphatase-1 (PP1) complex is a key regulator of the cell cycle. However, the redundancy of PP1 isoforms and the lack of specific inhibitors have hampered studies on the global role of PP1 in cell cycle progression in vertebrates. Here, we show that the overexpression of nuclear inhibitor of PP1 (NIPP1; also known as PPP1R8) in HeLa cells culminated in a prometaphase arrest, associated with severe spindle-formation and chromosome-congression defects. In addition, the spindle assembly checkpoint was activated and checkpoint silencing was hampered. Eventually, most cells either died by apoptosis or formed binucleated cells. The NIPP1-induced mitotic arrest could be explained by the inhibition of PP1 that was titrated away from other mitotic PP1 interactors. Consistent with this notion, the mitotic-arrest phenotype could be rescued by the overexpression of PP1 or the inhibition of the Aurora B kinase, which acts antagonistically to PP1. Finally, we demonstrate that the overexpression of NIPP1 also hampered colony formation and tumor growth in xenograft assays in a PP1-dependent manner. Our data show that the selective inhibition of PP1 can be used to induce cancer cell death through mitotic catastrophe.
Collapse
Affiliation(s)
- Claudia Winkler
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Sofie De Munter
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Nele Van Dessel
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Bart Lesage
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Ewald Heroes
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Shannah Boens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Monique Beullens
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Aleyde Van Eynde
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Leuven B-3000, Belgium
| |
Collapse
|
47
|
Douglas P, Ye R, Morrice N, Britton S, Trinkle-Mulcahy L, Lees-Miller SP. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis. Mol Cell Biol 2015; 35:2699-713. [PMID: 25986610 PMCID: PMC4524121 DOI: 10.1128/mcb.01312-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 05/12/2015] [Indexed: 02/03/2023] Open
Abstract
Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis.
Collapse
Affiliation(s)
- Pauline Douglas
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ruiqiong Ye
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas Morrice
- Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse-Université Paul Sabatier, Equipe Labellisée Ligue contre le Cancer, Toulouse, France
| | - Laura Trinkle-Mulcahy
- Department of Cellular & Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Susan P Lees-Miller
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
48
|
Carmena M, Lombardia MO, Ogawa H, Earnshaw WC. Polo kinase regulates the localization and activity of the chromosomal passenger complex in meiosis and mitosis in Drosophila melanogaster. Open Biol 2015; 4:140162. [PMID: 25376909 PMCID: PMC4248065 DOI: 10.1098/rsob.140162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell cycle progression is regulated by members of the cyclin-dependent kinase (CDK), Polo and Aurora families of protein kinases. The levels of expression and localization of the key regulatory kinases are themselves subject to very tight control. There is increasing evidence that crosstalk between the mitotic kinases provides for an additional level of regulation. We have previously shown that Aurora B activates Polo kinase at the centromere in mitosis, and that the interaction between Polo and the chromosomal passenger complex (CPC) component INCENP is essential in this activation. In this report, we show that Polo kinase is required for the correct localization and activity of the CPC in meiosis and mitosis. Study of the phenotype of different polo allele combinations compared to the effect of chemical inhibition revealed significant differences in the localization and activity of the CPC in diploid tissues. Our results shed new light on the mechanisms that control the activity of Aurora B in meiosis and mitosis.
Collapse
Affiliation(s)
- Mar Carmena
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Miguel Ortiz Lombardia
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
| | - Hiromi Ogawa
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - William C Earnshaw
- The Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
49
|
Kim T, Moyle MW, Lara-Gonzalez P, De Groot C, Oegema K, Desai A. Kinetochore-localized BUB-1/BUB-3 complex promotes anaphase onset in C. elegans. J Cell Biol 2015; 209:507-17. [PMID: 25987605 PMCID: PMC4442812 DOI: 10.1083/jcb.201412035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
The conserved Bub1/Bub3 complex is recruited to the kinetochore region of mitotic chromosomes, where it initiates spindle checkpoint signaling and promotes chromosome alignment. Here we show that, in contrast to the expectation for a checkpoint pathway component, the BUB-1/BUB-3 complex promotes timely anaphase onset in Caenorhabditis elegans embryos. This activity of BUB-1/BUB-3 was independent of spindle checkpoint signaling but required kinetochore localization. BUB-1/BUB-3 inhibition equivalently delayed separase activation and other events occurring during mitotic exit. The anaphase promotion function required BUB-1's kinase domain, but not its kinase activity, and this function was independent of the role of BUB-1/BUB-3 in chromosome alignment. These results reveal an unexpected role for the BUB-1/BUB-3 complex in promoting anaphase onset that is distinct from its well-studied functions in checkpoint signaling and chromosome alignment, and suggest a new mechanism contributing to the coordination of the metaphase-to-anaphase transition.
Collapse
Affiliation(s)
- Taekyung Kim
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Mark W Moyle
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Pablo Lara-Gonzalez
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Christian De Groot
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Karen Oegema
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Arshad Desai
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
50
|
Meppelink A, Kabeche L, Vromans MJM, Compton DA, Lens SMA. Shugoshin-1 balances Aurora B kinase activity via PP2A to promote chromosome bi-orientation. Cell Rep 2015; 11:508-15. [PMID: 25892238 PMCID: PMC4718550 DOI: 10.1016/j.celrep.2015.03.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/16/2015] [Accepted: 03/17/2015] [Indexed: 12/14/2022] Open
Abstract
Correction of faulty kinetochore-microtubule attachments is essential for faithful chromosome segregation and dictated by the opposing activities of Aurora B kinase and PP1 and PP2A phosphatases. How kinase and phosphatase activities are appropriately balanced is less clear. Here, we show that a centromeric pool of PP2A-B56 counteracts Aurora B T-loop phosphorylation and is recruited to centromeres through Shugoshin-1 (Sgo1). In non-transformed RPE-1 cells, Aurora B, Sgo1, and PP2A-B56 are enriched on centromeres and levels diminish as chromosomes establish bi-oriented attachments. Elevating Sgo1 levels at centromeres recruits excess PP2A-B56, and this counteracts Aurora B kinase activity, undermining efficient correction of kinetochore-microtubule attachment errors. Conversely, Sgo1-depleted cells display reduced centromeric localization of Aurora B, whereas the remaining kinase is hyperactive due to concomitant reduction of centromeric PP2A-B56. Our data suggest that Sgo1 can tune the stability of kinetochore-microtubule attachments through recruitment of PP2A-B56 that balances Aurora B activity at the centromere.
Collapse
Affiliation(s)
- Amanda Meppelink
- Department of Medical Oncology, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Lilian Kabeche
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Martijn J M Vromans
- Department of Medical Oncology, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Duane A Compton
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Susanne M A Lens
- Department of Medical Oncology, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|