1
|
Garrido-Godino AI, Gupta I, Pelechano V, Navarro F. RNA Pol II Assembly Affects ncRNA Expression. Int J Mol Sci 2023; 25:507. [PMID: 38203678 PMCID: PMC10778713 DOI: 10.3390/ijms25010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
RNA pol II assembly occurs in the cytoplasm before translocation of the enzyme to the nucleus. Affecting this assembly influences mRNA transcription in the nucleus and mRNA decay in the cytoplasm. However, very little is known about the consequences on ncRNA synthesis. In this work, we show that impairment of RNA pol II assembly leads to a decrease in cryptic non-coding RNAs (preferentially CUTs and SUTs). This alteration is partially restored upon overcoming the assembly defect. Notably, this drop in ncRNAs is only partially dependent on the nuclear exosome, which suggests a major specific effect of enzyme assembly. Our data also point out a defect in transcription termination, which leads us to propose that CTD phosphatase Rtr1 could be involved in this process.
Collapse
Affiliation(s)
- Ana I. Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain;
| | - Ishaan Gupta
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain;
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva (INUO), Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
2
|
Alternative Splicing in the Regulatory Circuit of Plant Temperature Response. Int J Mol Sci 2023; 24:ijms24043878. [PMID: 36835290 PMCID: PMC9962249 DOI: 10.3390/ijms24043878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
As sessile organisms, plants have evolved complex mechanisms to rapidly respond to ever-changing ambient temperatures. Temperature response in plants is modulated by a multilayer regulatory network, including transcriptional and post-transcriptional regulations. Alternative splicing (AS) is an essential post-transcriptional regulatory mechanism. Extensive studies have confirmed its key role in plant temperature response, from adjustment to diurnal and seasonal temperature changes to response to extreme temperatures, which has been well documented by previous reviews. As a key node in the temperature response regulatory network, AS can be modulated by various upstream regulations, such as chromatin modification, transcription rate, RNA binding proteins, RNA structure and RNA modifications. Meanwhile, a number of downstream mechanisms are affected by AS, such as nonsense-mediated mRNA decay (NMD) pathway, translation efficiency and production of different protein variants. In this review, we focus on the links between splicing regulation and other mechanisms in plant temperature response. Recent advances regarding how AS is regulated and the following consequences in gene functional modulation in plant temperature response will be discussed. Substantial evidence suggests that a multilayer regulatory network integrating AS in plant temperature response has been unveiled.
Collapse
|
3
|
Dozier C, Montigny A, Viladrich M, Culerrier R, Combier JP, Besson A, Plaza S. Small ORFs as New Regulators of Pri-miRNAs and miRNAs Expression in Human and Drosophila. Int J Mol Sci 2022; 23:5764. [PMID: 35628573 PMCID: PMC9144653 DOI: 10.3390/ijms23105764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small regulatory non-coding RNAs, resulting from the cleavage of long primary transcripts (pri-miRNAs) in the nucleus by the Microprocessor complex generating precursors (pre-miRNAs) that are then exported to the cytoplasm and processed into mature miRNAs. Some miRNAs are hosted in pri-miRNAs annotated as long non-coding RNAs (lncRNAs) and defined as MIRHGs (for miRNA Host Genes). However, several lnc pri-miRNAs contain translatable small open reading frames (smORFs). If smORFs present within lncRNAs can encode functional small peptides, they can also constitute cis-regulatory elements involved in lncRNA decay. Here, we investigated the possible involvement of smORFs in the regulation of lnc pri-miRNAs in Human and Drosophila, focusing on pri-miRNAs previously shown to contain translatable smORFs. We show that smORFs regulate the expression levels of human pri-miR-155 and pri-miR-497, and Drosophila pri-miR-8 and pri-miR-14, and also affect the expression and activity of their associated miRNAs. This smORF-dependent regulation is independent of the nucleotidic and amino acidic sequences of the smORFs and is sensitive to the ribosome-stalling drug cycloheximide, suggesting the involvement of translational events. This study identifies smORFs as new cis-acting elements involved in the regulation of pri-miRNAs and miRNAs expression, in both Human and Drosophila melanogaster.
Collapse
Affiliation(s)
- Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Audrey Montigny
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Mireia Viladrich
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Raphael Culerrier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France; (R.C.); (A.B.)
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, UMR5546 CNRS, UPS Université de Toulouse, INP, 31320 Auzeville-Tolosan, France; (A.M.); (M.V.); (J.-P.C.)
| |
Collapse
|
4
|
Zhu Y, Chen QY, Jordan A, Sun H, Roy N, Costa M. RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncol Rep 2021; 46:154. [PMID: 34109987 DOI: 10.3892/or.2021.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 11/05/2022] Open
Abstract
Nickel (Ni) compounds are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) and are known to be carcinogenic to the lungs. In our previous study, special AT‑rich sequence‑binding protein 2 (SATB2) was required for Ni‑induced BEAS‑2B cell transformation. In the present study, a pathway that regulates the expression of SATB2 protein was investigated in Ni‑transformed BEAS‑2B cells using western blotting and RT‑qPCR for expression, and soft agar, migration and invasion assays for cell transformation. Runt‑related transcription factor 2 (RUNX2), a master regulator of osteogenesis and an oncogene, was identified as an upstream regulator for SATB2. Ni induced RUNX2 expression and initiated BEAS‑2B transformation and metastatic potential. Previously, miRNA‑31 was identified as a negative regulator of SATB2 during arsenic‑induced cell transformation, and in the present study it was identified as a downstream target of RUNX2 during carcinogenesis. miR‑31 expression was reduced in Ni‑transformed BEAS‑2B cells, which was required to maintain cancer hallmarks. The expression level of miR‑31 was suppressed by RUNX2 in BEAS‑2B cells, and this increased the expression level of SATB2, initiating cell transformation. Ni caused the repression of miR‑31 by placing repressive marks at its promoter, which in turn increased the expression level of SATB2, leading to cell transformation.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710000, P.R. China
| | - Ashley Jordan
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Nirmal Roy
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| |
Collapse
|
5
|
Zhu Y, Ortiz A, Costa M. Wrong place, wrong time: Runt-related transcription factor 2/SATB2 pathway in bone development and carcinogenesis. J Carcinog 2021; 20:2. [PMID: 34211338 PMCID: PMC8202446 DOI: 10.4103/jcar.jcar_22_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/03/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Upregulation or aberrant expression of genes such as special AT-rich sequence-binding protein 2 (SATB2) is necessary for normal cell differentiation and tissue development and is often associated with carcinogenesis and metastatic progression. SATB2 is a critical transcription factor for biological development of various specialized cell lineages, such as osteoblasts and neurons. The dysregulation of SATB2 expression has recently been associated with various types of cancer, while the mechanisms and pathways by which it mediates tumorigenesis are not well elucidated. Runt-related transcription factor 2 (RUNX2) is a master regulator for osteogenesis, and it shares common pathways with SATB2 to regulate bone development. Interestingly, these two transcription factors co-occur in several epithelial and mesenchymal cancers and are linked by multiple cancer-related proteins and microRNAs. This review examines the interactions between RUNX2 and SATB2 in a network necessary for normal bone development and the circumstances in which the expression of RUNX2 and SATB2 in the wrong place and time leads to carcinogenesis.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Angelica Ortiz
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Narayanan A, Srinaath N, Rohini M, Selvamurugan N. Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sci 2019; 232:116676. [PMID: 31340165 DOI: 10.1016/j.lfs.2019.116676] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 12/21/2022]
Abstract
Bone is one of the most dynamic organs in the body that continuously undergoes remodeling through bone formation and resorption. A cascade of molecules and pathways results in the osteoblast differentiation that is attributed to osteogenesis, or bone formation. The process of osteogenesis is achieved through participation of the Wnt pathway, FGFs, BMPs/TGF-β, and transcription factors such as Runx2 and Osx. The activity and function of the master transcription factor, Runx2, is of utmost significance as it can induce the function of osteoblast differentiation markers. A number of microRNAs [miRNAs] have been recently identified in the regulation of Runx2 expression/activity, thus affecting the process of osteogenesis. miRNAs that target Runx2 corepressors favor osteogenesis, while miRNAs that target Runx2 coactivators inhibit osteogenesis. In this review, we focus on the regulation of Runx2 by miRNAs in osteoblast differentiation and their potential for treating bone and bone-related diseases.
Collapse
Affiliation(s)
- Akshaya Narayanan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Srinaath
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - M Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
7
|
Villarreal LP, Witzany G. That is life: communicating RNA networks from viruses and cells in continuous interaction. Ann N Y Acad Sci 2019; 1447:5-20. [PMID: 30865312 DOI: 10.1111/nyas.14040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNA-mediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it could not function without these key agents of DNA replication, namely rRNA, tRNA, and mRNA. Thus, any definition of life that lacks RNA functions and their networks misses an essential requirement for RNA agents that inherently regulate and coordinate (communicate to) cells, tissues, organs, and organisms. The precellular evolution of RNAs occurred at the core of the emergence of cellular life and the question remained of how both precellular and cellular levels are interconnected historically and functionally. RNA networks and RNA communication can interconnect these levels. With the reemergence of virology in evolution, it became clear that communicating viruses and subviral infectious genetic parasites are bridging these two levels by invading, integrating, coadapting, exapting, and recombining constituent parts in host genomes for cellular requirements in gene regulation and coordination aims. Therefore, a 21st century understanding of life is of an inherently social process based on communicating RNA networks, in which viruses and cells continuously interact.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | | |
Collapse
|
8
|
MiR-21 in extracellular vesicles contributes to the growth of fertilized eggs and embryo development in mice. Biosci Rep 2018; 38:BSR20180036. [PMID: 29884767 PMCID: PMC6117624 DOI: 10.1042/bsr20180036] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022] Open
Abstract
Human preimplantation embryo development is susceptible to high rates of early embryo wastage. We determined the miR-21 expression of extracellular vesicles (EVs) in fertilized eggs and embryos of varying stages and their response to miR-21 microinjection. Sexually mature female and male mice were mated. Next, the expression and immunohistochemistry intensity of surface markers (CD9 and CD63) of EVs were detected in pregnant and non-pregnant mice. Exosomes were co-cultured with embryos for detection of blastocyst formation rate, and embryo apoptosis. Moreover, the expressions of Bcl-2 associated X protein (Bax), B cell lymphoma 2 (Bcl-2), and octamer-binding transcription factor-4 (Oct4) were determined. Finally, we detected miR-21 expression in EVs of uterus in pregnant mice, in embryos after embryo implantation and after embryo co-cultured with exosomes in uterine luminal fluid. MiR-21 was up-regulated in EVs of uterus, and higher immunohistochemistry intensity of CD9 and CD63, suggesting more EVs secreted in uterine luminal fluid in pregnant mice. After microinjection, miR-21 inhibitor suppresses embryo development of mice. Moreover, embryos co-cultured with exosomes display higher blastocyst formation rate, reduced apoptotic rate of embryos in pregnant mice. In addition, miR-21 was down-regulated with the development of embryos after embryo implantation, while miR-21 expression in embryos was up-regulated by exosomes in uterine luminal fluid in the pregnant mice. Increased miR-21 expression in EVs of uterus and increased miR-21 expression after implantation, which indicate the key role in the growth of fertilized eggs and embryo development in mice.
Collapse
|
9
|
Abstract
DROSHA is the catalytic subunit of the Microprocessor complex, which initiates microRNA (miRNA) maturation in the nucleus by recognizing and cleaving hairpin precursors embedded in primary transcripts. However, accumulating evidence suggests that not all hairpin substrates of DROSHA are associated with the generation of functional small RNAs. By targeting those hairpins, DROSHA regulates diverse aspects of RNA metabolism across the transcriptome, serves as a line of defense against the expression of potentially deleterious elements, and permits cell fate determination and differentiation. DROSHA is also versatile in the way that it executes these noncanonical functions, occasionally depending on its RNA-binding activity rather than its catalytic activity. Herein, we discuss the functional and mechanistic diversity of DROSHA beyond the miRNA biogenesis pathway in light of recent findings.
Collapse
Affiliation(s)
- Dooyoung Lee
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea
| | - Chanseok Shin
- a Department of Agricultural Biotechnology , Seoul National University , Seoul , Republic of Korea.,b Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
10
|
Lee D, Nam JW, Shin C. DROSHA targets its own transcript to modulate alternative splicing. RNA (NEW YORK, N.Y.) 2017; 23:1035-1047. [PMID: 28400409 PMCID: PMC5473138 DOI: 10.1261/rna.059808.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/06/2017] [Indexed: 05/23/2023]
Abstract
The nuclear RNase III enzyme DROSHA interacts with its cofactor DGCR8 to form the Microprocessor complex, which initiates microRNA (miRNA) maturation by cleaving hairpin structures embedded in primary transcripts. Apart from its central role in the biogenesis of miRNAs, DROSHA is also known to recognize and cleave miRNA-like hairpins in a subset of transcripts without apparent small RNA production. Here, we report that the human DROSHA transcript is one such noncanonical target of DROSHA. Mammalian DROSHA genes have evolved a conserved hairpin structure spanning a specific exon-intron junction, which serves as a substrate for the Microprocessor in human cells but not in murine cells. We show that it is this hairpin element that decides whether the overlapping exon is alternatively or constitutively spliced. We further demonstrate that DROSHA promotes skipping of the overlapping exon in human cells independently of its cleavage function. Our findings add to the expanding list of noncanonical DROSHA functions.
Collapse
Affiliation(s)
- Dooyoung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Dutta DJ, Raj H, Dev AH. Polyadenylated tail length variation pattern in ultra-rapid vitrified bovine oocytes. Vet World 2016; 9:1070-1074. [PMID: 27847415 PMCID: PMC5104714 DOI: 10.14202/vetworld.2016.1070-1074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/28/2016] [Indexed: 11/16/2022] Open
Abstract
Aim: Thecurrent study aims at investigating the polyadenylated (poly[A]) tail length of morphologically high and low competent oocytes at different developmental stages. Furthermore, effect of ultra-rapid vitrification on the poly(A) tail length was studied. Materials and Methods: Fresh bovine cumulus oocyte complexes from abattoir originated ovaries were graded based on morphological characters and matured in vitro. Cryopreservation was done by ultra-rapid vitrification method. mRNA was isolated from different categories of oocyte and subjected to ligation-mediated poly(A) test followed by polymerase chain reaction for determining the poly(A) tail length of β actin, gap junction protein alpha 1 (GJA1), poly(A) polymerase alpha (PAPOLA), and heat shock 70 kDa protein (HSP70) transcripts. Results: GJA1, PAPOLA, and HSP70 showed significantly higher poly(A) in immature oocytes of higher competence irrespective of vitrification effects as compared to mature oocytes of higher competence. Conclusion: mRNA poly(A) tail size increases in developmentally high competent immature bovine oocytes. There was limited effect of ultra-rapid vitrification of bovine oocytes on poly(A).
Collapse
Affiliation(s)
- D J Dutta
- Department of Veterinary Physiology, Faculty of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati - 781 022, Assam, India
| | - Himangshu Raj
- Department of Veterinary Physiology, Faculty of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati - 781 022, Assam, India
| | - And Hiramoni Dev
- Department of Veterinary Physiology, Faculty of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati - 781 022, Assam, India
| |
Collapse
|
12
|
Sperling R. The nuts and bolts of the endogenous spliceosome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27465259 DOI: 10.1002/wrna.1377] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/09/2023]
Abstract
The complex life of pre-mRNA from transcription to the production of mRNA that can be exported from the nucleus to the cytoplasm to encode for proteins entails intricate coordination and regulation of a network of processing events. Coordination is required between transcription and splicing and between several processing events including 5' and 3' end processing, splicing, alternative splicing and editing that are major contributors to the diversity of the human proteome, and occur within a huge and dynamic macromolecular machine-the endogenous spliceosome. Detailed mechanistic insight of the splicing reaction was gained from studies of the in vitro spliceosome assembled on a single intron. Because most pre-mRNAs are multiintronic that undergo alternative splicing, the in vivo splicing machine requires additional elements to those of the in vitro machine, to account for all these diverse functions. Information about the endogenous spliceosome is emerging from imaging studies in intact and live cells that support the cotranscriptional commitment to splicing model and provide information about splicing kinetics in vivo. Another source comes from studies of the in vivo assembled spliceosome, isolated from cell nuclei under native conditions-the supraspliceosome-that individually package pre-mRNA transcripts of different sizes and number of introns into complexes of a unique structure, indicating their universal nature. Recent years have portrayed new players affecting alternative splicing and novel connections between splicing, transcription and chromatin. The challenge ahead is to elucidate the structure and function of the endogenous spliceosome and decipher the regulation and coordination of its network of processing activities. WIREs RNA 2017, 8:e1377. doi: 10.1002/wrna.1377 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ruth Sperling
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Du P, Wang L, Sliz P, Gregory RI. A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression. Cell 2015; 162:885-99. [PMID: 26255770 DOI: 10.1016/j.cell.2015.07.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/24/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022]
Abstract
The precise control of miR-17∼92 microRNA (miRNA) is essential for normal development, and overexpression of certain miRNAs from this cluster is oncogenic. Here, we find that the relative expression of the six miRNAs processed from the primary (pri-miR-17∼92) transcript is dynamically regulated during embryonic stem cell (ESC) differentiation. Pri-miR-17∼92 is processed to a biogenesis intermediate, termed "progenitor-miRNA" (pro-miRNA). Pro-miRNA is an efficient substrate for Microprocessor and is required to selectively license production of pre-miR-17, pre-miR-18a, pre-miR-19a, pre-miR-20a, and pre-miR-19b from this cluster. Two complementary cis-regulatory repression domains within pri-miR-17∼92 are required for the blockade of miRNA processing through the formation of an autoinhibitory RNA conformation. The endonuclease CPSF3 (CPSF73) and the spliceosome-associated ISY1 are responsible for pro-miRNA biogenesis and expression of all miRNAs within the cluster except miR-92. Thus, developmentally regulated pro-miRNA processing is a key step controlling miRNA expression and explains the posttranscriptional control of miR-17∼92 expression in development.
Collapse
Affiliation(s)
- Peng Du
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Richard I Gregory
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Primary microRNA processing is functionally coupled to RNAP II transcription in vitro. Sci Rep 2015; 5:11992. [PMID: 26149087 PMCID: PMC4493704 DOI: 10.1038/srep11992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022] Open
Abstract
Previous studies in vivo reported that processing of primary microRNA (pri-miRNA) is coupled to transcription by RNA polymerase II (RNAP II) and can occur co-transcriptionally. Here we have established a robust in vivo system in which pri-miRNA is transcribed by RNAP II and processed to pre-miRNA in HeLa cell nuclear extracts. We show that both the kinetics and efficiency of pri-miRNA processing are dramatically enhanced in this system compared to that of the corresponding naked pri-miRNA. Moreover, this enhancement is general as it occurs with multiple pri-miRNAs. We also show that nascent pri-miRNA is efficiently processed before it is released from the DNA template. Together, our work directly demonstrates that transcription and pri-miRNA processing are functionally coupled and establishes the first in vivo model systems for this functional coupling and for co-transcriptional processing.
Collapse
|
15
|
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.
Collapse
Affiliation(s)
- Yeon Lee
- Center for RNA Systems Biology; Division of Biochemistry, Biophysics, and Structural Biology; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204;
| | | |
Collapse
|
16
|
Masaki S, Yoshimoto R, Kaida D, Hata A, Satoh T, Ohno M, Kataoka N. Identification of the specific interactors of the human lariat RNA debranching enzyme 1 protein. Int J Mol Sci 2015; 16:3705-21. [PMID: 25671812 PMCID: PMC4346921 DOI: 10.3390/ijms16023705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/04/2015] [Indexed: 01/30/2023] Open
Abstract
In eukaryotes, pre-mRNA splicing is an essential step for gene expression. We have been analyzing post-splicing intron turnover steps in higher eukaryotes. Here, we report protein interaction between human Debranching enzyme 1 (hDbr1) and several factors found in the Intron Large (IL) complex, which is an intermediate complex of the intron degradation pathway. The hDbr1 protein specifically interacts with xeroderma pigmentosum, complementeation group A (XPA)-binding protein 2 (Xab2). We also attempted to identify specific interactors of hDbr1. Co-immunoprecipitation experiments followed by mass spectrometry analysis identified a novel protein as one of the specific interactors of hDbr1. This protein is well conserved among many species and shows the highest similarity to yeast Drn1, so it is designated as human Dbr1 associated ribonuclease 1 (hDrn1). hDrn1 directly interacts with hDbr1 through protein–protein interaction. Furthermore, hDrn1 shuttles between the nucleus and the cytoplasm, as hDbr1 protein does. These findings suggest that hDrn1 has roles in both the nucleus and the cytoplasm, which are highly likely to involve hDbr1.
Collapse
Affiliation(s)
- So Masaki
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Rei Yoshimoto
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Daisuke Kaida
- Frontier Research Core for Life Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Asuka Hata
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takayuki Satoh
- Frontier Research Core for Life Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Naoyuki Kataoka
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
- Medical Top Track Program, Medical Research Institute, Tokyo Dental and Medical University, Tokyo 113-8510, Japan.
| |
Collapse
|
17
|
Lee Y, Rio DC. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu Rev Biochem 2015. [PMID: 25784052 DOI: 10.1146/annurev-biochem-060614-034316.mechanisms] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.
Collapse
Affiliation(s)
- Yeon Lee
- Center for RNA Systems Biology; Division of Biochemistry, Biophysics, and Structural Biology; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204;
| | | |
Collapse
|
18
|
Tiao MM, Wang FS, Huang LT, Chuang JH, Kuo HC, Yang YL, Huang YH. MicroRNA-29a protects against acute liver injury in a mouse model of obstructive jaundice via inhibition of the extrinsic apoptosis pathway. Apoptosis 2014; 19:30-41. [PMID: 24052410 DOI: 10.1007/s10495-013-0909-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent studies have shown that microRNA-29 (miR-29) is significantly decreased in liver fibrosis, as demonstrated in human liver cirrhosis, and that its downregulation influences the activation of hepatic stellate cells. In addition, both cleaved caspase-3 production and apoptosis play a role in cholestatic liver injury. However, it is unknown if miR-29 is effective in modulating the extent of injury. We employed miR-29a transgenic mice (miR-29aTg mice) and wild-type (WT) littermates to clarify the role of miR-29 in hepatic injury and fibrogenesis, using the bile duct-ligation (BDL) mouse model. After BDL, all three members of the miR-29 family were significantly downregulated in the livers of WT mice, and miR-29b and miR-29c were significantly downregulated in the livers of the miR-29aTg mice. Liver function, as measured by alanine transaminase and aspartate transaminase activity, was significantly improved in the miR-29aTg mice than in the WT littermates, following 1 week of obstructive jaundice. In addition, overexpression of miR-29a was associated with a significant downregulation of the expression of collagen-1α1, collagen-4α1, phospho-FADD, cleaved caspase-8, cleaved caspase-3, Bax, Bcl-2, PARP, and nuclear factor-κB, as well as an upregulation of phospho-AKT expression. In addition, there were significantly fewer TUNEL-positive liver cells in the miR-29aTg group than in the WT littermates after BDL. Our results indicate that miR-29a decreases cholestatic liver injury and fibrosis after BDL, at least partially, by modulating the extrinsic rather than intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and the Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung District, Kaohsiung, 833, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
19
|
Hernandez-Torres F, Aranega AE, Franco D. Identification of regulatory elements directing miR-23a-miR-27a-miR-24-2 transcriptional regulation in response to muscle hypertrophic stimuli. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:885-97. [PMID: 25050919 DOI: 10.1016/j.bbagrm.2014.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 01/19/2023]
Abstract
MiRNAs are small non-coding RNAs that significantly regulate the translation of protein coding genes in higher organisms. MicroRNAs are involved in almost every biological process, including early development, lineage commitment, growth and differentiation, cell death, and metabolic control. Misregulation of miRNAs belonging to the intergenic miR-23a-miR-27a-miR-24-2 cluster has been recently associated to cardiac and skeletal muscle diseases, and they are up-regulated in hypertrophic cardiomyopathy and skeletal muscle atrophy. Despite these facts, the basal transcriptional regulation of miR-23a/miR-27-a/miR-24-2 cluster and how it is altered under pathological conditions remain unclear. In this study, we identified and functionally characterized conserved upstream and downstream regulatory sequences from the miR-23a-miR-27a-miR-24-2 locus that are implicated on its transcriptional control. Our data demonstrate that Srf plays a pivotal role in modulating miR-23a-miR-27a-miR-24-2 cluster proximal promoter activity. Importantly, pro-hypertrophic signalling pathways such as those driven by angiotensin II and norepinephrine also regulate miR-23a-miR-27a-miR-24-2 cluster proximal promoter activity. Taking together, our results provide new insights into the regulatory networks driving miR-23a-miR-27a-miR-24-2 cluster expression in cardiac and skeletal muscles.
Collapse
Affiliation(s)
| | - Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
20
|
Agranat-Tamir L, Shomron N, Sperling J, Sperling R. Interplay between pre-mRNA splicing and microRNA biogenesis within the supraspliceosome. Nucleic Acids Res 2014; 42:4640-51. [PMID: 24464992 PMCID: PMC3985634 DOI: 10.1093/nar/gkt1413] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are central regulators of gene expression, and a large fraction of them are encoded in introns of RNA polymerase II transcripts. Thus, the biogenesis of intronic miRNAs by the microprocessor and the splicing of their host introns by the spliceosome require coordination between these processing events. This cross-talk is addressed here. We show that key microprocessor proteins Drosha and DGCR8 as well as pre-miRNAs cosediment with supraspliceosomes, where nuclear posttranscriptional processing is executed. We further show that inhibition of splicing increases miRNAs expression, whereas knock-down of Drosha increases splicing. We identified a novel splicing event in intron 13 of MCM7, where the miR-106b-25 cluster is located. The unique splice isoform includes a hosted pre-miRNA in the extended exon and excludes its processing. This indicates a possible mechanism of altering the levels of different miRNAs originating from the same transcript. Altogether, our study indicates interplay between the splicing and microprocessor machineries within a supraspliceosome context.
Collapse
Affiliation(s)
- Lily Agranat-Tamir
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel and Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
21
|
Vigorito E, Kohlhaas S, Lu D, Leyland R. miR-155: an ancient regulator of the immune system. Immunol Rev 2013; 253:146-57. [PMID: 23550644 DOI: 10.1111/imr.12057] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are a newly recognized class of regulatory genes which repress the expression of protein-coding genes. Numerous studies have uncovered a complex role for miRNAs regulating many aspects of a variety of cellular processes including cell growth, differentiation, and lineage commitment. In the immune system, miR-155 is unique in its ability to shape the transcriptome of activated myeloid and lymphoid cells controlling diverse biological functions ranging from inflammation to immunological memory. Not surprisingly, a tight control of miR-155 expression is required to avoid malignant transformation, as evidenced by miR-155 overexpression in many cancers of B-cell origin. In this review, we discuss the potential of miR-155 as a molecular target for therapeutic intervention and discuss the function of miR-155 in the context of protective immunity. We first look back into the emergence of miR-155 in evolution, which is coincidental with the emergence of the ancestors of the antigen receptors. We then summarize what we have learned about the role of miR-155 in the regulation of lymphoid subsets at the cellular and molecular level in the context of recent progress in this field.
Collapse
Affiliation(s)
- Elena Vigorito
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| | | | | | | |
Collapse
|
22
|
Li X, Liu X, Xu W, Zhou P, Gao P, Jiang S, Lobie PE, Zhu T. c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2. J Biol Chem 2013; 288:18121-33. [PMID: 23649631 DOI: 10.1074/jbc.m113.478560] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence indicates that the miR-23a/24-2/27a cluster may possess a causal role in mammary tumorigenesis and function as a novel class of oncogenes. However, the regulatory mechanism of the miR-23a/24-2/27a cluster in mammary carcinoma cell invasion and migration is still largely unknown. We observed that the expression levels of miR-23a, miR-24-2 and miR-27a were significantly higher in breast cancer with lymph node metastasis, compared with that from patients without lymph node metastasis or normal tissue. Forced expression of the miR-23a/24-2/27a cluster promoted mammary carcinoma cell migration, invasion, and hepatic metastasis, through targeting Sprouty2 (SPRY2) and consequent activation of p44/42 MAPK. Epidermal growth factor induced the expression of the transcription factor c-MYC, which promoted the expression of mature miR-23a, miR-24-2, and miR-27a and subsequently decreased expression of SPRY2 and activated p44/42 MAPK to promote mammary carcinoma cell migration and invasion. We therefore suggest a novel link between epidermal growth factor and the miR-23a/24-2/27a cluster via the regulation of c-MYC, providing the potential for the miR-23a/24-2/27a cluster to be used as biomarker in the diagnosis and/or treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoni Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang S, Xu L, Wang F, Wang H, Gong B, Zhang F, Li X, Wang Y. Genetic control of primary microRNA insight into cis- and trans-regulatory variations by RNA-seq. Gene 2013; 517:224-9. [PMID: 23291411 DOI: 10.1016/j.gene.2012.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 08/06/2012] [Accepted: 08/06/2012] [Indexed: 11/16/2022]
Abstract
To search for genetic regulators influencing miRNA transcript abundance, we performed a genome-wide association study (GWAS) to identify quantitative trait loci associated with primary miRNA transcript abundance (pri-miQTL) using genotype data from HapMap CEU phased data. We detected robust expression for 150 pri-miRNAs out of 1523 interrogated using RNA-seq. We have identified some pri-miRNAs that showed significant evidence for cis- (34%) and trans-pri-miQTLs (3%). Furthermore, we observed that multiple cis-pri-miQTLs, showed allele-specific expression associated with single pri-miRNA expression. Interestingly, a cis-regulatory variation influenced the expression levels of two pri-miRNAs that expressed identical mature sequences. We also observed that a single trans-regulatory variation was associated with multiple unrelated pri-miRNAs: rs292253 was associated with the expression of hsa-mir-3181, hsa-mir-3665 and hsa-mir-762. These findings revealed that the expression of pri-miRNA detected by RNA-seq can be used to identify pri-miQTLs, as an alternative method to dissect the genetic control mechanisms governing pri-miRNA expression.
Collapse
Affiliation(s)
- Shaojun Zhang
- Center for Biomedical Informatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kojima S, Sher-Chen EL, Green CB. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev 2013; 26:2724-36. [PMID: 23249735 DOI: 10.1101/gad.208306.112] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Poly(A) tails are 3' modifications of eukaryotic mRNAs that are important in the control of translation and mRNA stability. We identified hundreds of mouse liver mRNAs that exhibit robust circadian rhythms in the length of their poly(A) tails. Approximately 80% of these are primarily the result of nuclear adenylation coupled with rhythmic transcription. However, unique decay kinetics distinguish these mRNAs from other mRNAs that are transcribed rhythmically but do not exhibit poly(A) tail rhythms. The remaining 20% are uncoupled from transcription and exhibit poly(A) tail rhythms even though the steady-state mRNA levels are not rhythmic. These are under the control of rhythmic cytoplasmic polyadenylation, regulated at least in some cases by cytoplasmic polyadenylation element-binding proteins (CPEBs). Importantly, we found that the rhythmicity in poly(A) tail length is closely correlated with rhythmic protein expression, with a several-hour delay between the time of longest tail and the time of highest protein level. Our study demonstrates that the circadian clock regulates the dynamic polyadenylation status of mRNAs, which can result in rhythmic protein expression independent of the steady-state levels of the message.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
25
|
Wang Y, Taniguchi T. MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle 2012; 12:32-42. [PMID: 23255103 DOI: 10.4161/cc.23051] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The DNA damage response (DDR) pathways play critical roles in protecting the genome from DNA damage. Abrogation of DDR often results in elevated genomic instability and cellular sensitivity to DNA damaging agents. Many proteins involved in DDR are subjected to precise regulation at multiple levels, such as transcriptional control and posttranslational modifications, in response to DNA damage. MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. The expression levels of some miRNAs change in response to DNA damage. Some miRNAs, such as miR-24, 138, 96 and 182, have been implicated in DDR and/or DNA repair and affect cellular sensitivity to DNA damaging agents. In this review, we summarize recent findings related to the emerging roles of miRNAs in regulating DDR and DNA repair and discuss their potential in cancer therapy.
Collapse
Affiliation(s)
- Yemin Wang
- Howard Hughes Medical Institute, Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
26
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 489] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
27
|
Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation. Trends Genet 2012; 29:108-15. [PMID: 23218460 DOI: 10.1016/j.tig.2012.11.003] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 01/20/2023]
Abstract
N(6)-methyladenosine (m(6)A) is a ubiquitous modification in mRNA and other RNAs across most eukaryotes. For many years, however, the exact functions of m(6)A were not clearly understood. The discovery that the fat mass and obesity-associated protein (FTO) is an m(6)A demethylase indicates that this modification is reversible and dynamically regulated, suggesting that it has regulatory roles. In addition, it has been shown that m(6)A affects cell fate decisions in yeast and plant development. Recent affinity-based m(6)A profiling in mouse and human cells further showed that this modification is a widespread mark in coding and noncoding RNA (ncRNA) transcripts and is likely dynamically regulated throughout developmental processes. Therefore, reversible RNA methylation, analogous to reversible DNA and histone modifications, may affect gene expression and cell fate decisions by modulating multiple RNA-related cellular pathways, which potentially provides rapid responses to various cellular and environmental signals, including energy and nutrient availability in mammals.
Collapse
Affiliation(s)
- Guifang Jia
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
28
|
Abstract
In eukaryotic cells, many RNA species are exported from the nucleus to the cytoplasms. Different RNA species form distinct ribonucleoprotein (RNP) complexes for export, indicating specific RNA recognition by export proteins. Specific RNA recognition is usually achieved by specific RNA sequences or structures, but we have recently reported a molecular mechanism by which the formation of export RNP complexes is specified by RNA length. ( 1) RNA polymerase II (Pol II) synthesizes not only mRNAs but also shorter RNAs, including spliceosomal U snRNAs. Although the key U snRNA export factor, PHAX, can bind to mRNA in vitro, PHAX is excluded from mRNA in vivo. The heterotetramer of the heterogeneous nuclear RNP (hnRNP) C1/C2 specifically binds Pol II transcripts longer than 200-300 nt, and funnels them into the mRNA export pathway by inhibiting their binding by PHAX, whereas shorter transcripts not bound by the heterotetramer are committed to the U snRNA export pathway. Although this finding reveals a novel function of the C1/C2 heterotetramer and highlights the biological importance of RNA recognition by length, it has raised a number of new questions, some of which will be discussed in this article, together with some historical background of this finding.
Collapse
Affiliation(s)
- Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| |
Collapse
|
29
|
Morgan CP, Bale TL. Sex differences in microRNA regulation of gene expression: no smoke, just miRs. Biol Sex Differ 2012; 3:22. [PMID: 23009289 PMCID: PMC3507674 DOI: 10.1186/2042-6410-3-22] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/22/2012] [Indexed: 11/10/2022] Open
Abstract
Males and females differ widely in morphology, physiology, and behavior leading to disparities in many health outcomes, including sex biases in the prevalence of many neurodevelopmental disorders. However, with the exception of a relatively small number of genes on the Y chromosome, males and females share a common genome. Therefore, sexual differentiation must in large part be a product of the sex biased expression of this shared genetic substrate. microRNAs (miRs) are small non-coding RNAs involved in the post-transcriptional regulation of up to 70% of protein-coding genes. The ability of miRs to regulate such a vast amount of the genome with a high degree of specificity makes them perfectly poised to play a critical role in programming of the sexually dimorphic brain. This review describes those characteristics of miRs that make them particularly amenable to this task, and examines the influences of both the sex chromosome complement as well as gonadal hormones on their regulation. Exploring miRs in the context of sex differences in disease, particularly in sex-biased neurodevelopmental disorders, may provide novel insight into the pathophysiology and potential therapeutic targets in disease treatment and prevention.
Collapse
Affiliation(s)
- Christopher P Morgan
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Ste, 201E, Philadelphia, PA, 19104-6046, USA.
| | | |
Collapse
|
30
|
Ribas J, Ni X, Castanares M, Liu MM, Esopi D, Yegnasubramanian S, Rodriguez R, Mendell JT, Lupold SE. A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts. Nucleic Acids Res 2012; 40:6821-33. [PMID: 22505577 PMCID: PMC3413119 DOI: 10.1093/nar/gks308] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 12/20/2022] Open
Abstract
miR-21 is the most commonly over-expressed microRNA (miRNA) in cancer and a proven oncogene. Hsa-miR-21 is located on chromosome 17q23.2, immediately downstream of the vacuole membrane protein-1 (VMP1) gene, also known as TMEM49. VMP1 transcripts initiate ∼ 130 kb upstream of miR-21, are spliced, and polyadenylated only a few hundred base pairs upstream of the miR-21 hairpin. On the other hand, primary miR-21 transcripts (pri-miR-21) originate within the last introns of VMP1, but bypass VMP1 polyadenylation signals to include the miR-21 hairpin. Here, we report that VMP1 transcripts can also bypass these polyadenylation signals to include miR-21, thus providing a novel and independently regulated source of miR-21, termed VMP1-miR-21. Northern blotting, gene-specific RT-PCR, RNA pull-down and DNA branching assays support that VMP1-miR-21 is expressed at significant levels in a number of cancer cell lines and that it is processed by the Microprocessor complex to produce mature miR-21. VMP1 and pri-miR-21 are induced by common stimuli, such as phorbol-12-myristate-13-acetate (PMA) and androgens, but show differential responses to some stimuli such as epigenetic modifying agents. Collectively, these results indicate that miR-21 is a unique miRNA capable of being regulated by alternative polyadenylation and two independent gene promoters.
Collapse
Affiliation(s)
- Judit Ribas
- The James Buchannan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA, Pharmacology Unit, Department of Experimental Medicine, University of Lleida, 25198 Lleida, Catalonia, Spain, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231 and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390–9148, USA
| | - Xiaohua Ni
- The James Buchannan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA, Pharmacology Unit, Department of Experimental Medicine, University of Lleida, 25198 Lleida, Catalonia, Spain, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231 and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390–9148, USA
| | - Mark Castanares
- The James Buchannan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA, Pharmacology Unit, Department of Experimental Medicine, University of Lleida, 25198 Lleida, Catalonia, Spain, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231 and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390–9148, USA
| | - Minzhi M. Liu
- The James Buchannan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA, Pharmacology Unit, Department of Experimental Medicine, University of Lleida, 25198 Lleida, Catalonia, Spain, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231 and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390–9148, USA
| | - David Esopi
- The James Buchannan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA, Pharmacology Unit, Department of Experimental Medicine, University of Lleida, 25198 Lleida, Catalonia, Spain, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231 and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390–9148, USA
| | - Srinivasan Yegnasubramanian
- The James Buchannan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA, Pharmacology Unit, Department of Experimental Medicine, University of Lleida, 25198 Lleida, Catalonia, Spain, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231 and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390–9148, USA
| | - Ronald Rodriguez
- The James Buchannan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA, Pharmacology Unit, Department of Experimental Medicine, University of Lleida, 25198 Lleida, Catalonia, Spain, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231 and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390–9148, USA
| | - Joshua T. Mendell
- The James Buchannan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA, Pharmacology Unit, Department of Experimental Medicine, University of Lleida, 25198 Lleida, Catalonia, Spain, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231 and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390–9148, USA
| | - Shawn E. Lupold
- The James Buchannan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA, Pharmacology Unit, Department of Experimental Medicine, University of Lleida, 25198 Lleida, Catalonia, Spain, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231 and Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390–9148, USA
| |
Collapse
|
31
|
Al-Quraishy S, Dkhil MA, Delic D, Abdel-Baki AA, Wunderlich F. Organ-specific testosterone-insensitive response of miRNA expression of C57BL/6 mice to Plasmodium chabaudi malaria. Parasitol Res 2012; 111:1093-101. [PMID: 22562236 DOI: 10.1007/s00436-012-2937-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Increasing evidence critically implicates miRNAs in the pathogenesis of diseases, but little is known in context with infectious diseases. This study investigates as to whether the testosterone-induced persistent susceptibility to blood-stage malaria of Plasmodium chabaudi coincides with changes in miRNA expression of the anti-malaria effectors sites spleen and liver. Female C57BL/6 mice were treated with vehicle or testosterone (T) for 3 weeks. Then, T treatment was discontinued for 12 weeks before challenge with 10(6) P. chabaudi-parasitized erythrocytes. The miRNA expression was examined after 12 weeks of T withdrawal and during infections at peak parasitemia on day 8 p.i. using miRXplore™ microarray technology. P. chabaudi infections induce an organ-specific response of miRNA expression. We can identify 25 miRNA species to be downregulated by more than 2-fold in the spleen and 169 miRNA species in the liver. Among these 194 miRNA species, there are 12 common miRNA species that are downregulated by 0.48-0.14-fold in both spleen and liver, which are miR-194, miR-192, miR-193A-3P, miR-145, miR-16, miR-99A, miR-99B, miR-15A, miR-152, let-7G, let-7B, and miR-455-3P. Only in the liver, there is an upregulation of the miR-142-5p by 2.5-fold and miR-342-3p by 5.1-fold. After 12 weeks of T withdrawal, the spleen exhibits only the miR-200A that is upregulated by 2.7-fold. In the liver, miR-376B, miR-493*, and miR-188-3P are upregulated by 2.4-fold, 2.2-fold, and 2.1-fold, respectively, and miR-347, miR-200A, and miR-200B are downregulated by approximately 0.4-fold. Upon infection, however, these changes are not sustained, i.e., the miRNA expressions of both spleen and liver of T-pretreated mice exhibit the same response to P. chabaudi malaria as that of vehicle-treated control mice. Our data suggest (1) that the P. chabaudi-induced downregulation of miRNA expression in spleen and liver is required to allow the upregulation of their numerous target genes in response to infection, and (2) that the T-induced persistent susceptibility to P. chabaudi does not affect the responsiveness of miRNA expression in spleen and liver to blood-stage malaria.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
32
|
McCloskey A, Taniguchi I, Shinmyozu K, Ohno M. hnRNP C tetramer measures RNA length to classify RNA polymerase II transcripts for export. Science 2012; 335:1643-6. [PMID: 22461616 DOI: 10.1126/science.1218469] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Specific RNA recognition is usually achieved by specific RNA sequences and/or structures. However, we show here a mechanism by which RNA polymerase II (Pol II) transcripts are classified according to their length. The heterotetramer of the heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2 measures the length of the transcripts like a molecular ruler, by selectively binding to the unstructured RNA regions longer than 200 to 300 nucleotides. Thus, the tetramer sorts the transcripts into two RNA categories, to be exported as either messenger RNA or uridine-rich small nuclear RNA (U snRNA), depending on whether or not they are longer than the threshold, respectively. Our findings reveal a new function of the C tetramer and highlight the biological importance of RNA recognition by the length.
Collapse
Affiliation(s)
- Asako McCloskey
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
33
|
Mondou E, Dufort I, Gohin M, Fournier E, Sirard MA. Analysis of microRNAs and their precursors in bovine early embryonic development. Mol Hum Reprod 2012; 18:425-34. [PMID: 22491901 DOI: 10.1093/molehr/gas015] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In animals, the maternal-to-embryonic transition (MET) occurs in the first days of early development and involves the degradation of maternal transcripts that have been stored during oogenesis. Moreover, precise and specific control mechanisms govern the adequate synchronization of the MET events to promote the activation of the embryonic genome. These mechanisms are not well understood, but it is believed that microRNAs (miRNAs) could be one of the mechanisms involved. After a microarray screening study, we analysed the expression of specific miRNA during oocyte maturation and early embryo development until preimplantation stages. Two differentially expressed candidates were selected for further analysis. Mature and precursor forms of miR-21 and miR-130a were quantified by qRT-PCR in pools of 20 oocytes at GV (germinal vesicle), GV breakdown and metaphase II stages as well as in pools of embryos at the 2-cell, 4-cell, 8-cell and blastocyst stages. The results showed a linear increase during the 1-8 cell stage for the mature forms of miR-130a and miR-21 (P < 0.05 and P < 0.003, respectively) and for the precursor form of miR-130a (P < 0.002). To see if this increase was due to minor transcriptional activity, 2-cell embryos were exposed to α-amanitin for 30-34 h. Results showed a significant decrease in miR-21, pre-miR-21, miR-130a and SRFS3 in α-amanitin-treated embryos (P < 0.05). Considering the potential regulatory role of these miRNA, the bovine genome was screened to identify putative targets with a 3'UTR exact seed match. This study suggests that miRNAs could be important players in the MET, as expression profiles suggest a potential regulation role during early development steps.
Collapse
Affiliation(s)
- E Mondou
- Centre de recherche en biologie de la reproduction, Faculté des sciences de l'agriculture et de l'alimentation, Département des Sciences Animales, INAF, Pavillon des services, Université Laval, QC, Canada G1V 0A6
| | | | | | | | | |
Collapse
|
34
|
Hajheidari M, Farrona S, Huettel B, Koncz Z, Koncz C. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. THE PLANT CELL 2012; 24:1626-1642. [PMID: 22547781 PMCID: PMC3398568 DOI: 10.1105/tpc.112.096834;pmid:2254778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/01/2012] [Accepted: 04/11/2012] [Indexed: 05/29/2023]
Abstract
Phosphorylation of conserved Y₁S₂P₃T₄S₅P₆S₇ repeats in the C-terminal domain of largest subunit of RNA polymerase II (RNAPII CTD) plays a central role in the regulation of transcription and cotranscriptional RNA processing. Here, we show that Ser phosphorylation of Arabidopsis thaliana RNAPII CTD is governed by CYCLIN-DEPENDENT KINASE F;1 (CDKF;1), a unique plant-specific CTD S₇-kinase. CDKF;1 is required for in vivo activation of functionally redundant CYCLIN-DEPENDENT KINASE Ds (CDKDs), which are major CTD S₅-kinases that also phosphorylate in vitro the S₂ and S₇ CTD residues. Inactivation of CDKF;1 causes extreme dwarfism and sterility. Inhibition of CTD S₇-phosphorylation in germinating cdkf;1 seedlings is accompanied by 3'-polyadenylation defects of pre-microRNAs and transcripts encoding key regulators of small RNA biogenesis pathways. The cdkf;1 mutation also decreases the levels of both precursor and mature small RNAs without causing global downregulation of the protein-coding transcriptome and enhances the removal of introns that carry pre-microRNA stem-loops. A triple cdkd knockout mutant is not viable, but a combination of null and weak cdkd;3 alleles in a triple cdkd123* mutant permits semidwarf growth. Germinating cdkd123* seedlings show reduced CTD S₅-phosphorylation, accumulation of uncapped precursor microRNAs, and a parallel decrease in mature microRNA. During later development of cdkd123* seedlings, however, S₇-phosphorylation and unprocessed small RNA levels decline similarly as in the cdkf;1 mutant. Taken together, cotranscriptional processing and stability of a set of small RNAs and transcripts involved in their biogenesis are sensitive to changes in the phosphorylation of RNAPII CTD by CDKF;1 and CDKDs.
Collapse
MESH Headings
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biosynthetic Pathways/genetics
- Cyclin-Dependent Kinases/metabolism
- Down-Regulation/genetics
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mutation/genetics
- Nucleic Acid Hybridization
- Phosphorylation
- Phosphoserine/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary
- RNA Caps/metabolism
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Untranslated/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Sara Farrona
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Bruno Huettel
- Max Planck Genome Centre, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6723 Szeged, Hungary
| |
Collapse
|
35
|
Hajheidari M, Farrona S, Huettel B, Koncz Z, Koncz C. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. THE PLANT CELL 2012; 24:1626-42. [PMID: 22547781 PMCID: PMC3398568 DOI: 10.1105/tpc.112.096834] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/01/2012] [Accepted: 04/11/2012] [Indexed: 05/19/2023]
Abstract
Phosphorylation of conserved Y₁S₂P₃T₄S₅P₆S₇ repeats in the C-terminal domain of largest subunit of RNA polymerase II (RNAPII CTD) plays a central role in the regulation of transcription and cotranscriptional RNA processing. Here, we show that Ser phosphorylation of Arabidopsis thaliana RNAPII CTD is governed by CYCLIN-DEPENDENT KINASE F;1 (CDKF;1), a unique plant-specific CTD S₇-kinase. CDKF;1 is required for in vivo activation of functionally redundant CYCLIN-DEPENDENT KINASE Ds (CDKDs), which are major CTD S₅-kinases that also phosphorylate in vitro the S₂ and S₇ CTD residues. Inactivation of CDKF;1 causes extreme dwarfism and sterility. Inhibition of CTD S₇-phosphorylation in germinating cdkf;1 seedlings is accompanied by 3'-polyadenylation defects of pre-microRNAs and transcripts encoding key regulators of small RNA biogenesis pathways. The cdkf;1 mutation also decreases the levels of both precursor and mature small RNAs without causing global downregulation of the protein-coding transcriptome and enhances the removal of introns that carry pre-microRNA stem-loops. A triple cdkd knockout mutant is not viable, but a combination of null and weak cdkd;3 alleles in a triple cdkd123* mutant permits semidwarf growth. Germinating cdkd123* seedlings show reduced CTD S₅-phosphorylation, accumulation of uncapped precursor microRNAs, and a parallel decrease in mature microRNA. During later development of cdkd123* seedlings, however, S₇-phosphorylation and unprocessed small RNA levels decline similarly as in the cdkf;1 mutant. Taken together, cotranscriptional processing and stability of a set of small RNAs and transcripts involved in their biogenesis are sensitive to changes in the phosphorylation of RNAPII CTD by CDKF;1 and CDKDs.
Collapse
MESH Headings
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biosynthetic Pathways/genetics
- Cyclin-Dependent Kinases/metabolism
- Down-Regulation/genetics
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mutation/genetics
- Nucleic Acid Hybridization
- Phosphorylation
- Phosphoserine/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary
- RNA Caps/metabolism
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Untranslated/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Sara Farrona
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Bruno Huettel
- Max Planck Genome Centre, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H-6723 Szeged, Hungary
- Address correspondence to
| |
Collapse
|
36
|
Gruber JJ, Olejniczak SH, Yong J, La Rocca G, Dreyfuss G, Thompson CB. Ars2 promotes proper replication-dependent histone mRNA 3' end formation. Mol Cell 2012; 45:87-98. [PMID: 22244333 DOI: 10.1016/j.molcel.2011.12.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 10/11/2011] [Accepted: 12/23/2011] [Indexed: 12/23/2022]
Abstract
Ars2 is a component of the nuclear cap-binding complex that contributes to microRNA biogenesis and is required for cellular proliferation. Here, we expand on the repertoire of Ars2-dependent microRNAs and determine that Ars2 regulates a number of mRNAs, the largest defined subset of which code for histones. Histone mRNAs are unique among mammalian mRNAs because they are not normally polyadenylated but, rather, are cleaved following a 3' stem loop. A significant reduction in correctly processed histone mRNAs was observed following Ars2 depletion, concurrent with an increase in polyadenylated histone transcripts. Furthermore, Ars2 physically associated with histone mRNAs and the noncoding RNA 7SK. Knockdown of 7SK led to an enhanced ratio of cleaved to polyadenylated histone transcripts, an effect dependent on Ars2. Together, the data demonstrate that Ars2 contributes to histone mRNA 3' end formation and expression and these functional properties of Ars2 are negatively regulated by interaction with 7SK RNA.
Collapse
Affiliation(s)
- Joshua J Gruber
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
37
|
Huang Y. A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:483-94. [PMID: 22467269 DOI: 10.1002/wrna.1112] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Lin28 is an evolutionarily conserved RNA-binding protein that plays important roles in development, pluripotency, tumorigenesis, and metabolism. Emerging evidence suggests that the pleiotropic roles of Lin28 in the diverse physiological and pathological processes are mechanistically linked to its ability to modulate not only the biogenesis of miRNAs, particularly the let-7 family miRNAs, but also the translation of mRNAs important for cell growth and metabolism. Let-7 negatively regulates the translation of oncogenes, cell cycle regulators, and metabolic pathway components. Lin28 relieves this repression by blocking the production of mature let-7. Lin28 binds to the terminal loops of let-7 precursors, leading to inhibition of processing and the induction of uridylation and precursor degradation. Lin28 also is a direct translational regulator: it selectively binds to a cohort of mRNAs and stimulates their translation. Recent advances in our understanding of Lin28-mediated mechanisms of posttranscriptional regulation of gene expression reveal important roles of this protein in the fields of development, stem cells, metabolic diseases, and cancer.
Collapse
Affiliation(s)
- Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Bellemer C, Bortolin-Cavaillé ML, Schmidt U, Jensen SMR, Kjems J, Bertrand E, Cavaillé J. Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes. J Cell Sci 2012; 125:2709-20. [PMID: 22393237 DOI: 10.1242/jcs.100354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nuclear primary microRNA (pri-miRNA) processing catalyzed by the DGCR8-Drosha (Microprocessor) complex is highly regulated. Little is known, however, about how microRNA biogenesis is spatially organized within the mammalian nucleus. Here, we image for the first time, in living cells and at the level of a single microRNA cluster, the intranuclear distribution of untagged, endogenously-expressed pri-miRNAs generated at the human imprinted chromosome 19 microRNA cluster (C19MC), from the environment of transcription sites to single molecules of fully released DGCR8-bound pri-miRNAs dispersed throughout the nucleoplasm. We report that a large fraction of Microprocessor concentrates onto unspliced C19MC pri-miRNA deposited in close proximity to their genes. Our live-cell imaging studies provide direct visual evidence that DGCR8 and Drosha are targeted post-transcriptionally to C19MC pri-miRNAs as a preformed complex but dissociate separately. These dynamics support the view that, upon pri-miRNA loading and most probably concomitantly with Drosha-mediated cleavages, Microprocessor undergoes conformational changes that trigger the release of Drosha while DGCR8 remains stably bound to pri-miRNA.
Collapse
Affiliation(s)
- Clément Bellemer
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Université Paul Sabatier (UPS), Université de Toulouse, 31000 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Nag A, Steitz JA. Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing. RNA Biol 2012; 9:334-42. [PMID: 22336707 PMCID: PMC3384585 DOI: 10.4161/rna.19431] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nuclear RNA decay factors are involved in many different pathways including rRNA processing, snRNA and snoRNA biogenesis, pre-mRNA processing, and the rapid decay of cryptic intergenic transcripts. In contrast to its yeast counterpart, the mammalian nuclear decay machinery is largely uncharacterized. Here we report interactions of several putative components of the human nuclear RNA decay machinery, including the TRAMP complex protein Mtr4 and the nuclear exosome constituents PM/Scl-100 and PM/Scl-75, with components of the U4/U6.U5 tri-snRNP complex required for pre-mRNA splicing. The tri-snRNP component Prp31 interacts indirectly with Mtr4 and PM/Scl-100 in a manner that is dependent on the phosphorylation sites in the middle of the protein, while Prp3 and Prp4 interact with the nuclear decay complex independent of Prp31. Together our results suggest recruitment of the nuclear decay machinery to the spliceosome to ensure production of properly spliced mRNA.
Collapse
Affiliation(s)
- Anita Nag
- Department of Molecular Biophysics and Biochemistry-MB&B, Howard Hughes Medical Institute-HHMI, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT, USA
| | | |
Collapse
|
40
|
Fujimoto S, Seebart C, Guastafierro T, Prenni J, Caiafa P, Zlatanova J. Proteome analysis of protein partners to nucleosomes containing canonical H2A or the variant histones H2A.Z or H2A.X. Biol Chem 2012; 393:47-61. [DOI: 10.1515/bc-2011-216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/21/2011] [Indexed: 12/14/2022]
Abstract
Abstract
Although the existence of histone variants has been known for quite some time, only recently are we grasping the breadth and diversity of the cellular processes in which they are involved. Of particular interest are the two variants of histone H2A, H2A.Z and H2A.X because of their roles in regulation of gene expression and in DNA double-strand break repair, respectively. We hypothesize that nucleosomes containing these variants may perform their distinct functions by interacting with different sets of proteins. Here, we present our proteome analysis aimed at identifying protein partners that interact with nucleosomes containing H2A.Z, H2A.X or their canonical H2A counterpart. Our development of a nucleosome-pull down assay and analysis of the recovered nucleosome-interacting proteins by mass spectrometry allowed us to directly compare nuclear partners of these variant-containing nucleosomes to those containing canonical H2A. To our knowledge, our data represent the first systematic analysis of the H2A.Z and H2A.X interactome in the context of nucleosome structure.
Collapse
|
41
|
Lüscher B, Vervoorts J. Regulation of gene transcription by the oncoprotein MYC. Gene 2011; 494:145-60. [PMID: 22227497 DOI: 10.1016/j.gene.2011.12.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/27/2011] [Accepted: 12/15/2011] [Indexed: 02/07/2023]
Abstract
The proteins of the MYC/MAX/MAD network are central regulators of many key processes associated with basic cell physiology. These include the regulation of protein biosynthesis, energy metabolism, proliferation, and apoptosis. Molecularly the MYC/MAX/MAD network achieves these broad activities by controlling the expression of many target genes, which are primarily responsible for the diverse physiological consequences elicited by the network. The MYC proteins of the network possess oncogenic activity and their functional deregulation is associated with the majority of human tumors. Over the last years we have witnessed the accumulation of a considerable number of molecular observations that suggest many different biochemical means and tools by which MYC controls gene expression. We will summarize the more recent findings and discuss how these different building blocks might come together to explain how MYC regulates gene transcription. We note that despite the many molecular details known, we do not have an integrated view of how MYC uses the different tools, neither in a spatial nor in a temporal order.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany.
| | | |
Collapse
|
42
|
Yu F, Cui Y, Zhou X, Zhang X, Han J. Osteogenic differentiation of human ligament fibroblasts induced by conditioned medium of osteoclast-like cells. Biosci Trends 2011; 5:46-51. [PMID: 21572246 DOI: 10.5582/bst.2011.v5.2.46] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteoclasts secrete factors that may promote mesenchymal stem cell mineralization in vitro. Fibroblasts are the most common cells in connective tissue and are involved in the process of exotic ossification in many diseases such as ankylosing spondylitis. The purpose of this study was to investigate whether osteoclast-like cells would induce the osteogenic differentiation of fibroblasts in vitro. In the present study, osteoclast-like cells (OLCs) were generated by CD14(+) cells from human peripheral blood. Fibroblasts were primarily cultured from spinal ligaments. After treatment with conditioned medium of OLCs, the level of alkaline phosphatase (ALP) and mineralization of fibroblasts increased significantly. cDNA microarray analysis identified a set of differentially expressed mRNA associated with signal transduction, cell differentiation, and bone formation, and microarray analysis of microRNA expression profiles revealed a group of microRNAs, including hsa-miR-20a, hsa-miR-300, hsa-miR-185, hsa-miR-30d, hsa-miR-320a, hsamiR- 130b, hsa-miR-33a, hsa-miR-155, and hsa-miR-222, that were significantly downregulated. These microRNAs were predicted to have an inhibitory effect on genes associated with osteogenic differentiation, such as BMP2, Osteocalcin, and Runx2. The current results suggest that osteoclasts might induce the osteogenic differentiation of fibroblasts in vitro and that miRNA may play an important role in regulation of the cell-cell interaction between osteoclasts and fibroblasts.
Collapse
Affiliation(s)
- Fangcang Yu
- Shandong Academy of Medical Sciences, Shandong Medical Biotechnological Center, Key Laboratory for Biotech Drugs of the Ministry of Health, Ji'nan, China
| | | | | | | | | |
Collapse
|
43
|
Hummel R, Maurer J, Haier J. MicroRNAs in brain tumors : a new diagnostic and therapeutic perspective? Mol Neurobiol 2011; 44:223-34. [PMID: 21739238 DOI: 10.1007/s12035-011-8197-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/24/2011] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs, miRs) are small, non-coding RNA molecules that regulate gene expression posttranscriptionally. Although discovered only recently in the early 1990s, this relatively new group of molecules has already been proven to play an essential role in the regulation of many physiological and, most importantly, pathological processes such as cancer. A large number of miRNAs has been found to be involved in the pathogenesis of various human malignancies, and expression of miRNAs has been demonstrated to correlate with clinic and outcome. In tumors of the brain, however, the investigations on the role of miRNAs are still in its infancy, and most publications refer to the most common primary brain tumor, the glioma (mostly glioblastoma). But despite the fact that there is only limited data available so far, these first results are very promising and implicate that miRNAs might open a new perspective for diagnostics and treatment of this disease. With this review article, we aim to provide a short overview of miRNA biogenesis, function and regulation in general. Thereafter, the clinical relevant data about miRNAs in the two most common primary malignant brain tumors in adults (glioblastomas) and children (medulloblastomas) will be summarized, and their potential impact on diagnostics and treatment will be highlighted.
Collapse
Affiliation(s)
- Richard Hummel
- Department of General and Visceral Surgery, University of Muenster, Waldeyerstrasse 1, Muenster, Germany.
| | | | | |
Collapse
|
44
|
miRNA response to DNA damage. Trends Biochem Sci 2011; 36:478-84. [PMID: 21741842 DOI: 10.1016/j.tibs.2011.06.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/26/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022]
Abstract
Faithful transmission of genetic material in eukaryotic cells requires not only accurate DNA replication and chromosome distribution but also the ability to sense and repair spontaneous and induced DNA damage. To maintain genomic integrity, cells undergo a DNA damage response using a complex network of signaling pathways composed of coordinate sensors, transducers and effectors in cell cycle arrest, apoptosis and DNA repair. Emerging evidence has suggested that miRNAs play a crucial role in regulation of DNA damage response. In this review, we discuss the recent findings on how miRNAs interact with the canonical DNA damage response and how miRNA expression is regulated after DNA damage.
Collapse
|
45
|
Singh NN, Singh RN. Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model. RNA Biol 2011; 8:600-6. [PMID: 21654213 DOI: 10.4161/rna.8.4.16224] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene: SMN1 and SMN2. The two SMN genes code for identical proteins; however, SMN2 predominantly generates a shorter transcript due to skipping of exon 7, the last coding exon. Skipping of SMN2 exon 7 leads to production of a truncated SMN protein that is highly unstable. The inability of SMN2 to compensate for the loss of SMN1 results in spinal muscular atrophy (SMA), the second most prevalent genetic cause of infant mortality. Since SMN2 is almost universally present in SMA patients, correction of SMN2 exon 7 splicing holds the promise for cure. Consistently, SMN2 exon 7 splicing has emerged as one of the best studied splicing systems in humans. The vast amount of recent literature provides a clue that SMN2 exon 7 splicing is regulated by an intron definition mechanism, which does not require cross-exon communication as prerequisite for exon inclusion. Our conclusion is based on the prominent role of intronic cis-elements, some of them have emerged as the frontrunners among potential therapeutic targets of SMA. Further, the widely expressed T-cell-restricted intracellular antigen-1 (TIA1), a member of the Q-rich domain containing RNA-binding proteins, has recently been found to regulate SMN exon 7 splicing by binding to intron 7 sequences away from the 5′ ss. These findings make a strong argument for an "intron definition model", according to which regulatory sequences within a downstream intron are capable of enforcing exon inclusion even in the absence of a defined upstream 3′ ss of an alternatively spliced exon.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences Iowa State University, Ames, IA, USA
| | | |
Collapse
|
46
|
Abstract
The DNA damage response (DDR) is a signal transduction pathway that decides the cell's fate either to repair DNA damage or to undergo apoptosis if there is too much damage. Post-translational modifications modulate the assembly and activity of protein complexes during the DDR pathways. MicroRNAs (miRNAs) are emerging as a class of endogenous gene modulators that control protein levels, thereby adding a new layer of regulation to the DDR. In this review, we describe a new role for miRNAs in regulating the cellular response to DNA damage with a focus on DNA double-strand break damage. We also discuss the implications of miRNA's role in the DDR to stem cells, including embryonic stem cells and cancer stem cells, stressing the potential applications for miRNAs to be used as sensitizers for cancer radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Hailiang Hu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | - Richard A. Gatti
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| |
Collapse
|
47
|
A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A 2011; 108:9863-8. [PMID: 21628588 DOI: 10.1073/pnas.1018493108] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lineage progression in osteoblasts and chondrocytes is stringently controlled by the cell-fate-determining transcription factor Runx2. In this study, we directly addressed whether microRNAs (miRNAs) can control the osteogenic activity of Runx2 and affect osteoblast maturation. A panel of 11 Runx2-targeting miRNAs (miR-23a, miR-30c, miR-34c, miR-133a, miR-135a, miR-137, miR-204, miR-205, miR-217, miR-218, and miR-338) is expressed in a lineage-related pattern in mesenchymal cell types. During both osteogenic and chondrogenic differentiation, these miRNAs, in general, are inversely expressed relative to Runx2. Based on 3'UTR luciferase reporter, immunoblot, and mRNA stability assays, each miRNA directly attenuates Runx2 protein accumulation. Runx2-targeting miRNAs differentially inhibit Runx2 protein expression in osteoblasts and chondrocytes and display different efficacies. Thus, cellular context contributes to miRNA-mediated regulation of Runx2. All Runx2-targeting miRNAs (except miR-218) significantly impede osteoblast differentiation, and their effects can be reversed by the corresponding anti-miRNAs. These findings demonstrate that osteoblastogenesis is limited by an elaborate network of functionally tested miRNAs that directly target the osteogenic master regulator Runx2.
Collapse
|
48
|
Danckwardt S, Gantzert AS, Macher-Goeppinger S, Probst HC, Gentzel M, Wilm M, Gröne HJ, Schirmacher P, Hentze MW, Kulozik AE. p38 MAPK controls prothrombin expression by regulated RNA 3' end processing. Mol Cell 2011; 41:298-310. [PMID: 21292162 DOI: 10.1016/j.molcel.2010.12.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/10/2010] [Accepted: 12/23/2010] [Indexed: 12/16/2022]
Abstract
Thrombin is a key protease involved in blood coagulation, complement activation, inflammation, angiogenesis, and tumor invasion. Although induced in many (patho-)physiological conditions, the underlying mechanisms controlling prothrombin expression remained enigmatic. We have now discovered that prothrombin expression is regulated by a posttranscriptional regulatory mechanism responding to stress and inflammation. This mechanism is triggered by external stimuli that activate p38 MAPK. In turn, p38 MAPK upmodulates canonical 3' end processing components and phosphorylates the RNA-binding proteins FBP2 and FBP3, which inhibit 3' end processing of mRNAs, such as prothrombin mRNA, that bear a defined upstream sequence element (USE) in their 3'UTRs. Upon phosphorylation, FBP2 and FBP3 dissociate from the USE, making it accessible to proteins that stimulate 3' end processing. We provide in vivo evidence suggesting the importance of this mechanism in inflammatory hypercoagulation and tumor invasion. Regulated 3' end processing thus emerges as a key mechanism of gene regulation with broad biological and medical implications.
Collapse
Affiliation(s)
- Sven Danckwardt
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Goff SA. A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding. THE NEW PHYTOLOGIST 2011; 189:923-937. [PMID: 21166808 DOI: 10.1111/j.1469-8137.2010.03574.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hybrids between genetically diverse varieties display enhanced growth, and increased total biomass, stress resistance and grain yield. Gene expression and metabolic studies in maize, rice and other species suggest that protein metabolism plays a role in the growth differences between hybrids and inbreds. Single trait heterosis can be explained by the existing theories of dominance, overdominance and epistasis. General multigenic heterosis is observed in a wide variety of different species and is likely to share a common underlying biological mechanism. This review presents a model to explain differences in growth and yield caused by general multigenic heterosis. The model describes multigenic heterosis in terms of energy-use efficiency and faster cell cycle progression where hybrids have more efficient growth than inbreds because of differences in protein metabolism. The proposed model is consistent with the observed variation of gene expression in different pairs of inbred lines and hybrid offspring as well as growth differences in polyploids and aneuploids. It also suggests an approach to enhance yield gains in both hybrid and inbred crops via the creation of an appropriate computational analysis pipeline coupled to an efficient molecular breeding program.
Collapse
Affiliation(s)
- Stephen A Goff
- iPlant Collaborative, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
50
|
Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011; 53:209-18. [PMID: 20890893 DOI: 10.1002/hep.23922] [Citation(s) in RCA: 634] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 08/06/2010] [Indexed: 12/12/2022]
Abstract
UNLABELLED Liver fibrosis is orchestrated by a complex network of signaling pathways regulating the deposition of extracellular matrix proteins during fibrogenesis. MicroRNAs (miRNAs) represent a family of small noncoding RNAs controlling translation and transcription of many genes. Recently, miRNAs have been suggested to crucially modulate cellular processes in the liver such as hepatocarcinogenesis. However, their role in liver fibrosis is not well understood. We systematically analyzed the regulation of miRNAs in a mouse model of carbon tetrachloride-induced hepatic fibrogenesis (CCl(4) ) by gene array analysis, which revealed a panel of miRNA that were specifically regulated in livers of mice undergoing hepatic fibrosis. Within those, all three members of the miR-29-family were significantly down-regulated in livers of CCl(4) -treated mice as well as in mice that underwent bile duct ligation. Specific regulation of miR-29 members in murine fibrosis models correlated with lower expression of miR-29 in livers from patients with advanced liver fibrosis. Moreover, patients with advanced liver cirrhosis showed significantly lower levels of miR-29a in their serum when compared with healthy controls or patients with early fibrosis. On a cellular level, down-regulation of miR-29 in murine hepatic stellate cells (HSCs) was mediated by transforming growth factor beta (TGF-β) as well as inflammatory signals, namely, lipopolysaccharide (LPS) and nuclear factor kappa B (NF-κB). Furthermore, overexpression of miR-29b in murine HSC resulted in down-regulation of collagen expression. CONCLUSION Our data indicate that miR-29 mediates the regulation of liver fibrosis and is part of a signaling nexus involving TGF-β- and NF-κB-dependent down-regulation of miR-29 family members in HSC with subsequent up-regulation of extracellular matrix genes. Thus they may represent targets for novel therapeutic strategies against hepatic fibrogenesis and also might evolve as biomarkers in the diagnosis of liver fibrosis.
Collapse
Affiliation(s)
- Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|