1
|
Shi Z, Mao L, Chen S, Du Z, Xiang J, Shi M, Wang Y, Wang Y, Chen X, Xu Z, Gao Y. Reversing Persistent PTEN Activation after Traumatic Brain Injury Fuels Long-Term Axonal Regeneration via Akt/mTORC1 Signaling Cascade. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410136. [PMID: 39680734 PMCID: PMC11809353 DOI: 10.1002/advs.202410136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/24/2024] [Indexed: 12/18/2024]
Abstract
Traumatic brain injury (TBI) often leads to enduring axonal damage and persistent neurological deficits. While PTEN's role in neuronal growth is recognized, its long-term activation changes post-TBI and its effects on sensory-motor circuits are not well understood. Here, it is demonstrated that the neuronal knockout of PTEN (PTEN-nKO) significantly enhances both structural and functional recovery over the long term after TBI. Importantly, in vivo, DTI-MRI revealed that PTEN-nKO promotes white matter repair post-TBI. Additionally, calcium imaging and electromyographic recordings indicated that PTEN-nKO facilitates cortical remapping and restores sensory-motor pathways. Mechanistically, PTEN negatively regulates the Akt/mTOR pathway by inhibiting Akt, thereby suppressing mTOR. Raptor is a key component of mTORC1 and its suppression impedes axonal regeneration. The restoration of white matter integrity and the improvements in neural function observed in PTEN-nKO TBI-treated mice are reversed by a PTEN/Raptor double knockout (PTEN/Raptor D-nKO), suggesting that mTORC1 acts as a key mediator. These findings highlight persistent alterations in the PTEN/Akt/mTORC1 axis are critical for neural circuit remodeling and cortical remapping post-TBI, offering new insights into TBI pathophysiology and potential therapeutic targets.
Collapse
Affiliation(s)
- Ziyu Shi
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Scienceand Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Leilei Mao
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Scienceand Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Shuning Chen
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Scienceand Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Zhuoying Du
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Jiakun Xiang
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Scienceand Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Minghong Shi
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Scienceand Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yana Wang
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Scienceand Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yuqing Wang
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Scienceand Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xingdong Chen
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Scienceand Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Zhi‐Xiang Xu
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Scienceand Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yanqin Gao
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Scienceand Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. Proc Natl Acad Sci U S A 2020; 117:20538-20548. [PMID: 32788364 DOI: 10.1073/pnas.2002964117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) levels are frequently found reduced in human cancers, but how PTEN is down-regulated is not fully understood. In addition, although a compelling connection exists between PRL (phosphatase of regenerating liver) 2 and cancer, how this phosphatase induces oncogenesis has been an enigma. Here, we discovered that PRL2 ablation inhibits PTEN heterozygosity-induced tumorigenesis. PRL2 deficiency elevates PTEN and attenuates AKT signaling, leading to decreased proliferation and increased apoptosis in tumors. We also found that high PRL2 expression is correlated with low PTEN level with reduced overall patient survival. Mechanistically, we identified PTEN as a putative PRL2 substrate and demonstrated that PRL2 down-regulates PTEN by dephosphorylating PTEN at Y336, thereby augmenting NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Given the strong cancer susceptibility to subtle reductions in PTEN, the ability of PRL2 to down-regulate PTEN provides a biochemical basis for its oncogenic propensity. The results also suggest that pharmacological targeting of PRL2 could provide a novel therapeutic strategy to restore PTEN, thereby obliterating PTEN deficiency-induced malignancies.
Collapse
|
3
|
Chen M, Nowak DG, Narula N, Robinson B, Watrud K, Ambrico A, Herzka TM, Zeeman ME, Minderer M, Zheng W, Ebbesen SH, Plafker KS, Stahlhut C, Wang VMY, Wills L, Nasar A, Castillo-Martin M, Cordon-Cardo C, Wilkinson JE, Powers S, Sordella R, Altorki NK, Mittal V, Stiles BM, Plafker SM, Trotman LC. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein. J Cell Biol 2017; 216:641-656. [PMID: 28193700 PMCID: PMC5350510 DOI: 10.1083/jcb.201604025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele.
Collapse
Affiliation(s)
- Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Dawid G Nowak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Navneet Narula
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brian Robinson
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Kaitlin Watrud
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Tali M Herzka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | | | - Wu Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Saya H Ebbesen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,The Watson School of Biological Sciences, Cold Spring Harbor, NY 11724
| | - Kendra S Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | | | - Lorna Wills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Abu Nasar
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | | | | | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Scott Powers
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brendon M Stiles
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Scott M Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | |
Collapse
|
4
|
Li S, Gao Y, Wang Y, Wang K, Dai ZP, Xu D, Liu W, Li ZL, Zhang ZD, Yang SH, Yang C. Serum microRNA-17 functions as a prognostic biomarker in osteosarcoma. Oncol Lett 2016; 12:4905-4910. [PMID: 28105199 PMCID: PMC5228414 DOI: 10.3892/ol.2016.5362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a class of small noncoding RNA molecules that have important roles in regulating the expression of target genes associated with the development and progression of cancer. The majority of miRNAs are expressed in a highly tissue- and region-specific manner, and released into the bloodstream as a consequences of different diseases. Furthermore, altered levels of miRNAs have been observed in several diseases, including cancer. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) demonstrated that circulating miR-17 levels were significantly upregulated in patients with osteosarcoma (OS) compared with healthy subjects. RT-qPCR also revealed that high levels of circulating miR-17 expression were inversely correlated with phosphatase and tensin homolog expression, which was identified as a target gene of miR-17 in OS tissues. Furthermore, the overall survival of patients with OS was shorter in those with high miR-17 expression compared with moderate and low expression. Taken together, these findings indicate that miR-17 may function as a useful diagnostic and prognosis biomarker or therapeutic target of OS.
Collapse
Affiliation(s)
- Shuai Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yong Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yan Wang
- Section of Physical Education, China University of Geosciences, Wuhan, Hubei 430074, P.R. China
| | - Kun Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhi-Peng Dai
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhi-Liang Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zheng-Dong Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shu-Hua Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
5
|
Naguib A. Following the trail of lipids: Signals initiated by PI3K function at multiple cellular membranes. Sci Signal 2016; 9:re4. [DOI: 10.1126/scisignal.aad7885] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Carmichael ST. Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann Neurol 2016; 79:895-906. [PMID: 27043816 PMCID: PMC4884133 DOI: 10.1002/ana.24653] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022]
Abstract
Stroke is the leading cause of adult disability. The past decade has seen advances in basic science research of neural repair in stroke. The brain forms new connections after stroke, which have a causal role in recovery of function. Brain progenitors, including neuronal and glial progenitors, respond to stroke and initiate a partial formation of new neurons and glial cells. The molecular systems that underlie axonal sprouting, neurogenesis, and gliogenesis after stroke have recently been identified. Importantly, tractable drug targets exist within these molecular systems that might stimulate tissue repair. These basic science advances have taken the field to its first scientific milestone; the elemental principles of neural repair in stroke have been identified. The next stages in this field involve understanding how these elemental principles of recovery interact in the dynamic cellular systems of the repairing brain. Emergent principles arise out of the interaction of the fundamental or elemental principles in a system. In neural repair, the elemental principles of brain reorganization after stroke interact to generate higher order and distinct concepts of regenerative brain niches in cellular repair, neuronal networks in synaptic plasticity, and the distinction of molecular systems of neuroregeneration. Many of these emergent principles directly guide the development of new therapies, such as the necessity for spatial and temporal control in neural repair therapy delivery and the overlap of cancer and neural repair mechanisms. This review discusses the emergent principles of neural repair in stroke as they relate to scientific and therapeutic concepts in this field. Ann Neurol 2016;79:895–906
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA and UCLA Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods 2016; 77-78:3-10. [PMID: 25843297 DOI: 10.1016/j.ymeth.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/16/2023] Open
Abstract
The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented.
Collapse
Affiliation(s)
- Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
8
|
Chen M, Nowak DG, Trotman LC. Molecular pathways: PI3K pathway phosphatases as biomarkers for cancer prognosis and therapy. Clin Cancer Res 2015; 20:3057-63. [PMID: 24928944 DOI: 10.1158/1078-0432.ccr-12-3680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer research has seen tremendous changes over the past decade. Fast progress in sequencing technology has afforded us with landmark genetic alterations, which had immediate impact on clinical science and practice by pointing to new kinase targets, such as phosphoinositide 3-kinase (PI3K), the EGF receptor, or BRAF. The PI3K pathway for growth control has emerged as a prime example for both oncogene activation and tumor suppressor loss in cancer. Here, we discuss how therapy using PI3K pathway inhibitors could benefit from information on specific phosphatases, which naturally antagonize the kinase targets. This PI3K pathway is found mutated in most cancer types, including prostate, breast, colon, and brain tumors. The tumor-suppressing phosphatases operate at two levels. Lipid-level phosphatases, such as PTEN and INPP4B, revert PI3K activity to keep the lipid second messengers inactive. At the protein level, PHLPP1/2 protein phosphatases inactivate AKT kinase, thus antagonizing mTOR complex 2 activity. However, in contrast with their kinase counterparts the phosphatases are unlikely drug targets. They would need to be stimulated by therapy and are commonly deleted and mutated in cancer. Yet, because they occupy critical nodes in preventing cancer initiation and progression, the information on their status has tremendous potential in outcome prediction, and in matching the available kinase inhibitor repertoire with the right patients. Clin Cancer Res; 20(12); 3057-63. ©2014 AACR.
Collapse
Affiliation(s)
- Muhan Chen
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Dawid G Nowak
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Lloyd C Trotman
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
9
|
Naguib A, Bencze G, Cho H, Zheng W, Tocilj A, Elkayam E, Faehnle CR, Jaber N, Pratt CP, Chen M, Zong WX, Marks MS, Joshua-Tor L, Pappin DJ, Trotman LC. PTEN functions by recruitment to cytoplasmic vesicles. Mol Cell 2015; 58:255-68. [PMID: 25866245 DOI: 10.1016/j.molcel.2015.03.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/18/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
PTEN is proposed to function at the plasma membrane, where receptor tyrosine kinases are activated. However, the majority of PTEN is located throughout the cytoplasm. Here, we show that cytoplasmic PTEN is distributed along microtubules, tethered to vesicles via phosphatidylinositol 3-phosphate (PI(3)P), the signature lipid of endosomes. We demonstrate that the non-catalytic C2 domain of PTEN specifically binds PI(3)P through the CBR3 loop. Mutations render this loop incapable of PI(3)P binding and abrogate PTEN-mediated inhibition of PI 3-kinase/AKT signaling. This loss of function is rescued by fusion of the loop mutant PTEN to FYVE, the canonical PI(3)P binding domain, demonstrating the functional importance of targeting PTEN to endosomal membranes. Beyond revealing an upstream activation mechanism of PTEN, our data introduce the concept of PI 3-kinase signal activation on the vast plasma membrane that is contrasted by PTEN-mediated signal termination on the small, discrete surfaces of internalized vesicles.
Collapse
Affiliation(s)
- Adam Naguib
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gyula Bencze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hyejin Cho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wu Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ante Tocilj
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Elad Elkayam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Faehnle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nadia Jaber
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael S Marks
- Department of Pathology & Laboratory of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory of Medicine and Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
10
|
Abstract
Precise control of the balance between protein phosphorylation, catalyzed by protein kinases, and protein dephosphorylation, catalyzed by protein phosphatases, is essential for cellular homeostasis. Dysregulation of this balance leads to pathophysiological states, driving diseases such as cancer, heart disease, and diabetes. Aberrant phosphorylation of components of the pathways that control cell growth and cell survival are particularly prevalent in cancer. One of the most studied tumor suppressors in these pathways is the lipid phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome ten), which dephosphorylates the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3), thus preventing activation of the oncogenic kinase AKT (v-akt murine thymoma viral oncogene homolog). In 2005, the discovery of a family of protein phosphatases whose members directly dephosphorylate and inactivate AKT introduced a new negative regulator of the phosphoinositide 3-kinase (PI3K) oncogenic pathway. Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) isozymes comprise a novel tumor suppressor family whose two members, PHLPP1 and PHLPP2, are deleted as frequently as PTEN in cancers such as those of the prostate. PHLPP is thus a novel therapeutic target to suppress oncogenic pathways and is a potential candidate biomarker to stratify patients for the appropriate targeted therapeutics. This review discusses the role of PHLPP in terminating AKT signaling and how pharmacological intervention would impact this pathway.
Collapse
Affiliation(s)
- Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093;
| | | |
Collapse
|
11
|
Lima-Fernandes E, Misticone S, Boularan C, Paradis JS, Enslen H, Roux PP, Bouvier M, Baillie GS, Marullo S, Scott MGH. A biosensor to monitor dynamic regulation and function of tumour suppressor PTEN in living cells. Nat Commun 2014; 5:4431. [PMID: 25028204 DOI: 10.1038/ncomms5431] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023] Open
Abstract
Tumour suppressor PTEN is a phosphatase that negatively regulates the PI3K/AKT pathway. The ability to directly monitor PTEN conformation and function in a rapid, sensitive manner is a key step towards developing anti-cancer drugs aimed at enhancing or restoring PTEN-dependent pathways. Here we developed an intramolecular bioluminescence resonance energy transfer (BRET)-based biosensor, capable of detecting signal-dependent PTEN conformational changes in live cells. The biosensor retains intrinsic properties of PTEN, enabling structure-function and kinetic analyses. BRET shifts, indicating conformational change, were detected following mutations that disrupt intramolecular PTEN interactions, promoting plasma membrane targeting and also following physiological PTEN activation. Using the biosensor as a reporter, we uncovered PTEN activation by several G protein-coupled receptors, previously unknown as PTEN regulators. Trastuzumab, used to treat ERBB2-overexpressing breast cancers also elicited activation-associated PTEN conformational rearrangement. We propose the biosensor can be used to identify pathways regulating PTEN or molecules that enhance its anti-tumour activity.
Collapse
Affiliation(s)
- Evelyne Lima-Fernandes
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France [4]
| | - Stanislas Misticone
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France [4]
| | - Cédric Boularan
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France [4]
| | - Justine S Paradis
- 1] Molecular Biology Program, Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [2] Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [3]
| | - Hervé Enslen
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Philippe P Roux
- 1] Molecular Biology Program, Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [2] Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
| | - Michel Bouvier
- 1] Molecular Biology Program, Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [2] Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stefano Marullo
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Mark G H Scott
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| |
Collapse
|
12
|
Xin H, Wang K, Hu G, Xie F, Ouyang K, Tang X, Wang M, Wen D, Zhu Y, Qin X. Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts. PLoS One 2014; 9:e85308. [PMID: 24416385 PMCID: PMC3887059 DOI: 10.1371/journal.pone.0085308] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/25/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX) models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903) by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR) analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3) was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening.
Collapse
Affiliation(s)
- Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Ke Wang
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Gang Hu
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Fubo Xie
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | | | - Xuzhen Tang
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Minjun Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Danyi Wen
- Shanghai ChemPartner Co., LTD, Shanghai, China
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoran Qin
- Shanghai ChemPartner Co., LTD, Shanghai, China
| |
Collapse
|
13
|
Pulido R, Stoker AW, Hendriks WJAJ. PTPs emerge as PIPs: protein tyrosine phosphatases with lipid-phosphatase activities in human disease. Hum Mol Genet 2013; 22:R66-76. [PMID: 23900072 DOI: 10.1093/hmg/ddt347] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) constitute a family of key homeostatic regulators, with wide implications on physiology and disease. Recent findings have unveiled that the biological activity of PTPs goes beyond the dephosphorylation of phospho-proteins to shut down protein tyrosine kinase-driven signaling cascades. Substrates dephosphorylated by clinically relevant PTPs extend to phospholipids and phosphorylated carbohydrates as well. In addition, non-catalytic functions are also used by PTPs to regulate essential cellular functions. Consequently, PTPs have emerged as novel potential therapeutic targets for human diseases, including cancer predispositions, myopathies and neuropathies. In this review, we highlight recent advances on the multifaceted role of lipid-phosphatase PTPs in human pathology, with an emphasis on hereditary diseases. The involved PTP regulatory networks and PTP modulatory strategies with potential therapeutic application are discussed.
Collapse
|