1
|
Wang P, Wang Z, Jin X, Zhang M, Shen M, Li D. Oral Sulforaphane Intervention Protects Against Diabetic Cardiomyopathy in db/db Mice: Focus on Cardiac Lipotoxicity and Substrate Metabolism. Antioxidants (Basel) 2025; 14:603. [PMID: 40427484 DOI: 10.3390/antiox14050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The protective effect of cruciferae-derived sulforaphane (SFN) on diabetic cardiomyopathy (DCM) has garnered increasing attention. However, no studies have specifically explored its mechanistic involvement in cardiac substrate metabolism and mitochondrial function. To address this gap, Type 2 diabetes mellitus (T2DM) db/db mice were orally gavaged with vehicle or 10 mg/kg body weight SFN every other day for 16 weeks, with vehicle-treated wild-type mice as controls. SFN intervention (SFN-I) alleviated hyperglycemia, dyslipidemia, HOMA-IR, serum MDA levels, and liver inflammation. Furthermore, SFN-I improved the lipotoxicity-related phenotype of T2DM cardiomyopathy, manifested as attenuation of diastolic dysfunction, cardiac injury, fibrosis, lipid accumulation and peroxidation, ROS generation, and decreased mitochondrial complex I and II activities and ATP content, despite having no effect on ceramide abnormalities. Protein expression data revealed that the model mice exhibited upregulated cardiac CD36, H-FABP, FATP4, CPT1B, PPARα, and PDK4 but downregulated GLUT4, with unchanged MPC1 and MPC2. Notably, SFN-I significantly attenuated the increase in CD36, H-FABP, CPT1B, and PPARα. These results suggest that chronic oral SFN-I protects against DCM by mitigating overall metabolic dysregulation and inhibiting cardiolipotoxicity. The latter might involve controlling cardiac fatty acid metabolism and improving mitochondrial function, rather than promoting glucose metabolism.
Collapse
Affiliation(s)
- Pan Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Ziling Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Xinyuan Jin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Mengdi Zhang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Mengfan Shen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| | - Dan Li
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
| |
Collapse
|
2
|
Wen Q, Liu J, Hu J, Kou KI, Li H, Zhang J, Zhang R, Zhong S, Huang R. Molecular mechanisms underlying the anti-Colon Cancer effects of Caulerpa lentillifera polysaccharides (CLP). Int J Biol Macromol 2025; 308:142594. [PMID: 40157667 DOI: 10.1016/j.ijbiomac.2025.142594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Colon cancer (CC) ranks is the second leading cause of cancer-related deaths globally. Despite chemotherapy being a primary treatment its effectiveness significantly declines in advanced in stage. Emerging evidence suggests that dietary components particularly polysaccharides, play a role in CC progression. This study employed multi-omics and network pharmacology to elucidate the mechanisms underlying the apoptotic effects of Caulerpa lentillifera polysaccharide (CLP) in CC, validated through in vitro and in vivo experiments. Transcriptomics and network pharmacology analysis identified the p53/Bax/Caspase-3 pathway as a key regulatory axis. Further targeted analysis of amino acid metabolism revealed that CLP significantly decreased intracellular aspartate (Asp) levels. Additionally, reactive oxygen species (ROS) accumulation was detected in cells. CLP treatment reduced Asp content, leading to ROS accumulation, which activated the p53/Bax/Caspase-3 pathway, triggering apoptosis. In vivo, CLP effectively inhibited tumor growth in BALB/c mice bearing CT26 colon cancer cells. These findings suggest that CLP exerts anti-colon cancer effects by modulating amino acid metabolism and inducing apoptosis via the p53/Bax/Caspase-3 axis, providing a promising therapeutic strategy for CC.
Collapse
Affiliation(s)
- Qinghua Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiaheng Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kit Ian Kou
- Department of Mathematics, Faculty of Science and Technology, University of Macau, Macao
| | - Haichou Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A& F University, Hangzhou 311300, China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yatsen University Cancer center, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Li JC, Huang WS, Yang DH, He QF, Sun W. Assessing causality between mitochondrial-associated proteins with musculoskeletal diseases: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41731. [PMID: 40068079 PMCID: PMC11903026 DOI: 10.1097/md.0000000000041731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Musculoskeletal diseases are the leading cause of disability-adjusted life years. Mitochondria, often referred to as the "powerhouses" of cells, are believed to play a role in regulating cellular metabolism and differentiation, potentially influencing the occurrence and progression of musculoskeletal diseases. However, the exact causal relationships remain to be defined. This study aimed to investigate the causal relationships between mitochondrial biological functions and musculoskeletal diseases (including osteoarthritis (OA), osteoporosis, rheumatoid arthritis (RA), and ankylosing spondylitis through Mendelian randomization (MR) analysis). We systematically summarized data related to mitochondrial functional proteins and musculoskeletal diseases from the IEU OpenGWAS and UK Biobank databases. We used single nucleotide polymorphisms significantly associated with musculoskeletal diseases as instrumental variables. The inverse variance weighting method performed the main MR analysis. We used Mendelian randomized residual sum of pleiotropy and outliers, MR-Egger regression, Cochran Q statistic, Rucker Q statistic, Radial-MR, weighted median, simple mode, weighted mode, and leave-one-out analysis methods as supplementary analyses. First, 14 positive mitochondrial functional proteins were screened out. After Bonferroni correction, COA3 and COX4I2 were found to be causally related to OA and act as protective factors. We identified a causal relationship between SLC25A18 and RA as a risk factor. This study provides genetic support and offers new evidence regarding the roles of COA3, COX4I2, and SLC25A18 in the pathophysiology of OA and RA. This study paves the way for a deeper understanding of the pathological mechanisms of musculoskeletal diseases and provides information for their prevention strategies and treatments.
Collapse
Affiliation(s)
- Jia-Chen Li
- Department of Orthopedics, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, China
| | | | - Da-Hang Yang
- Department of Orthopedics, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Qi-Fei He
- Department of Orthopedics, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People’s Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Kim BR, Rauckhorst AJ, Chimenti MS, Rehman T, Keen HL, Karp PH, Taylor EB, Welsh MJ. The oxygen level in air directs airway epithelial cell differentiation by controlling mitochondrial citrate export. SCIENCE ADVANCES 2025; 11:eadr2282. [PMID: 39854459 PMCID: PMC11759043 DOI: 10.1126/sciadv.adr2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
Oxygen controls most metazoan metabolism, yet in mammals, tissue O2 levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O2 levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O2 levels in the body. We asked how the O2 level in air controls differentiation of airway basal stem cells into the ciliated epithelial cells essential for clearing airborne pathogens from the lung. Through a metabolomics screen and 13C tracing on primary cultures of human airway basal cells, we found that the O2 level in air directs ciliated cell differentiation by increasing mitochondrial citrate export. Unexpectedly, disrupting mitochondrial citrate export elicited hypoxia transcriptional responses independently of HIF1α stabilization and at O2 levels that would be hyperoxic for most tissues. These findings identify mitochondrial citrate export as a cellular mechanism for responding to physiologically high O2 levels.
Collapse
Affiliation(s)
- Bo Ram Kim
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Adam J. Rauckhorst
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael S. Chimenti
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Tayyab Rehman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Henry L. Keen
- Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Philip H. Karp
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - Eric B. Taylor
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Michael J. Welsh
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
5
|
Zhang J, Chen F, Wei W, Ning Q, Zhu D, Fan J, Wang H, Wang J, Zhang A, Jin P, Li Q. Nr-CWS regulates METTL3-mediated m 6A modification of CDS2 mRNA in vascular endothelial cells and has prognostic significance. Commun Biol 2024; 7:1348. [PMID: 39424634 PMCID: PMC11489679 DOI: 10.1038/s42003-024-07047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Metabolic memory (MM) is a major factor in the delayed wound healing observed in diabetic patients. While "Nocardia rubrum cell wall skeleton" (Nr-CWS) is utilized to enhance macrophage proliferation in immune diseases, its impact on MM wounds in diabetes is unclear. This study demonstrates that transient hyperglycemia leads to prolonged damage in vascular endothelial cells by decreasing METTL3 expression, leading to decreased RNA methylation and impaired cellular metabolism. Remarkably, Nr-CWS application increases METTL3 levels in these cells, facilitating the recovery of cell function. Further in vivo and in vitro analyses demonstrate that transient hyperglycemia-induced reduction in METTL3 hinders RNA methylation of the downstream gene Cds2, impacting mitochondrial function and energy metabolism and consequently reducing angiogenic capacity in endothelial cells. This impairment significantly influences diabetic wound healing. Our findings highlight the profound impact of transient hyperglycemia on wound healing, establishing METTL3 as a significant role in vascular complications of diabetes. This study not only elucidates the pathophysiological mechanisms behind MM in diabetic wounds but also suggests Nr-CWS as a potential therapeutic agent, offering a novel approach for treating diabetic wounds.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feifei Chen
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou, Jiangsu, China
| | - Wuhan Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qianqian Ning
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer, Xuzhou, Jiangsu, China
| | - Dong Zhu
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Fan
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haoyu Wang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jian Wang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Aijun Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Wang Y, Yang JS, Zhao M, Chen JQ, Xie HX, Yu HY, Liu NH, Yi ZJ, Liang HL, Xing L, Jiang HL. Mitochondrial endogenous substance transport-inspired nanomaterials for mitochondria-targeted gene delivery. Adv Drug Deliv Rev 2024; 211:115355. [PMID: 38849004 DOI: 10.1016/j.addr.2024.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Mitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane. Given the fact that there are various transport channels on the mitochondrial membrane used to transfer a variety of endogenous substances to maintain the normal functions of mitochondria, mitochondrial endogenous substance transport-inspired nanomaterials have been proposed for mitochondria-targeted gene delivery. In this review, we summarize mitochondria-targeted gene delivery systems based on different mitochondrial endogenous substance transport pathways. These are categorized into mitochondrial steroid hormones import pathways-inspired nanomaterials, protein import pathways-inspired nanomaterials and other mitochondria-targeted gene delivery nanomaterials. We also review the applications and challenges involved in current mitochondrial gene editing systems. This review delves into the approaches of mitochondria-targeted gene delivery, providing details on the design of mitochondria-targeted delivery systems and the limitations regarding the various technologies. Despite the progress in this field is currently slow, the ongoing exploration of mitochondrial endogenous substance transport and mitochondrial biological phenomena may act as a crucial breakthrough in the targeted delivery of gene into mitochondria and even the manipulation of mtDNA.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Song Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Min Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Qi Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hai-Xin Xie
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Yuan Yu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Na-Hui Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zi-Juan Yi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hui-Lin Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
7
|
Rothman DL, Behar KL, Dienel GA. Mechanistic stoichiometric relationship between the rates of neurotransmission and neuronal glucose oxidation: Reevaluation of and alternatives to the pseudo-malate-aspartate shuttle model. J Neurochem 2024; 168:555-591. [PMID: 36089566 DOI: 10.1111/jnc.15619] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022]
Abstract
The ~1:1 stoichiometry between the rates of neuronal glucose oxidation (CMRglc-ox-N) and glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) neurotransmitter (NT) cycling between neurons and astrocytes (VNTcycle) has been firmly established. However, the mechanistic basis for this relationship is not fully understood, and this knowledge is critical for the interpretation of metabolic and brain imaging studies in normal and diseased brain. The pseudo-malate-aspartate shuttle (pseudo-MAS) model established the requirement for glycolytic metabolism in cultured glutamatergic neurons to produce NADH that is shuttled into mitochondria to support conversion of extracellular Gln (i.e., astrocyte-derived Gln in vivo) into vesicular neurotransmitter Glu. The evaluation of this model revealed that it could explain half of the 1:1 stoichiometry and it has limitations. Modifications of the pseudo-MAS model were, therefore, devised to address major knowledge gaps, that is, submitochondrial glutaminase location, identities of mitochondrial carriers for Gln and other model components, alternative mechanisms to transaminate α-ketoglutarate to form Glu and shuttle glutamine-derived ammonia while maintaining mass balance. All modified models had a similar 0.5 to 1.0 predicted mechanistic stoichiometry between VNTcycle and the rate of glucose oxidation. Based on studies of brain β-hydroxybutyrate oxidation, about half of CMRglc-ox-N may be linked to glutamatergic neurotransmission and localized in pre-synaptic structures that use pseudo-MAS type mechanisms for Glu-Gln cycling. In contrast, neuronal compartments that do not participate in transmitter cycling may use the MAS to sustain glucose oxidation. The evaluation of subcellular compartmentation of neuronal glucose metabolism in vivo is a critically important topic for future studies to understand glutamatergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center and Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
8
|
Nagana Gowda GA, Lusk JA, Pascua V. Intracellular pyruvate-lactate-alanine cycling detected using real-time nuclear magnetic resonance spectroscopy of live cells and isolated mitochondria. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:84-93. [PMID: 38098198 PMCID: PMC10872489 DOI: 10.1002/mrc.5419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024]
Abstract
Pyruvate, an end product of glycolysis, is a master fuel for cellular energy. A portion of cytosolic pyruvate is transported into mitochondria, while the remaining portion is converted reversibly into lactate and alanine. It is suggested that cytosolic lactate and alanine are transported and metabolized inside mitochondria. However, such a mechanism continues to be a topic of intense debate and investigation. As a part of gaining insight into the metabolic fate of the cytosolic lactate and alanine; in this study, the metabolism of mouse skeletal myoblast cells (C2C12) and their isolated mitochondria was probed utilizing stable isotope-labeled forms of the three glycolysis products, viz. [3-13 C1 ]pyruvate, [3-13 C1 ]lactate, and [3-13 C1 ]alanine, as substrates. The uptake and metabolism of each substrate was monitored, separately, in real-time using 1 H-13 C 2D nuclear magnetic resonance (NMR) spectroscopy. The dynamic variation of the levels of the substrates and their metabolic products were quantitated as a function of time. The results demonstrate that all three substrates were transported into mitochondria, and each substrate was metabolized to form the other two metabolites, reversibly. These results provide direct evidence for intracellular pyruvate-lactate-alanine cycling, in which lactate and alanine produced by the cytosolic pyruvate are transported into mitochondria and converted back to pyruvate. Such a mechanism suggests a role for lactate and alanine to replenish mitochondrial pyruvate, the primary source for adenosine triphosphate (ATP) synthesis through oxidative phosphorylation and the electron transport chain. The results highlight the potential of real-time NMR spectroscopy for gaining new insights into cellular and subcellular functions.
Collapse
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, USA
| | - John A. Lusk
- Northwest Metabolomics Research Center, Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Vadim Pascua
- Northwest Metabolomics Research Center, Mitochondria and Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
9
|
Gu S, Wu T, Zhao J, Sun T, Zhao Z, Zhang L, Li J, Tian C. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila. Microb Biotechnol 2024; 17:e14410. [PMID: 38298109 PMCID: PMC10884987 DOI: 10.1111/1751-7915.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Although a high titre of malic acid is achieved by filamentous fungi, by-product succinic acid accumulation leads to a low yield of malic acid and is unfavourable for downstream processing. Herein, we conducted a series of metabolic rewiring strategies in a previously constructed Myceliophthora thermophila to successfully improve malate production and abolish succinic acid accumulation. First, a pyruvate carboxylase CgPYC variant with increased activity was obtained using a high-throughput system and introduced to improve malic acid synthesis. Subsequently, shifting metabolic flux to malate synthesis from mitochondrial metabolism by deleing mitochondrial carriers of pyruvate and malate, led to a 53.7% reduction in succinic acid accumulation. The acceleration of importing cytosolic succinic acid into the mitochondria for consumption further decreased succinic acid formation by 53.3%, to 2.12 g/L. Finally, the importer of succinic acid was discovered and used to eliminate by-product accumulation. In total, malic acid production was increased by 26.5%, relative to the start strain JG424, to 85.23 g/L and 89.02 g/L on glucose and Avicel, respectively, in the flasks. In a 5-L fermenter, the titre of malic acid reached 182.7 g/L using glucose and 115.8 g/L using raw corncob, without any by-product accumulation. This study would accelerate the industrial production of biobased malic acid from renewable plant biomass.
Collapse
Affiliation(s)
- Shuying Gu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Taju Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
- School of Life Science, Bengbu Medical CollegeBengbuChina
| | - Junqi Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Tao Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Zhen Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Lu Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Jingen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Chaoguang Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| |
Collapse
|
10
|
Wei X, Michelakos T, He Q, Wang X, Chen Y, Kontos F, Wang H, Liu X, Liu H, Zheng W, Ferrone S, Zhang Y, Ferrone CR, Li X, Cai L. Association of Tumor Cell Metabolic Subtype and Immune Response With the Clinical Course of Hepatocellular Carcinoma. Oncologist 2023; 28:e1031-e1042. [PMID: 37159555 PMCID: PMC10628596 DOI: 10.1093/oncolo/oyad113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/15/2023] [Indexed: 05/11/2023] Open
Abstract
AIM Tumor metabolism plays an important role in tumorigenesis and tumor progression. This study evaluated the potential association of tumor cell metabolism and immune cell tumor infiltration with the clinical course of hepatocellular carcinoma (HCC). METHODS Gene-wise normalization and principal component analysis were performed to evaluate the metabolic system. A tumor microenvironment score system of tumor immune cell infiltration was constructed to evaluate its association with metabolic subtypes. Finally, we analyzed the impact of metabolism and immune cell infiltration on the clinical course of HCC. RESULTS A total of 673 HCC patients were categorized into cholesterogenic (25.3%), glycolytic (14.6%), mixed (10.4%), and quiescent (49.8%) types based on glycolysis and cholesterol biosynthesis gene expression. The subgroups including the glycolytic genotyping expression (glycolytic and mixed types) showed a higher mortality rate. The glycolytic, cholesterogenic, and mixed types were positively correlated with M0 macrophage, resting mast cell, and naïve B-cell infiltration (P = .013, P = .019, and P = .006, respectively). In TCGA database, high CD8+ T cell and low M0 macrophage infiltration were associated with prolonged overall survival (OS, P = .0017 and P < .0001, respectively). Furthermore, in glycolytic and mixed types, patients with high M0 macrophage infiltration had a shorter OS (P = .03 and P = .013, respectively), and in quiescent type, patients with low naïve B-cell infiltration had a longer OS (P = .007). CONCLUSIONS Tumor metabolism plays a prognostic role and correlates with immune cell infiltration in HCC. M0 macrophage and CD8+ T cell appear to be promising prognostic biomarker for HCC. Finally, M0 macrophages may represent a useful immunotherapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Xiaolin Wei
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian He
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Yu Chen
- Department of Digestive Diseases, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, People’s Republic of China
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Xiangde Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Wenjing Zheng
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yun Zhang
- Department of Foreign Languages, Army Medical University, Chongqing, People’s Republic of China
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Cedar-Sinai Health System, Los Angeles, CA, USA
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases and Carson International Cancer Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Lei Cai
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| |
Collapse
|
11
|
Tai J, Guerra RM, Rogers SW, Fang Z, Muehlbauer LK, Shishkova E, Overmyer KA, Coon JJ, Pagliarini DJ. Hem25p is required for mitochondrial IPP transport in fungi. Nat Cell Biol 2023; 25:1616-1624. [PMID: 37813972 PMCID: PMC10759932 DOI: 10.1038/s41556-023-01250-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor composed of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for haem biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p failed to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enabled robust IPP uptake and incorporation into the CoQ biosynthetic pathway. HEM25 orthologues from diverse fungi, but not from metazoans, were able to rescue hem25∆ CoQ deficiency. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in fungi.
Collapse
Affiliation(s)
- Jonathan Tai
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sean W Rogers
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Zixiang Fang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Laura K Muehlbauer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
12
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
Chen M, Chen Y, Zhu W, Yan X, Xiao J, Zhang P, Liu P, Li P. Advances in the pharmacological study of Chinese herbal medicine to alleviate diabetic nephropathy by improving mitochondrial oxidative stress. Biomed Pharmacother 2023; 165:115088. [PMID: 37413900 DOI: 10.1016/j.biopha.2023.115088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the serious complications of diabetes mellitus, primarily arising from type 2 diabetes (T2DM), and can progress to chronic kidney disease (CKD) and end stage renal disease (ESRD). The pathogenesis of DN involves various factors such as hemodynamic changes, oxidative stress, inflammatory response, and lipid metabolism disorders. Increasing attention is being given to DN caused by oxidative stress in the mitochondrial pathway, prompting researchers to explore drugs that can regulate these target pathways. Chinese herbal medicine, known for its accessibility, rich historical usage, and remarkable efficacy, has shown promise in ameliorating renal injury caused by DN by modulating oxidative stress in the mitochondrial pathway. This review aims to provide a reference for the prevention and treatment of DN. Firstly, we outline the mechanisms by which mitochondrial dysfunction impairs DN, focusing on outlining the damage to mitochondria by oxidative stress. Subsequently, we describe the process by which formulas, herbs and monomeric compounds protect the kidney by ameliorating oxidative stress in the mitochondrial pathway. Finally, the rich variety of Chinese herbal medicine, combined with modern extraction techniques, has great potential, and as we gradually understand the pathogenesis of DN and research techniques are constantly updated, there will be more and more promising therapeutic targets and herbal drug candidates. This paper aims to provide a reference for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiaoming Yan
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peiqing Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
14
|
Kudo N, Kouno R, Shibayama Y. SLC25A40 Facilitates Anticancer Drug Resistance in Human Leukemia K562 Cells. Biol Pharm Bull 2023; 46:1304-1309. [PMID: 37407483 DOI: 10.1248/bpb.b23-00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The chronic myelogenous leukemia cell line, K562/ADM is derived from the K562 cell line, which is resistant to doxorubicin (alias, adriamycin: ADM). P-glycoprotein levels are significantly higher in K562/ADM cells than in K562 cells. The overexpression of p-glycoprotein has been shown to cause drug resistance. Therefore, the present study investigated a novel mechanism underlying the drug resistance of K562/ADM cells. A gene ontology analysis demonstrated that the expression of solute carrier (SLC)-mediated transmembrane transport genes was significantly higher in K562/ADM cells than in K562 cells. The expression level of a member of the SLC family, SLC25A40 was higher in K562/ADM cells than in K562 cells. SLC25A40 is located near the ABCB1 gene. A real-time PCR analysis showed that the expression of SLC25A40, ABCB4, and ADAM22 was up-regulated. These genes are located close to SLC25A40. The down-regulation of SLC25A40 significantly decreased the mitochondrial concentration of glutathione and cell proliferation. Collectively, the present results demonstrated that the expression of SLC25A40 was up-regulated in K562/ADM cells, which enhanced to cell proliferation, and that the expression of SLC25A40 affected drug resistance to ADM.
Collapse
Affiliation(s)
- Nodoka Kudo
- Department of Drug Formulation, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Rikuma Kouno
- Department of Drug Formulation, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Yoshihiko Shibayama
- Department of Drug Formulation, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| |
Collapse
|
15
|
Hu C, Wang B, Liu Z, Chen Q, Ishikawa M, Lin H, Lian Q, Li J, Li JV, Ma D, The ESA-IC Onco-Anaesthesiology Research Group. Sevoflurane but not propofol enhances ovarian cancer cell biology through regulating cellular metabolic and signaling mechanisms. Cell Biol Toxicol 2023; 39:1395-1411. [PMID: 36207479 PMCID: PMC10425485 DOI: 10.1007/s10565-022-09766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Perioperative risk factors, including the choice of anesthetics, may influence ovarian cancer recurrence after surgery. Inhalational anesthetic sevoflurane and intravenous agent propofol might affect cancer cell metabolism and signaling, which, in turn, may influence the malignancy of ovarian cancer cells. The different effects between sevoflurane and propofol on ovarian cancer cell biology and underlying mechanisms were studied. Cultured ovarian cancer cells were exposed to 2.5% sevoflurane, 4 μg/mL propofol, or sham condition as the control for 2 h followed by 24-h recovery. Glucose transporter 1 (GLUT1), mitochondrial pyruvate carrier 1 (MPC1), glutamate dehydrogenase 1 (GLUD1), pigment epithelium-derived factor (PEDF), p-Erk1/2, and hypoxia-inducible factor 1-alpha (HIF-1α) expressions were determined with immunostaining and/or Western blot. Cultured media were collected for 1H-NMR spectroscopy-based metabolomics analysis. Principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were used to analyze metabolomics data. Sevoflurane increased the GLUT1, MPC1, GLUD1, p-Erk1/2, and HIF-1α expressions but decreased the PEDF expression relative to the controls. In contrast to sevoflurane, propofol decreased GLUT1, MPC1, GLUD1, p-Erk1/2, and HIF-1α but increased PEDF expression. Sevoflurane increased metabolite isopropanol and decreased glucose and glutamine energy substrates in the media, but the opposite changes were found after propofol treatment. Our data indicated that, unlike the pro-tumor property of sevoflurane, propofol negatively modulated PEDF/Erk/HIF-1α cellular signaling pathway and inhibited ovarian cancer metabolic efficiency and survival, and hence decreased malignancy. The translational value of this work warrants further study. • Sevoflurane promoted but propofol inhibited ovarian cancer cell biology. • Sevoflurane upregulated but propofol downregulated the GLUT1, MPC1, and GLUD1 expressions of ovarian cancer cells. • Sevoflurane enhanced but propofol inhibited ovarian cancer cellular glucose. metabolism and glutaminolysis. • Sevoflurane downregulated PEDF but upregulated the Erk pathway and HIF-1α, while propofol had the adverse effects on ovarian cancer cells.
Collapse
Affiliation(s)
- Cong Hu
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Bincheng Wang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Qiling Chen
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Masashi Ishikawa
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Han Lin
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Qingquan Lian
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Jun Li
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - The ESA-IC Onco-Anaesthesiology Research Group
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
16
|
Mahr RM, Jena S, Nashif SK, Nelson AB, Rauckhorst AJ, Rome FI, Sheldon RD, Hughey CC, Puchalska P, Gearhart MD, Taylor EB, Crawford PA, Wernimont SA. Mitochondrial citrate metabolism and efflux regulate BeWo differentiation. Sci Rep 2023; 13:7387. [PMID: 37149697 PMCID: PMC10164164 DOI: 10.1038/s41598-023-34435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023] Open
Abstract
Cytotrophoblasts fuse to form and renew syncytiotrophoblasts necessary to maintain placental health throughout gestation. During cytotrophoblast to syncytiotrophoblast differentiation, cells undergo regulated metabolic and transcriptional reprogramming. Mitochondria play a critical role in differentiation events in cellular systems, thus we hypothesized that mitochondrial metabolism played a central role in trophoblast differentiation. In this work, we employed static and stable isotope tracing untargeted metabolomics methods along with gene expression and histone acetylation studies in an established BeWo cell culture model of trophoblast differentiation. Differentiation was associated with increased abundance of the TCA cycle intermediates citrate and α-ketoglutarate. Citrate was preferentially exported from mitochondria in the undifferentiated state but was retained to a larger extent within mitochondria upon differentiation. Correspondingly, differentiation was associated with decreased expression of the mitochondrial citrate transporter (CIC). CRISPR/Cas9 disruption of the mitochondrial citrate carrier showed that CIC is required for biochemical differentiation of trophoblasts. Loss of CIC resulted in broad alterations in gene expression and histone acetylation. These gene expression changes were partially rescued through acetate supplementation. Taken together, these results highlight a central role for mitochondrial citrate metabolism in orchestrating histone acetylation and gene expression during trophoblast differentiation.
Collapse
Affiliation(s)
- Renee M Mahr
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Snehalata Jena
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Sereen K Nashif
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Alisa B Nelson
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Adam J Rauckhorst
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Ferrol I Rome
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ryan D Sheldon
- Department of Biochemistry, University of Iowa, Iowa City, IA, USA
| | - Curtis C Hughey
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sarah A Wernimont
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Tai J, Guerra RM, Rogers SW, Fang Z, Muehlbauer LK, Shishkova E, Overmyer KA, Coon JJ, Pagliarini DJ. Hem25p is a mitochondrial IPP transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532620. [PMID: 36993473 PMCID: PMC10055127 DOI: 10.1101/2023.03.14.532620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor comprised of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing, and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for heme biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p fail to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enables robust IPP uptake demonstrating that Hem25p is sufficient for IPP transport. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in yeast.
Collapse
Affiliation(s)
- Jonathan Tai
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel M. Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean W. Rogers
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zixiang Fang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura K. Muehlbauer
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Katherine A. Overmyer
- Morgridge Institute for Research, Madison, WI 53715, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Joshua J. Coon
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Glutamine Metabolism in Cancer Stem Cells: A Complex Liaison in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032337. [PMID: 36768660 PMCID: PMC9916789 DOI: 10.3390/ijms24032337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
In this review we focus on the role of glutamine in control of cancer stem cell (CSC) fate. We first provide an overview of glutamine metabolism, and then summarize relevant studies investigating how glutamine metabolism modulates the CSC compartment, concentrating on solid tumors. We schematically describe how glutamine in CSC contributes to several metabolic pathways, such as redox metabolic pathways, ATP production, non-essential aminoacids and nucleotides biosynthesis, and ammonia production. Furthermore, we show that glutamine metabolism is a key regulator of epigenetic modifications in CSC. Finally, we briefly discuss how cancer-associated fibroblasts, adipocytes, and senescent cells in the tumor microenvironment may indirectly influence CSC fate by modulating glutamine availability. We aim to highlight the complexity of glutamine's role in CSC, which supports our knowledge about metabolic heterogeneity within the CSC population.
Collapse
|
19
|
Mahr RM, Jena S, Nashif SK, Nelson AB, Rauckhorst AJ, Rome FI, Sheldon RD, Hughey CC, Puchalska P, Gearhart MD, Taylor EB, Crawford PA, Wernimont SA. Mitochondrial citrate metabolism and efflux regulates trophoblast differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525071. [PMID: 36711862 PMCID: PMC9882289 DOI: 10.1101/2023.01.22.525071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cytotrophoblasts fuse to form and renew syncytiotrophoblasts necessary to maintain placental health throughout gestation. During cytotrophoblast to syncytiotrophoblast differentiation, cells undergo regulated metabolic and transcriptional reprogramming. Mitochondria play a critical role in differentiation events in cellular systems, thus we hypothesized that mitochondrial metabolism played a central role in trophoblast differentiation. In this work, we employed static and stable isotope tracing untargeted metabolomics methods along with gene expression and histone acetylation studies in an established cell culture model of trophoblast differentiation. Trophoblast differentiation was associated with increased abundance of the TCA cycle intermediates citrate and α-ketoglutarate. Citrate was preferentially exported from mitochondria in the undifferentiated state but was retained to a larger extent within mitochondria upon differentiation. Correspondingly, differentiation was associated with decreased expression of the mitochondrial citrate transporter (CIC). CRISPR/Cas9 disruption of the mitochondrial citrate carrier showed that CIC is required for biochemical differentiation of trophoblasts. Loss of CIC resulted in broad alterations in gene expression and histone acetylation. These gene expression changes were partially rescued through acetate supplementation. Taken together, these results highlight a central role for mitochondrial citrate metabolism in orchestrating histone acetylation and gene expression during trophoblast differentiation.
Collapse
|
20
|
Liu P, Chen Y, Xiao J, Zhu W, Yan X, Chen M. Protective effect of natural products in the metabolic-associated kidney diseases via regulating mitochondrial dysfunction. Front Pharmacol 2023; 13:1093397. [PMID: 36712696 PMCID: PMC9877617 DOI: 10.3389/fphar.2022.1093397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Metabolic syndrome (MS) is a complex group of metabolic disorders syndrome with hypertension, hyperuricemia and disorders of glucose or lipid metabolism. As an important organ involved in metabolism, the kidney is inevitably attacked by various metabolic disorders, leading to abnormalities in kidney structure and function. Recently, an increasing number of studies have shown that mitochondrial dysfunction is actively involved in the development of metabolic-associated kidney diseases. Mitochondrial dysfunction can be used as a potential therapeutic strategy for the treatment of metabolic-associated kidney diseases. Many natural products have been widely used to improve the treatment of metabolic-associated kidney diseases by inhibiting mitochondrial dysfunction. In this paper, by searching several authoritative databases such as PubMed, Web of Science, Wiley Online Library, and Springer Link. We summarize the Natural Products Protect Against Metabolic-Associated Kidney Diseases by Regulating Mitochondrial Dysfunction. In this review, we sought to provide an overview of the mechanisms by which mitochondrial dysfunction impaired metabolic-associated kidney diseases, with particular attention to the role of mitochondrial dysfunction in diabetic nephropathy, gouty nephropathy, hypertensive kidney disease, and obesity-related nephropathy, and then the protective role of natural products in the kidney through inhibition of mitochondrial disorders, thus providing a systematic understanding of the targets of mitochondrial dysfunction in metabolic-associated kidney diseases, and finally a review of promising therapeutic targets and herbal candidates for metabolic-associated kidney diseases through inhibition of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Yao Chen
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiaoming Yan
- Department of Medicine, Digestive Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Ming Chen
- Department of Medicine, Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| |
Collapse
|
21
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
22
|
Abstract
The analogy of mitochondria as powerhouses has expired. Mitochondria are living, dynamic, maternally inherited, energy-transforming, biosynthetic, and signaling organelles that actively transduce biological information. We argue that mitochondria are the processor of the cell, and together with the nucleus and other organelles they constitute the mitochondrial information processing system (MIPS). In a three-step process, mitochondria (1) sense and respond to both endogenous and environmental inputs through morphological and functional remodeling; (2) integrate information through dynamic, network-based physical interactions and diffusion mechanisms; and (3) produce output signals that tune the functions of other organelles and systemically regulate physiology. This input-to-output transformation allows mitochondria to transduce metabolic, biochemical, neuroendocrine, and other local or systemic signals that enhance organismal adaptation. An explicit focus on mitochondrial signal transduction emphasizes the role of communication in mitochondrial biology. This framework also opens new avenues to understand how mitochondria mediate inter-organ processes underlying human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Linghu T, Zhao Y, Wu W, Gao Y, Tian J, Qin X. Novel targets for ameliorating energy metabolism disorders in depression through stable isotope-resolved metabolomics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148578. [PMID: 35640666 DOI: 10.1016/j.bbabio.2022.148578] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The severe harm of depression to human health and life has attracted global attention, but the exact mechanism is not yet known due to the complicated pathogenesis. The existing antidepressants are far from ideal, indicating it is urgently needed to seek safe and effective drugs from a unique perspective. Based on the hypothesis of "mitochondrial dysfunction" proposed recently, we attempt to focus on the substrates supply of energy metabolism. We applied stable isotope-resolved metabolomics, and revealed that significantly decreased TCA cycle and abnormally increased gluconeogenesis pathway in CUMS rats. Pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) maybe the key metabolic enzymes. This metabolic reprogramming was confirmed through ELISA assays and Western blot analysis. To explore the causes of substrates supply disorder in depression, we conducted the mitochondrial structure-function evaluation. Interestingly, the levels of the mitochondrial pyruvate carrier (MPC) decreased significantly, which is essential for the entry of pyruvic acid into the TCA cycle. Together, MPC, PDH and PC are expected to become potential novel therapeutic targets for treating depressive disorders. This research provides a unique insight for re-cognizing the pathological mechanisms of depression, the novel targets for development of ideal antidepressants, as well as a paradigm for deciphering abnormal metabolic pathways in other metabolic diseases.
Collapse
Affiliation(s)
- Ting Linghu
- Modern Research Center for Traditional Chinese Medicine, the Institute for Biomedicine and Health, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, the Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Yunhao Zhao
- Modern Research Center for Traditional Chinese Medicine, the Institute for Biomedicine and Health, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, the Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Wenze Wu
- Modern Research Center for Traditional Chinese Medicine, the Institute for Biomedicine and Health, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, the Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, the Institute for Biomedicine and Health, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, the Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Institute for Biomedicine and Health, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, the Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
24
|
Xue K, Wu D, Wang Y, Zhao Y, Shen H, Yao J, Huang X, Li X, Zhou Z, Wang Z, Qiu Y. The mitochondrial calcium uniporter engages UCP1 to form a thermoporter that promotes thermogenesis. Cell Metab 2022; 34:1325-1341.e6. [PMID: 35977541 DOI: 10.1016/j.cmet.2022.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/03/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023]
Abstract
Uncoupling protein 1 (UCP1)-mediated adaptive thermogenesis protects mammals against hypothermia and metabolic dysregulation. Whether and how mitochondrial calcium regulates this process remains unclear. Here, we show that mitochondrial calcium uniporter (MCU) recruits UCP1 through essential MCU regulator (EMRE) to form an MCU-EMRE-UCP1 complex upon adrenergic stimulation. This complex formation increases mitochondrial calcium uptake to accelerate the tricarboxylic acid cycle and supply more protons that promote uncoupled respiration, functioning as a thermogenic uniporter. Mitochondrial calcium uptake 1 (MICU1) negatively regulates thermogenesis probably through inhibiting thermogenic uniporter formation. Accordingly, the deletion of Mcu or Emre in brown adipocytes markedly impairs thermogenesis and exacerbates obesity and metabolic dysfunction. Remarkably, the enhanced assembly of the thermogenic uniporter via Micu1 knockout or expressing linked EMRE-UCP1 results in opposite phenotypes. Thus, we have uncovered a "thermoporter" that provides a driving force for the UCP1 operation in thermogenesis, which could be leveraged to combat obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Kaili Xue
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Dongmei Wu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yushuang Wang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yiheng Zhao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hongyu Shen
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jingfei Yao
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xun Huang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xinmeng Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Zhao Zhou
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Zihao Wang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yifu Qiu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Divakaruni AS, Jastroch M. A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nat Metab 2022; 4:978-994. [PMID: 35971004 PMCID: PMC9618452 DOI: 10.1038/s42255-022-00619-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/17/2022] [Indexed: 12/14/2022]
Abstract
Measurement of oxygen consumption is a powerful and uniquely informative experimental technique. It can help identify mitochondrial mechanisms of action following pharmacologic and genetic interventions, and characterize energy metabolism in physiology and disease. The conceptual and practical benefits of respirometry have made it a frontline technique to understand how mitochondrial function can interface with-and in some cases control-cell physiology. Nonetheless, an appreciation of the complexity and challenges involved with such measurements is required to avoid common experimental and analytical pitfalls. Here we provide a practical guide to oxygen consumption measurements covering the selection of experimental models and instrumentation, as well as recommendations for the collection, interpretation and normalization of data. These guidelines are provided with the intention of aiding experimental design and enhancing the overall reputability, transparency and reliability of oxygen consumption measurements.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| |
Collapse
|
26
|
Functional coupling of organic anion transporter OAT10 (SLC22A13) and monocarboxylate transporter MCT1 (SLC16A1) influencing the transport function of OAT10. J Pharmacol Sci 2022; 150:41-48. [DOI: 10.1016/j.jphs.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
|
27
|
Yuan Y, Zhu C, Wang Y, Sun J, Feng J, Ma Z, Li P, Peng W, Yin C, Xu G, Xu P, Jiang Y, Jiang Q, Shu G. α-Ketoglutaric acid ameliorates hyperglycemia in diabetes by inhibiting hepatic gluconeogenesis via serpina1e signaling. SCIENCE ADVANCES 2022; 8:eabn2879. [PMID: 35507647 PMCID: PMC9067931 DOI: 10.1126/sciadv.abn2879] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/17/2022] [Indexed: 05/13/2023]
Abstract
Previously, we found that α-ketoglutaric acid (AKG) stimulates muscle hypertrophy and fat loss through 2-oxoglutarate receptor 1 (OXGR1). Here, we demonstrated the beneficial effects of AKG on glucose homeostasis in a diet-induced obesity (DIO) mouse model, which are independent of OXGR1. We also showed that AKG effectively decreased blood glucose and hepatic gluconeogenesis in DIO mice. By using transcriptomic and liver-specific serpina1e deletion mouse model, we further demonstrated that liver serpina1e is required for the inhibitory effects of AKG on hepatic gluconeogenesis. Mechanistically, we supported that extracellular AKG binds with a purinergic receptor, P2RX4, to initiate the solute carrier family 25 member 11 (SLC25A11)-dependent nucleus translocation of intracellular AKG and subsequently induces demethylation of lysine 27 on histone 3 (H3K27) in the seprina1e promoter region to decrease hepatic gluconeogenesis. Collectively, these findings reveal an unexpected mechanism for control of hepatic gluconeogenesis using circulating AKG as a signal molecule.
Collapse
Affiliation(s)
- Yexian Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Canjun Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Yongliang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jinlong Feng
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Zewei Ma
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Penglin Li
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Wentong Peng
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Guli Xu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture and Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China
| |
Collapse
|
28
|
Morgenstern M, Peikert CD, Lübbert P, Suppanz I, Klemm C, Alka O, Steiert C, Naumenko N, Schendzielorz A, Melchionda L, Mühlhäuser WWD, Knapp B, Busch JD, Stiller SB, Dannenmaier S, Lindau C, Licheva M, Eickhorst C, Galbusera R, Zerbes RM, Ryan MT, Kraft C, Kozjak-Pavlovic V, Drepper F, Dennerlein S, Oeljeklaus S, Pfanner N, Wiedemann N, Warscheid B. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab 2021; 33:2464-2483.e18. [PMID: 34800366 PMCID: PMC8664129 DOI: 10.1016/j.cmet.2021.11.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/01/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022]
Abstract
Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP). We identified interactors of translocases, respiratory chain, and ATP synthase assembly factors. The abundance of MitoCoP proteins covers six orders of magnitude and amounts to 7% of the cellular proteome with the chaperones HSP60-HSP10 being the most abundant mitochondrial proteins. MitoCoP dynamics spans three orders of magnitudes, with half-lives from hours to months, and suggests a rapid regulation of biosynthesis and assembly processes. 460 MitoCoP genes are linked to human diseases with a strong prevalence for the central nervous system and metabolism. MitoCoP will provide a high-confidence resource for placing dynamics, functions, and dysfunctions of mitochondria into the cellular context.
Collapse
Affiliation(s)
- Marcel Morgenstern
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp Lübbert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ida Suppanz
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Cinzia Klemm
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Alka
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Conny Steiert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Alexander Schendzielorz
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Laura Melchionda
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Wignand W D Mühlhäuser
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Knapp
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Sebastian B Stiller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Dannenmaier
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Eickhorst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Riccardo Galbusera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ralf M Zerbes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, VIC, Australia
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Friedel Drepper
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
29
|
Passarella S, Schurr A, Portincasa P. Mitochondrial Transport in Glycolysis and Gluconeogenesis: Achievements and Perspectives. Int J Mol Sci 2021; 22:12620. [PMID: 34884425 PMCID: PMC8657705 DOI: 10.3390/ijms222312620] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
Some metabolic pathways involve two different cell components, for instance, cytosol and mitochondria, with metabolites traffic occurring from cytosol to mitochondria and vice versa, as seen in both glycolysis and gluconeogenesis. However, the knowledge on the role of mitochondrial transport within these two glucose metabolic pathways remains poorly understood, due to controversial information available in published literature. In what follows, we discuss achievements, knowledge gaps, and perspectives on the role of mitochondrial transport in glycolysis and gluconeogenesis. We firstly describe the experimental approaches for quick and easy investigation of mitochondrial transport, with respect to cell metabolic diversity. In addition, we depict the mitochondrial shuttles by which NADH formed in glycolysis is oxidized, the mitochondrial transport of phosphoenolpyruvate in the light of the occurrence of the mitochondrial pyruvate kinase, and the mitochondrial transport and metabolism of L-lactate due to the L-lactate translocators and to the mitochondrial L-lactate dehydrogenase located in the inner mitochondrial compartment.
Collapse
Affiliation(s)
- Salvatore Passarella
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
30
|
Helenius IT, Madala HR, Yeh JRJ. An Asp to Strike Out Cancer? Therapeutic Possibilities Arising from Aspartate's Emerging Roles in Cell Proliferation and Survival. Biomolecules 2021; 11:1666. [PMID: 34827664 PMCID: PMC8615858 DOI: 10.3390/biom11111666] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
A better understanding of the metabolic constraints of a tumor may lead to more effective anticancer treatments. Evidence has emerged in recent years shedding light on a crucial aspartate dependency of many tumor types. As a precursor for nucleotide synthesis, aspartate is indispensable for cell proliferation. Moreover, the malate-aspartate shuttle plays a key role in redox balance, and a deficit in aspartate can lead to oxidative stress. It is now recognized that aspartate biosynthesis is largely governed by mitochondrial metabolism, including respiration and glutaminolysis in cancer cells. Therefore, under conditions that suppress mitochondrial metabolism, including mutations, hypoxia, or chemical inhibitors, aspartate can become a limiting factor for tumor growth and cancer cell survival. Notably, aspartate availability has been associated with sensitivity or resistance to various therapeutics that are presently in the clinic or in clinical trials, arguing for a critical need for more effective aspartate-targeting approaches. In this review, we present current knowledge of the metabolic roles of aspartate in cancer cells and describe how cancer cells maintain aspartate levels under different metabolic states. We also highlight several promising aspartate level-modulating agents that are currently under investigation.
Collapse
Affiliation(s)
| | - Hanumantha Rao Madala
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02125, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02125, USA
| |
Collapse
|
31
|
Yi Y, Li L, Song F, Li P, Chen M, Ni S, Zhang H, Zhou H, Zeng S, Jiang H. L-tetrahydropalmatine reduces oxaliplatin accumulation in the dorsal root ganglion and mitochondria through selectively inhibiting the transporter-mediated uptake thereby attenuates peripheral neurotoxicity. Toxicology 2021; 459:152853. [PMID: 34252480 DOI: 10.1016/j.tox.2021.152853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
Oxaliplatin (OXA) is a third-generation platinum drug; however, its application is greatly limited due to the severe peripheral neurotoxicity. This study aims to confirm the transport mechanism of OXA and to explore whether L-tetrahydropalmatine (L-THP) would alleviate OXA-induced peripheral neurotoxicity by selectively inhibiting these uptake transporters in vitro and in vivo. Our results revealed that organic cation transporter 2 (OCT2), organic cation/carnitine transporter 1 (OCTN1) and organic cation/carnitine transporter 2 (OCTN2) were involved in the uptake of OXA in dorsal root ganglion (DRG) neurons and mitochondria, respectively. L-THP (1-100 μM) reduced OXA (40 μM) induced cytotoxicity in MDCK-hOCT2 (Madin-Darby canine kidney, MDCK), MDCK-hOCTN1, MDCK-hOCTN2, and rat primary DRG cells, and decreased the accumulation of OXA in above cells and rat DRG mitochondria, but did not affect its efflux from MDCK-hMRP2 cells. Furthermore, Co-administration of L-THP (5-20 mg/kg for mice, 10-40 mg/kg for rats; twice a week, iv or ig) attenuated OXA (8 mg/kg for mice, 4 mg/kg for rats; twice a week, iv) induced peripheral neurotoxicity and reduced the platinum concentration in the DRG. Whereas, L-THP (1-100 μM for cells; 10-20 mg/kg for mice) did not impair the antitumour efficacy of OXA (40 μM for cells; 8 mg/kg for mice) in HT29 tumour-bearing nude mice nor in tumour cells (HT29 and SW620 cells). In conclusion, OCT2, OCTN1 and OCTN2 contribute to OXA uptake in the DRG and mitochondria. L-THP attenuates OXA-induced peripheral neurotoxicity via inhibiting OXA uptake but without impairing the antitumour efficacy of OXA. L-THP is a potential candidate drug to attenuate OXA-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Yaodong Yi
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Liping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Feifeng Song
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingyang Chen
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Shixin Ni
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hui Zhou
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Su Zeng
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Huidi Jiang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
32
|
Sheraj I, Guray NT, Banerjee S. A pan-cancer transcriptomic study showing tumor specific alterations in central metabolism. Sci Rep 2021; 11:13637. [PMID: 34211032 PMCID: PMC8249409 DOI: 10.1038/s41598-021-93003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, there has been a resurgence of interest in metabolic rewiring of tumors to identify clinically relevant genes. However, most of these studies have had either focused on individual tumors, or are too general, providing a broad outlook on overall changes. In this study, we have first curated an extensive list of genes encoding metabolic enzymes and metabolite transporters relevant to carbohydrate, fatty acid and amino acid oxidation and biosynthesis. Next, we have used publicly available transcriptomic data for 20 different tumor types from The Cancer Genome Atlas Network (TCGA) and focused on differential expression of these genes between tumor and adjacent normal tissue. Our study revealed major transcriptional alterations in genes that are involved in central metabolism. Most tumors exhibit upregulation in carbohydrate and amino acid transporters, increased glycolysis and pentose phosphate pathway, and decreased fatty acid and amino acid oxidation. On the other hand, the expression of genes of the tricarboxylic acid cycle, anaplerotic reactions and electron transport chain differed between tumors. Although most transcriptomic alterations were conserved across many tumor types suggesting the initiation of common regulatory programs, expression changes unique to specific tumors were also identified, which can provide gene expression fingerprints as potential biomarkers or drug targets. Our study also emphasizes the value of transcriptomic data in the deeper understanding of metabolic changes in diseases.
Collapse
Affiliation(s)
- Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara, 06800, Turkey
| | - N Tulin Guray
- Department of Biological Sciences, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara, 06800, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi (ODTU/METU), Ankara, 06800, Turkey.
- Cancer Systems Biology Laboratory (CanSyl), Orta Dogu Teknik Universitesi (ODTU/METU), Ankara, 06800, Turkey.
| |
Collapse
|
33
|
Jiang Z, Cui Z, Zhu Z, Liu Y, Tang YJ, Hou J, Qi Q. Engineering of Yarrowia lipolytica transporters for high-efficient production of biobased succinic acid from glucose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:145. [PMID: 34176501 PMCID: PMC8237505 DOI: 10.1186/s13068-021-01996-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/17/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Succinic acid (SA) is a crucial metabolic intermediate and platform chemical. Development of biobased processes to achieve sustainable SA production has attracted more and more attention in biotechnology industry. Yarrowia lipolytica has a strong tricarboxylic acid cycle and tolerates low pH conditions, thus making it a potential platform for SA production. However, its SA titers in glucose media remain low. RESULTS In this study, we screened mitochondrial carriers and C4-dicarboxylic acid transporters to enhance SA secretion in Y. lipolytica. PGC62-SYF-Mae strain with efficient growth and SA production was constructed by optimizing SA biosynthetic pathways and expressing the transporter SpMae1. In fed-batch fermentation, this strain produced 101.4 g/L SA with a productivity of 0.70 g/L/h and a yield of 0.37 g/g glucose, which is the highest SA titer achieved using yeast, with glucose as the sole carbon resource. CONCLUSION Our results indicated that transporter engineering is a powerful strategy to achieve the efficient secretion of SA in Y. lipolytica, which will promote the industrial production of bio-based SA.
Collapse
Affiliation(s)
- Zhennan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Ziwei Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
34
|
Marques ITO, Vasconcelos FR, Alves JPM, Montenegro AR, Fernandes CCL, Oliveira FBB, Silva CP, Nagano CS, Figueiredo FC, Beserra FJ, Moura AA, Rondina D. Proteome of milk fat globule membrane and mammary gland tissue in goat fed different lipid supplementation. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Xue C, Li G, Bao Z, Zhou Z, Li L. Mitochondrial pyruvate carrier 1: a novel prognostic biomarker that predicts favourable patient survival in cancer. Cancer Cell Int 2021; 21:288. [PMID: 34059057 PMCID: PMC8166087 DOI: 10.1186/s12935-021-01996-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial pyruvate carrier 1 (MPC1) is a key metabolic protein that regulates the transport of pyruvate into the mitochondrial inner membrane. MPC1 deficiency may cause metabolic reprogramming. However, whether and how MPC1 controls mitochondrial oxidative capacity in cancer are still relatively unknown. MPC1 deficiency was recently found to be strongly associated with various diseases and cancer hallmarks. We utilized online databases and uncovered that MPC1 expression is lower in many cancer tissues than in adjacent normal tissues. In addition, MPC1 expression was found to be substantially altered in five cancer types: breast-invasive carcinoma (BRCA), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD), and prostate adenocarcinoma (PRAD). However, in KIRC, LUAD, PAAD, and PRAD, high MPC1 expression is closely associated with favourable prognosis. Low MPC1 expression in BRCA is significantly associated with shorter overall survival time. MPC1 expression shows strong positive and negative correlations with immune cell infiltration in thymoma (THYM) and thyroid carcinoma (THCA). Furthermore, we have comprehensively summarized the current literature regarding the metabolic reprogramming effects of MPC1 in various cancers. As shown in the literature, MPC1 expression is significantly decreased in cancer tissue and associated with poor prognosis. We discuss the potential metabolism-altering effects of MPC1 in cancer, including decreased pyruvate transport ability; impaired pyruvate-driven oxidative phosphorylation (OXPHOS); and increased lactate production, glucose consumption, and glycolytic capacity, and the underlying mechanisms. These activities facilitate tumour progression, migration, and invasion. MPC1 is a novel cancer biomarker and potentially powerful therapeutic target for cancer diagnosis and treatment. Further studies aimed at slowing cancer progression are in progress.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Ziyuan Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, China.
| |
Collapse
|
36
|
Noterman MF, Chaubey K, Lin-Rahardja K, Rajadhyaksha AM, Pieper AA, Taylor EB. Dual-process brain mitochondria isolation preserves function and clarifies protein composition. Proc Natl Acad Sci U S A 2021; 118:e2019046118. [PMID: 33836587 PMCID: PMC7980376 DOI: 10.1073/pnas.2019046118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The brain requires continuously high energy production to maintain ion gradients and normal function. Mitochondria critically undergird brain energetics, and mitochondrial abnormalities feature prominently in neuropsychiatric disease. However, many unique aspects of brain mitochondria composition and function are poorly understood. Developing improved neuroprotective therapeutics thus requires more comprehensively understanding brain mitochondria, including accurately delineating protein composition and channel-transporter functional networks. However, obtaining pure mitochondria from the brain is especially challenging due to its distinctive lipid and cell structure properties. As a result, conflicting reports on protein localization to brain mitochondria abound. Here we illustrate this problem with the neuropsychiatric disease-associated L-type calcium channel Cav1.2α1 subunit previously observed in crude mitochondria. We applied a dual-process approach to obtain functionally intact versus compositionally pure brain mitochondria. One branch utilizes discontinuous density gradient centrifugation to isolate semipure mitochondria suitable for functional assays but unsuitable for protein localization because of endoplasmic reticulum (ER) contamination. The other branch utilizes self-forming density gradient ultracentrifugation to remove ER and yield ultrapure mitochondria that are suitable for investigating protein localization but functionally compromised. Through this process, we evaluated brain mitochondria protein content and observed the absence of Cav1.2α1 and other previously reported mitochondrial proteins, including the NMDA receptor, ryanodine receptor 1, monocarboxylate transporter 1, excitatory amino acid transporter 1, and glyceraldehyde 3-phosphate dehydrogenase. Conversely, we confirmed mitochondrial localization of several plasma membrane proteins previously reported to also localize to mitochondria. We expect this dual-process isolation procedure will enhance understanding of brain mitochondria in both health and disease.
Collapse
Affiliation(s)
- Maria F Noterman
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
| | - Kalyani Chaubey
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106
| | - Kristi Lin-Rahardja
- Department of Systems Biology and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106
| | - Anjali M Rajadhyaksha
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY 10065
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY 10065
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY 10065
- Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242;
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
37
|
Acoba MG, Alpergin ESS, Renuse S, Fernández-Del-Río L, Lu YW, Khalimonchuk O, Clarke CF, Pandey A, Wolfgang MJ, Claypool SM. The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism. Cell Rep 2021; 34:108869. [PMID: 33730581 PMCID: PMC8048093 DOI: 10.1016/j.celrep.2021.108869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial carriers (MCs) mediate the passage of small molecules across the inner mitochondrial membrane (IMM), enabling regulated crosstalk between compartmentalized reactions. Despite MCs representing the largest family of solute carriers in mammals, most have not been subjected to a comprehensive investigation, limiting our understanding of their metabolic contributions. Here, we functionally characterize SFXN1, a member of the non-canonical, sideroflexin family. We find that SFXN1, an integral IMM protein with an uneven number of transmembrane domains, is a TIM22 complex substrate. SFXN1 deficiency leads to mitochondrial respiratory chain impairments, most detrimental to complex III (CIII) biogenesis, activity, and assembly, compromising coenzyme Q levels. The CIII dysfunction is independent of one-carbon metabolism, the known primary role for SFXN1 as a mitochondrial serine transporter. Instead, SFXN1 supports CIII function by participating in heme and α-ketoglutarate metabolism. Our findings highlight the multiple ways that SFXN1-based amino acid transport impacts mitochondrial and cellular metabolic efficiency.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ebru S Selen Alpergin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Santosh Renuse
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lucía Fernández-Del-Río
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ya-Wen Lu
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA; Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Departments of Pathology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Rossi A, Rigotto G, Valente G, Giorgio V, Basso E, Filadi R, Pizzo P. Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer's Disease-Related Models. Cell Rep 2021; 30:2332-2348.e10. [PMID: 32075767 DOI: 10.1016/j.celrep.2020.01.060] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/04/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are key organelles for brain health. Mitochondrial alterations have been reported in several neurodegenerative disorders, including Alzheimer's disease (AD), and the comprehension of the underlying mechanisms appears crucial to understand their relationship with the pathology. Using multiple genetic, pharmacological, imaging, and biochemical approaches, we demonstrate that, in different familial AD cell models, mitochondrial ATP synthesis is affected. The defect depends on reduced mitochondrial pyruvate oxidation, due to both lower Ca2+-mediated stimulation of the Krebs cycle and dampened mitochondrial pyruvate uptake. Importantly, this latter event is linked to glycogen-synthase-kinase-3β (GSK-3β) hyper-activation, leading, in turn, to impaired recruitment of hexokinase 1 (HK1) to mitochondria, destabilization of mitochondrial-pyruvate-carrier (MPC) complexes, and decreased MPC2 protein levels. Remarkably, pharmacological GSK-3β inhibition in AD cells rescues MPC2 expression and improves mitochondrial ATP synthesis and respiration. The defective mitochondrial bioenergetics influences glutamate-induced neuronal excitotoxicity, thus representing a possible target for future therapeutic interventions.
Collapse
Affiliation(s)
- Alice Rossi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Giulia Rigotto
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Giulia Valente
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy
| | - Valentina Giorgio
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy.
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua 35121, Italy.
| |
Collapse
|
39
|
Zhang Y, Taufalele PV, Cochran JD, Robillard-Frayne I, Marx JM, Soto J, Rauckhorst AJ, Tayyari F, Pewa AD, Gray LR, Teesch LM, Puchalska P, Funari TR, McGlauflin R, Zimmerman K, Kutschke WJ, Cassier T, Hitchcock S, Lin K, Kato KM, Stueve JL, Haff L, Weiss RM, Cox JE, Rutter J, Taylor EB, Crawford PA, Lewandowski ED, Des Rosiers C, Abel ED. Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat Metab 2020; 2:1248-1264. [PMID: 33106689 PMCID: PMC8015649 DOI: 10.1038/s42255-020-00288-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
In addition to fatty acids, glucose and lactate are important myocardial substrates under physiologic and stress conditions. They are metabolized to pyruvate, which enters mitochondria via the mitochondrial pyruvate carrier (MPC) for citric acid cycle metabolism. In the present study, we show that MPC-mediated mitochondrial pyruvate utilization is essential for the partitioning of glucose-derived cytosolic metabolic intermediates, which modulate myocardial stress adaptation. Mice with cardiomyocyte-restricted deletion of subunit 1 of MPC (cMPC1-/-) developed age-dependent pathologic cardiac hypertrophy, transitioning to a dilated cardiomyopathy and premature death. Hypertrophied hearts accumulated lactate, pyruvate and glycogen, and displayed increased protein O-linked N-acetylglucosamine, which was prevented by increasing availability of non-glucose substrates in vivo by a ketogenic diet (KD) or a high-fat diet, which reversed the structural, metabolic and functional remodelling of non-stressed cMPC1-/- hearts. Although concurrent short-term KDs did not rescue cMPC1-/- hearts from rapid decompensation and early mortality after pressure overload, 3 weeks of a KD before transverse aortic constriction was sufficient to rescue this phenotype. Together, our results highlight the centrality of pyruvate metabolism to myocardial metabolism and function.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Animals
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Cardiomegaly/diagnostic imaging
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Constriction, Pathologic
- Cytosol/metabolism
- Diet, High-Fat
- Diet, Ketogenic
- Echocardiography
- In Vitro Techniques
- Mice
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Pyruvic Acid/metabolism
- Stress, Physiological/genetics
- Stress, Physiological/physiology
Collapse
Affiliation(s)
- Yuan Zhang
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul V Taufalele
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jesse D Cochran
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Jonas Maximilian Marx
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Friedrich-Schiller University of Jena, Jena, Germany
| | - Jamie Soto
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Mouse Metabolic Phenotyping Core, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam J Rauckhorst
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Fariba Tayyari
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Alvin D Pewa
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lawrence R Gray
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lynn M Teesch
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Patrycja Puchalska
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Trevor R Funari
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rose McGlauflin
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kathy Zimmerman
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William J Kutschke
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas Cassier
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shannon Hitchcock
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin Lin
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin M Kato
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jennifer L Stueve
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lauren Haff
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert M Weiss
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - James E Cox
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peter A Crawford
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - E Douglas Lewandowski
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montreal, Canada
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
40
|
Quantitative Assessment of Blood Lactate in Shock: Measure of Hypoxia or Beneficial Energy Source. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2608318. [PMID: 33150168 PMCID: PMC7603544 DOI: 10.1155/2020/2608318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Blood lactate concentration predicts mortality in critically ill patients and is clinically used in the diagnosis, grading of severity, and monitoring response to therapy of septic shock. This paper summarizes available quantitative data to provide the first comprehensive description and critique of the accepted concepts of the physiology of lactate in health and shock, with particular emphasis on the controversy of whether lactate release is simply a manifestation of tissue hypoxia versus a purposeful transfer ("shuttle") of lactate between tissues. Basic issues discussed include (1) effect of nonproductive lactate-pyruvate exchange that artifactually enhances flux measurements obtained with labeled lactate, (2) heterogeneous tissue oxygen partial pressure (Krogh model) and potential for unrecognized hypoxia that exists in all tissues, and (3) pathophysiology that distinguishes septic from other forms of shock. Our analysis suggests that due to exchange artifacts, the turnover rate of lactate and the lactate clearance are only about 60% of the values of 1.05 mmol/min/70 kg and 1.5 L/min/70 kg, respectively, determined from the standard tracer kinetics. Lactate turnover reflects lactate release primarily from muscle, gut, adipose, and erythrocytes and uptake by the liver and kidney, primarily for the purpose of energy production (TCA cycle) while the remainder is used for gluconeogenesis (Cori cycle). The well-studied physiology of exercise-induced hyperlactatemia demonstrates massive release from the contracting muscle accompanied by an increased lactate clearance that may occur in recovering nonexercising muscle as well as the liver. The very limited data on lactate kinetics in shock patients suggests that hyperlactatemia reflects both decreased clearance and increased production, possibly primarily in the gut. Our analysis of available data in health and shock suggests that the conventional concept of tissue hypoxia can account for most blood lactate findings and there is no need to implicate a purposeful production of lactate for export to other organs.
Collapse
|
41
|
Wang Z, Ning T, Song A, Rutter J, Wang QA, Jiang L. Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Rep 2020; 21:e50085. [PMID: 33043581 PMCID: PMC7645266 DOI: 10.15252/embr.202050085] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
The cultured brown adipocytes can oxidize glucose in vitro, but it is still not fully clear whether brown adipose tissue (BAT) could completely oxidize glucose in vivo. Although positron emission tomography (PET) with 18F‐fluorodeoxyglucose (18F‐FDG) showed a high level of glucose uptake in the activated BAT, the non‐metabolizable 18F‐FDG cannot fully demonstrate intracellular glucose metabolism. Through in vivo [U‐13C]glucose tracing, here we show that chronic cold exposure dramatically activates glucose oxidation in BAT and the browning/beiging subcutaneous white adipose tissue (sWAT). Specifically, chronic cold exposure enhances glucose flux into the mitochondrial TCA cycle. Metabolic flux analysis models that β3‐adrenergic receptor (β3‐AR) agonist significantly enhances the flux of mitochondrial pyruvate uptake through mitochondrial pyruvate carrier (MPC) in the differentiated primary brown adipocytes. Furthermore, in vivo MPC inhibition blocks cold‐induced glucose oxidation and impairs body temperature maintenance in mice. Together, mitochondrial pyruvate uptake and oxidation serve an important energy source in the chronic cold exposure activated BAT and beige adipose tissue, which supports a role for glucose oxidation in brown fat thermogenesis.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Tinglu Ning
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Jared Rutter
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Lei Jiang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
42
|
Si Chaib Z, Marchetto A, Dishnica K, Carloni P, Giorgetti A, Rossetti G. Impact of Cholesterol on the Stability of Monomeric and Dimeric Forms of the Translocator Protein TSPO: A Molecular Simulation Study. Molecules 2020; 25:molecules25184299. [PMID: 32961709 PMCID: PMC7570527 DOI: 10.3390/molecules25184299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/25/2022] Open
Abstract
The translocator protein (TSPO) is a transmembrane protein present across the three domains of life. Its functional quaternary structure consists of one or more subunits. In mice, the dimer-to-monomer equilibrium is shifted in vitro towards the monomer by adding cholesterol, a natural component of mammalian membranes. Here, we present a coarse-grained molecular dynamics study on the mouse protein in the presence of a physiological content and of an excess of cholesterol. The latter turns out to weaken the interfaces of the dimer by clusterizing mostly at the inter-monomeric space and pushing the contact residues apart. It also increases the compactness and the rigidity of the monomer. These two factors might play a role for the experimentally observed incremented stability of the monomeric form with increased content of cholesterol. Comparison with simulations on bacterial proteins suggests that the effect of cholesterol is much less pronounced for the latter than for the mouse protein.
Collapse
Affiliation(s)
- Zeineb Si Chaib
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (Z.S.C.); (A.M.); (P.C.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52062 Aachen, Germany
| | - Alessandro Marchetto
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (Z.S.C.); (A.M.); (P.C.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Klevia Dishnica
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Paolo Carloni
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (Z.S.C.); (A.M.); (P.C.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52062 Aachen, Germany
- Institute for Neuroscience and Medicine (INM-11) “Molecular Neuroscience and Neuroimaging”, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alejandro Giorgetti
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (Z.S.C.); (A.M.); (P.C.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
- Correspondence: (A.G.); (G.R.)
| | - Giulia Rossetti
- Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) “Computational biomedicine”, Forschungszentrum Jülich, 52425 Jülich, Germany; (Z.S.C.); (A.M.); (P.C.)
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Correspondence: (A.G.); (G.R.)
| |
Collapse
|
43
|
Characterization of In Vivo Function(s) of Members of the Plant Mitochondrial Carrier Family. Biomolecules 2020; 10:biom10091226. [PMID: 32846873 PMCID: PMC7565455 DOI: 10.3390/biom10091226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Although structurally related, mitochondrial carrier family (MCF) proteins catalyze the specific transport of a range of diverse substrates including nucleotides, amino acids, dicarboxylates, tricarboxylates, cofactors, vitamins, phosphate and H+. Despite their name, they do not, however, always localize to the mitochondria, with plasma membrane, peroxisomal, chloroplast and thylakoid and endoplasmic reticulum localizations also being reported. The existence of plastid-specific MCF proteins is suggestive that the evolution of these proteins occurred after the separation of the green lineage. That said, plant-specific MCF proteins are not all plastid-localized, with members also situated at the endoplasmic reticulum and plasma membrane. While by no means yet comprehensive, the in vivo function of a wide range of these transporters is carried out here, and we discuss the employment of genetic variants of the MCF as a means to provide insight into their in vivo function complementary to that obtained from studies following their reconstitution into liposomes.
Collapse
|
44
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
45
|
Buchanan JL, Taylor EB. Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan. Biomolecules 2020; 10:biom10081162. [PMID: 32784379 PMCID: PMC7464753 DOI: 10.3390/biom10081162] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
As a nodal mediator of pyruvate metabolism, the mitochondrial pyruvate carrier (MPC) plays a pivotal role in many physiological and pathological processes across the human lifespan, from embryonic development to aging-associated neurodegeneration. Emerging research highlights the importance of the MPC in diverse conditions, such as immune cell activation, cancer cell stemness, and dopamine production in Parkinson’s disease models. Whether MPC function ameliorates or contributes to disease is highly specific to tissue and cell type. Cell- and tissue-specific differences in MPC content and activity suggest that MPC function is tightly regulated as a mechanism of metabolic, cellular, and organismal control. Accordingly, recent studies on cancer and diabetes have identified protein–protein interactions, post-translational processes, and transcriptional factors that modulate MPC function. This growing body of literature demonstrates that the MPC and other mitochondrial carriers comprise a versatile and dynamic network undergirding the metabolism of health and disease.
Collapse
Affiliation(s)
- Jane L. Buchanan
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|
46
|
Fernie AR, Cavalcanti JHF, Nunes-Nesi A. Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules 2020; 10:E1013. [PMID: 32650612 PMCID: PMC7408384 DOI: 10.3390/biom10071013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial carriers (MC) are a large family (MCF) of inner membrane transporters displaying diverse, yet often redundant, substrate specificities, as well as differing spatio-temporal patterns of expression; there are even increasing examples of non-mitochondrial subcellular localization. The number of these six trans-membrane domain proteins in sequenced plant genomes ranges from 39 to 141, rendering the size of plant families larger than that found in Saccharomyces cerevisiae and comparable with Homo sapiens. Indeed, comparison of plant MCs with those from these better characterized species has been highly informative. Here, we review the most recent comprehensive studies of plant MCFs, incorporating the torrent of genomic data emanating from next-generation sequencing techniques. As such we present a more current prediction of the substrate specificities of these carriers as well as review the continuing quest to biochemically characterize this feature of the carriers. Taken together, these data provide an important resource to guide direct genetic studies aimed at addressing the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Alisdair R. Fernie
- Max-Planck-Instiute of Molecular Plant Physiology, 14476 Postdam-Golm, Germany
| | - João Henrique F. Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá 69800-000, Amazonas, Brazil;
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| |
Collapse
|
47
|
Horten P, Colina-Tenorio L, Rampelt H. Biogenesis of Mitochondrial Metabolite Carriers. Biomolecules 2020; 10:E1008. [PMID: 32645990 PMCID: PMC7408425 DOI: 10.3390/biom10071008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/28/2022] Open
Abstract
: Metabolite carriers of the mitochondrial inner membrane are crucial for cellular physiology since mitochondria contribute essential metabolic reactions and synthesize the majority of the cellular ATP. Like almost all mitochondrial proteins, carriers have to be imported into mitochondria from the cytosol. Carrier precursors utilize a specialized translocation pathway dedicated to the biogenesis of carriers and related proteins, the carrier translocase of the inner membrane (TIM22) pathway. After recognition and import through the mitochondrial outer membrane via the translocase of the outer membrane (TOM) complex, carrier precursors are ushered through the intermembrane space by hexameric TIM chaperones and ultimately integrated into the inner membrane by the TIM22 carrier translocase. Recent advances have shed light on the mechanisms of TOM translocase and TIM chaperone function, uncovered an unexpected versatility of the machineries, and revealed novel components and functional crosstalk of the human TIM22 translocase.
Collapse
Affiliation(s)
- Patrick Horten
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (P.H.); (L.C.-T.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lilia Colina-Tenorio
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (P.H.); (L.C.-T.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (P.H.); (L.C.-T.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
48
|
Characteristic Analysis of Homo- and Heterodimeric Complexes of Human Mitochondrial Pyruvate Carrier Related to Metabolic Diseases. Int J Mol Sci 2020; 21:ijms21093403. [PMID: 32403431 PMCID: PMC7246999 DOI: 10.3390/ijms21093403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Human mitochondrial pyruvate carriers (hMPCs), which are required for the uptake of pyruvate into mitochondria, are associated with several metabolic diseases, including type 2 diabetes and various cancers. Yeast MPC was recently demonstrated to form a functional unit of heterodimers. However, human MPC-1 (hMPC-1) and MPC-2 (hMPC-2) have not yet been individually isolated for their detailed characterization, in particular in terms of their structural and functional properties, namely, whether they exist as homo- or heterodimers. In this study, hMPC-1 and hMPC-2 were successfully isolated in micelles and they formed stable homodimers. However, the heterodimer state was found to be dominant when both hMPC-1 and hMPC-2 were present. In addition, as heterodimers, the molecules exhibited a higher binding capacity to both substrates and inhibitors, together with a larger structural stability than when they existed as homodimers. Taken together, our results demonstrated that the hetero-dimerization of hMPCs is the main functional unit of the pyruvate metabolism, providing a structural insight into the transport mechanisms of hMPCs.
Collapse
|
49
|
Liang L, Chen Y, Yu Y, Pan W, Cui Y, Xu X, Peng K, Liu M, Rashid K, Hou Y, Liu T. SLC25A18 has prognostic value in colorectal cancer and represses Warburg effect and cell proliferation via Wnt signaling. Am J Cancer Res 2020; 10:1548-1567. [PMID: 32509397 PMCID: PMC7269784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor worldwide. The solute carrier family 25 member 18 (SLC25A18) transports glutamate across the inner mitochondrial membrane and involves some non-tumor diseases, yet little is known about its role in malignancy. Here, we studied the function and mechanism of SLC25A18 in CRC. We conducted a bioinformatic analysis of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to identify the correlation of SLC25A18 expression with clinic-pathological characteristics. Function experiments were implemented to estimate the variation of aerobic glycolysis and cell proliferation due to in vitro and in vivo up- or down-regulation of SLC25A18. Immunohistochemical staining of SLC25A18 was performed on a tissue microarray of 106 patients with primary or metastatic CRC to evaluate its predictive and prognostic value. SLC25A18 expression was low in the CRC samples and was negatively correlated with stage, age and serum carcinoembryonic antigen levels. High expression of SLC25A18 indicated longer disease-free survival time after surgery. Exogenous overexpression of SLC25A18 decreased glucose consumption, lactate production, intracellular ATP concentration and cell proliferation and abrogated expression of CTNNB1, PKM2, LDHA and MYC. Inhibition of Wnt/β-catenin restored SLC25A18-repressed cellular activities. SLC25A18 clinically predicted a longer survival time after surgery or medicine treatment. These results showed that increased SLC25A18 expression inhibits Warburg effect and cell proliferation via Wnt/β-catenin cascade, and suggest a better prognosis after treatment.
Collapse
Affiliation(s)
- Li Liang
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yanjie Chen
- Department of Gastroenterology and Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Weiyu Pan
- Department of Pathology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yuehong Cui
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Xiaojing Xu
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Ke Peng
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Khalid Rashid
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital of Fudan UniversityNO. 180, Fenglin Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
50
|
Cunningham CN, Rutter J. 20,000 picometers under the OMM: diving into the vastness of mitochondrial metabolite transport. EMBO Rep 2020; 21:e50071. [PMID: 32329174 DOI: 10.15252/embr.202050071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic compartmentalization enabled by mitochondria is key feature of many cellular processes such as energy conversion to ATP production, redox balance, and the biosynthesis of heme, urea, nucleotides, lipids, and others. For a majority of these functions, metabolites need to be transported across the impermeable inner mitochondrial membrane by dedicated carrier proteins. Here, we examine the substrates, structural features, and human health implications of four mitochondrial metabolite carrier families: the SLC25A family, the mitochondrial ABCB transporters, the mitochondrial pyruvate carrier (MPC), and the sideroflexin proteins.
Collapse
Affiliation(s)
- Corey N Cunningham
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|