1
|
Li Y, Zhu J, Zhai F, Ge Y, Zhan Z, Wang S, Kong L, Zhao J, Hu L, Wang S, Shi J, Mao J, Yu Z, Wang H, Jin J, Zhao M, Li H, Jin X. LMNB2-mediated high PD-L1 transcription triggers the immune escape of hepatocellular carcinoma. Cell Death Discov 2025; 11:269. [PMID: 40483310 PMCID: PMC12145441 DOI: 10.1038/s41420-025-02540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/01/2025] [Accepted: 05/21/2025] [Indexed: 06/11/2025] Open
Abstract
While immune checkpoint inhibitors targeting programmed cell death-ligand 1 (PD-L1) demonstrate clinical efficacy in hepatocellular carcinoma (HCC), tumor cells frequently evade immune surveillance through PD-L1 overexpression, a phenomenon whose regulatory mechanisms remain poorly understood. Through integrated analysis of single-cell transcription sequence data, we identified aberrant upregulation of Lamin B2 (LMNB2) specifically in immunotherapy-sensitive HCC patients. Functional characterization revealed that LMNB2 acts as a transcriptional regulator of PD-L1, potentiating immune escape mechanisms in HCC cells during co-culture with Jurkat cells. Notably, we discovered that speckle-type POZ protein (SPOP) directly interacts with LMNB2 to mediate its ubiquitination and proteasomal degradation, thereby maintaining physiological PD-L1 expression levels. Clinically relevant SPOP mutations or reduced SPOP expression impaired this regulatory mechanism, leading to LMNB2 accumulation and subsequent PD-L1 hyperactivation. Importantly, combinatorial targeting of LMNB2 with Atezolizumab (PD-L1 inhibitor) displayed a synergistic effect on suppressing tumor progression both in vitro and in vivo, particularly in HCC models with SPOP mutations or LMNB2 overexpression. These findings unveil a novel ubiquitination-dependent regulatory axis in HCC immune evasion and propose targeted co-inhibition strategies to overcome HCC immunotherapy resistance.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Yidong Ge
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Ziqing Zhan
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Shuyan Wang
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, 315040, Ningbo, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jianan Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Lecheng Hu
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jianing Mao
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Zongdong Yu
- Department of Neurosurgery, Shangrao People's Hospital, 334099, Shangrao, Jiangxi, China
| | - Haoyun Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jiabei Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Mengxiang Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China
- Department of Stomatology, The First Affiliated Hospital of Ningbo University, Ningbo University, 315010, Ningbo, Zhejiang, China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, 315211, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Dong Y, Gao W, Liu K, Lin C, Usman M, Loor JJ, Li G, Cao L, Yang Z, Luo J, Li D, Sun Q, Lei L, Du X, Song Y, Liu G, Li X. Cullin 3 mitigates nonesterified fatty acid-induced oxidative stress in mammary epithelial cells: Involvement of BCL2/BECN1 and autophagy. J Dairy Sci 2025; 108:4163-4179. [PMID: 40054686 DOI: 10.3168/jds.2024-25879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/04/2025] [Indexed: 04/20/2025]
Abstract
High nonesterified fatty acid (NEFA) concentrations in cows with clinical ketosis lead to metabolic dysfunction in mammary cells, resulting in oxidative stress. Studies have shown that autophagy is impaired in the mammary glands of ketotic cows, and enhancing autophagy mitigates oxidative stress in these animals. Cullin 3 (CUL3), an E3 ubiquitin ligase, is integral for maintaining cellular homeostasis, particularly regulation of oxidative stress and autophagy. Whether CUL3 is involved in mitigating NEFA-induced oxidative stress is unknown. This study aimed to investigate the protective effects and underlying mechanisms whereby CUL3 mitigates NEFA-induced oxidative stress in mammary epithelial cells. First, mammary gland tissue and blood samples were collected from healthy cows (n = 12, BHB <0.6 mM) and cows with clinical ketosis (n = 12, BHB >3.0 mM). Compared with healthy cows, cows with clinical ketosis had reduced productive performance, decreased CUL3 expression, impaired autophagic activity, and increased oxidative stress status in mammary tissue. In vitro, incubating the immortalized bovine mammary epithelial cell line (MAC-T) with 1.2 mM NEFA downregulated CUL3 expression, impaired autophagy, and increased oxidative stress. Adenovirus-mediated overexpression of CUL3 attenuated NEFA-induced accumulation of peroxides and reactive oxygen species, whereas silencing of CUL3 via small interfering RNA exacerbated these effects. Even when nuclear factor erythroid 2 related factor 2 (NFE2L2) expression was reduced by overexpression of CUL3, there was no worsening of NEFA-induced reductions in mRNA levels of NFE2L2 downstream target genes (NADPH quinone oxidoreductase 1 [NQO1], heme oxygenase-1 [HMOX1], glutamate-cysteine ligase catalytic subunit [GCLC)], and glutamate-cysteine ligase modifier subunit [GCLM]). The reduction in NEFA-induced oxidative stress by CUL3 was diminished upon autophagy related 5 (ATG5) silencing suggesting that CUL3 alleviates NEFA-induced oxidative stress via autophagy. Additionally, CUL3 overexpression aggravated the NEFA-induced decrease in BCL2 apoptosis regulator (BCL2) expression along with alleviating the NEFA-induced decrease in Beclin1 (BECN1) expression. Under NEFA treatment, overexpression of BCL2 partly mitigated the CUL3-induced elevation in BECN1. Overall, oxidative stress and impaired autophagy are characterized in the mammary tissue of cows with clinical ketosis. CUL3 activation, likely through the BCL2-BECN1 pathway, enhances autophagy and mitigates NEFA-induced oxidative stress in MAC-T cells. Thus, targeting CUL3-mediated autophagy could be a promising therapeutic strategy to reduce oxidative stress-induced damage in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Yifei Dong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kai Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Cai Lin
- College of Food and Biology, Changchun Polytechnic, Changchun City, China 130062
| | - Muhammad Usman
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Guojin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Liguang Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zifeng Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianchun Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Depeng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianwen Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Chang S, Ding N, Li Y, Li Y, Tang Z, Pan J, Yan L, Chen J. Sanshen San Formula Hinders Cognitive Function and Pathology in Alzheimer's Disease Through Potentiating the Function of Synapse. CNS Neurosci Ther 2025; 31:e70349. [PMID: 40202070 PMCID: PMC11979623 DOI: 10.1111/cns.70349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) constitutes a devastating neurodegenerative disorder, manifested by amyloid-β aggregation, phosphorylated tau accumulation, and progressive cognitive deterioration. Current therapeutic interventions remain predominantly symptomatic, underscoring the urgency for more efficacious treatment strategies. PURPOSE This study elucidated the therapeutic potential of Sanshen San (SSS), a traditional Chinese herbal formula encompassing Polygala Radix, Pini Radix in Poria, and Acori Tatarinowii Rhizoma, on cognitive function and AD pathology. METHODS We implemented both acute Aβ1-42-injected mice and 5xFAD transgenic mouse models. The therapeutic efficacy of SSS was assessed through behavioral paradigms including Y-maze, Novel Object Recognition, and Morris Water Maze. Molecular mechanisms were delineated utilizing RNA sequencing, metabolomics analysis, immunofluorescence staining, Golgi-Cox staining, transmission electron microscopy, and Western blotting. RESULTS Chemical analysis unveiled 10 principal bioactive compounds in SSS. The formula substantially ameliorated cognitive performance in both Aβ1-42-injected and 5xFAD mouse models, attenuated Aβ plaque burden, and augmented microglial phagocytosis. SSS safeguarded synaptic integrity, enhanced mitochondrial function, and facilitated autophagy. Transcriptomic and metabolomic analyses demonstrated that SSS predominantly operates by reinstating synaptic transmission and neurotransmitter function, particularly in the dopaminergic system. CONCLUSION SSS efficaciously mitigates AD pathology through potentiating synaptic function, optimizing mitochondrial homeostasis, and restoring neurotransmitter balance, exemplifying a promising multi-target therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Shiquan Chang
- Guangzhou Key Laboratory of Formula‐Pattern of Traditional ChineseMedicine, Jinan UniversityGuangzhouChina
| | - Nana Ding
- Guangzhou Key Laboratory of Formula‐Pattern of Traditional ChineseMedicine, Jinan UniversityGuangzhouChina
| | - Yalin Li
- Guangzhou Key Laboratory of Formula‐Pattern of Traditional ChineseMedicine, Jinan UniversityGuangzhouChina
| | - Ying Li
- College of Basic MedicineHubei University of Chinese MedicineWuhanChina
| | - Ziling Tang
- Guangzhou Key Laboratory of Formula‐Pattern of Traditional ChineseMedicine, Jinan UniversityGuangzhouChina
| | - Junping Pan
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Traditional Chinese MedicineJinan UniversityGuangzhouChina
| | - Li Yan
- Guangzhou Key Laboratory of Formula‐Pattern of Traditional ChineseMedicine, Jinan UniversityGuangzhouChina
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula‐Pattern of Traditional ChineseMedicine, Jinan UniversityGuangzhouChina
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
4
|
Jing C, Wu Y, Zhang Y, Zhu Z, Zhang Y, Liu Z, Sun D. Epigenetic regulation and post-translational modifications of ferroptosis-related factors in cardiovascular diseases. Clin Epigenetics 2025; 17:4. [PMID: 39799367 PMCID: PMC11724467 DOI: 10.1186/s13148-024-01809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025] Open
Abstract
As an important element of the human body, iron participates in numerous physiological and biochemical reactions. In the past decade, ferroptosis (a form of iron-dependent regulated cell death) has been reported to contribute to the pathogenesis and progression of various diseases. The stability of iron in cardiomyocytes is crucial for the maintenance of normal physiological cardiac activity. Ferroptosis has been detected in many cardiovascular diseases (CVDs), including coronary heart disease, myocardial ischemia-reperfusion injury, heart failure, and chemotherapy-induced myocardial damage. In cardiomyocytes, epigenetic regulation and post-translational modifications regulate the expression of ferroptosis-related factors, maintain iron homeostasis, and participate in the progression of CVDs. Currently, there is no detailed mechanism to explain the relationship between epigenetic regulation and ferroptosis in CVDs. In this review, we provide an initial summary of the core mechanisms of ferroptosis in cardiomyocytes, with first focus on the epigenetic regulation and expression of ferroptosis-related factors in the context of common cardiovascular diseases. We anticipate that the new insights into the pathogenesis of CVDs provided here will inspire the development of clinical interventions to specifically target the active sites of these factors, reducing the harmfulness of ferroptosis to human health.
Collapse
Affiliation(s)
- Chunlu Jing
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
- Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yupeng Wu
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Yuzhu Zhang
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Zaihan Zhu
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China
| | - Yong Zhang
- Department of Urology, The People's Hospital of Liaoning Province, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Zhen Liu
- Department of Urology, The People's Hospital of Liaoning Province, The People's Hospital of China Medical University, 33 Wenyi Road, Shenhe District, Shenyang, 110016, People's Republic of China.
| | - Dandan Sun
- Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China.
- Shenyang Clinical Medical Research Center for Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, 110067, People's Republic of China.
| |
Collapse
|
5
|
Chen Y, Xian M, Ying W, Liu J, Bing S, Wang X, Yu J, Xu X, Xiang S, Shao X, Cao J, He Q, Yang B, Ying M. Succinate dehydrogenase deficiency-driven succinate accumulation induces drug resistance in acute myeloid leukemia via ubiquitin-cullin regulation. Nat Commun 2024; 15:9820. [PMID: 39537588 PMCID: PMC11560925 DOI: 10.1038/s41467-024-53398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Drug resistance is vital for the poor prognosis of acute myeloid leukemia (AML) patients, but the underlying mechanism remains poorly understood. Given the unique microenvironment of bone marrow, we reasoned that drug resistance of AML might rely on distinct metabolic processes. Here, we identify succinate dehydrogenase (SDH) deficiency and over-cumulative succinate as typical features in AML, with a marked function in causing the resistance of AML cells to various anti-cancer therapies. Mechanistically, succinate promotes the accumulation of oncogenic proteins in a manner that precedes transcriptional activation. This function is mediated by succinate-triggered upregulation of ubiquitin-conjugating enzyme E2M (UBC12) phosphorylation, which impairs its E2 function in cullins neddylation. Notably, decreasing succinate by fludarabine can restore the sensitivity of anti-cancer drugs in SDH-deficient AML. Together, we uncover the function of succinate in driving drug resistance by regulating p-UBC12/cullin activity, and indicate reshaping succinate metabolism as a promising treatment for SDH-deficient AML.
Collapse
Affiliation(s)
- Yifan Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Miao Xian
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenwen Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiayi Liu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shaowei Bing
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomin Wang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiayi Yu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaojun Xu
- Division of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Senfeng Xiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Division of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Zhao Y, Lin M, Zhai F, Chen J, Jin X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:782. [PMID: 38931449 PMCID: PMC11207014 DOI: 10.3390/ph17060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Man Lin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Fengguang Zhai
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| |
Collapse
|
7
|
Ni H, Tang S, Lu G, Niu Y, Xu J, Zhang H, Hu J, Shen HM, Wu Y, Xia D. Linc00673-V3 positively regulates autophagy by promoting Smad3-mediated LC3B transcription in NSCLC. Life Sci Alliance 2024; 7:e202302408. [PMID: 38527804 PMCID: PMC10963591 DOI: 10.26508/lsa.202302408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Since its first discovery, long noncoding RNA Linc00673 has been linked to carcinogenesis and metastasis of various human cancers. Linc00673 had five transcriptional isoforms and their biological functions remained to be explored. Here we have reported that Linc00673-V3, one of the isoforms of Linc00673, promoted non-small cell lung cancer chemoresistance, and increased Linc00673-V3 expression level was associated with enhanced autophagy. Mechanistically, we discerned the existence of a stem-loop configuration engendered by the 1-100-nt and 2200-2275-nt fragments within Linc00673-V3. This structure inherently interacted with Smad3, thereby impeding its ubiquitination and subsequent degradation orchestrated by E3 ligase STUB1. The accumulation of Smad3 contributed to autophagy via up-regulation of LC3B transcription and ultimately conferred chemoresistance in NSCLC. Our results revealed a novel transcriptional regulation network between Linc00673-V3, Smad3, and LC3B, which provided an important insight into the interplay between autophagy regulation and non-canonical function of Smad3. Furthermore, the results from in vivo experiments suggested Linc00673-V3 targeted antisense oligonucleotide as a promising therapeutic strategy to overcome chemotherapy resistance in NSCLC.
Collapse
Affiliation(s)
- Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Song Tang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinming Xu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Ju L, Diao J, Zhang J, Dai F, Zhou H, Han Z, Hu R, Pei T, Wang F, He Z, Fu X, Wang M, Xiao W, Ma Y. Shenshuai Yingyang Jiaonang ameliorates chronic kidney disease-associated muscle atrophy in rats by inhibiting ferroptosis mediated by the HIF-1α/SLC7A11 pathway. Heliyon 2024; 10:e29093. [PMID: 38665562 PMCID: PMC11043956 DOI: 10.1016/j.heliyon.2024.e29093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Objective Shenshuai Yingyang Jiaonang (SSYYJN), a traditional Chinese medicine formula, can ameliorate muscle atrophy associated with chronic kidney disease (CKD). However, its mechanisms of action remain unclear. This study is to investigate the molecular mechanisms involved in the effects of SSYYJN in ameliorating muscle atrophy associated with CKD in rats. Methods: The chemical compounds of SSYYJN were identified by UPLC-Q-Orbitrap HRMS. Considering the dose-response relationship of the identified compounds, male SD rats were randomly divided into Sham, Model, SSYYJN, and α-Keto Acid (KA) groups. Subsequently, we assessed the therapeutic and anti-ferroptotic effects of SSYYJN. Network pharmacology studies were used to predict the molecular mechanism of SSYYJN on ferroptosis and were further verified for accuracy. Results A total of 42 active compounds were identified from SSYYJN. SSYYJN alleviated muscle atrophy caused by CKD, as evidenced by changes in body weight, serum biochemical indices, mass and histopathology of the skeletal muscle, and the levels of MuRF1. SSYYJN reduced the levels of iron, MDA, and ROS, increased the levels of GSH, NAPDH, and Gpx4. Network pharmacology analysis indicated that SSYYJN exerted anti-ferroptotic effects that were closely related to the HIF-1α signaling pathway. Molecular protein and genetic test results showed that SSYYJN increased HIF-1α protein and increased SLC7A11. Conclusions SSYYJN attenuates muscle atrophy in CKD by inhibiting ferroptosis through the activation of the HIF-1α/SLC7A11 pathway and might be a promising traditional Chinese medicine for muscle atrophy in CKD.
Collapse
Affiliation(s)
- Liliang Ju
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jianxin Diao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiaxing Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fahong Dai
- Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hong Zhou
- National Clinical Research Center for Kidney Disease, Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou, China
| | - Zhongxiao Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fujing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhuoen He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Mingqing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yun Ma
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Cao M, Tang Y, Luo Y, Gu F, Zhu Y, Liu X, Yan C, Hu W, Wang S, Chao X, Xu H, Chen HB, Wang L. Natural compounds modulating mitophagy: Implications for cancer therapy. Cancer Lett 2024; 582:216590. [PMID: 38097131 DOI: 10.1016/j.canlet.2023.216590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
Cancer is considered as the second leading cause of mortality, and cancer incidence is still growing rapidly worldwide, which poses an increasing global health burden. Although chemotherapy is the most widely used treatment for cancer, its effectiveness is limited by drug resistance and severe side effects. Mitophagy is the principal mechanism that degrades damaged mitochondria via the autophagy/lysosome pathway to maintain mitochondrial homeostasis. Emerging evidence indicates that mitophagy plays crucial roles in tumorigenesis, particularly in cancer therapy. Mitophagy can exhibit dual effects in cancer, with both cancer-inhibiting or cancer-promoting function in a context-dependent manner. A variety of natural compounds have been found to affect cancer cell death and display anticancer properties by modulating mitophagy. In this review, we provide a systematic overview of mitophagy signaling pathways, and examine recent advances in the utilization of natural compounds for cancer therapy through the modulation of mitophagy. Furthermore, we address the inquiries and challenges associated with ongoing investigations concerning the application of natural compounds in cancer therapy based on mitophagy. Overcoming these limitations will provide opportunities to develop novel interventional strategies for cancer treatment.
Collapse
Affiliation(s)
- Min Cao
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Yancheng Tang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Luo
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Fen Gu
- Department of Infection, Hunan Children's Hospital, Changsha, 410007, China
| | - Yuyuan Zhu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Xu Liu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Chenghao Yan
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Wei Hu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Boai Rehabilitation Hospital, Changsha, 410082, China
| | - Shaogui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojuan Chao
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
10
|
Liu D, Che X, Wu G. Deciphering the role of neddylation in tumor microenvironment modulation: common outcome of multiple signaling pathways. Biomark Res 2024; 12:5. [PMID: 38191508 PMCID: PMC10773064 DOI: 10.1186/s40364-023-00545-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
Neddylation is a post-translational modification process, similar to ubiquitination, that controls several biological processes. Notably, it is often aberrantly activated in neoplasms and plays a critical role in the intricate dynamics of the tumor microenvironment (TME). This regulatory influence of neddylation permeates extensively and profoundly within the TME, affecting the behavior of tumor cells, immune cells, angiogenesis, and the extracellular matrix. Usually, neddylation promotes tumor progression towards increased malignancy. In this review, we highlight the latest understanding of the intricate molecular mechanisms that target neddylation to modulate the TME by affecting various signaling pathways. There is emerging evidence that the targeted disruption of the neddylation modification process, specifically the inhibition of cullin-RING ligases (CRLs) functionality, presents a promising avenue for targeted therapy. MLN4924, a small-molecule inhibitor of the neddylation pathway, precisely targets the neural precursor cell-expressed developmentally downregulated protein 8 activating enzyme (NAE). In recent years, significant advancements have been made in the field of neddylation modification therapy, particularly the integration of MLN4924 with chemotherapy or targeted therapy. This combined approach has demonstrated notable success in the treatment of a variety of hematological and solid tumors. Here, we investigated the inhibitory effects of MLN4924 on neddylation and summarized the current therapeutic outcomes of MLN4924 against various tumors. In conclusion, this review provides a comprehensive, up-to-date, and thorough overview of neddylation modifications, and offers insight into the critical importance of this cellular process in tumorigenesis.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
11
|
Guo L, Zhang D, Ren X, Liu D. SYVN1 attenuates ferroptosis and alleviates spinal cord ischemia-reperfusion injury in rats by regulating the HMGB1/NRF2/HO-1 axis. Int Immunopharmacol 2023; 123:110802. [PMID: 37591122 DOI: 10.1016/j.intimp.2023.110802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The ferroptosis of neurons is an important pathological mechanism of spinal cord ischemia reperfusion injury (SCIRI). Previous studies showed that synoviolin 1 (SYVN1) is a good prognostic marker of neurodegenerative diseases, but its mechanism is still unclear. This study aims to explore the role of SYVN1 in the ferroptosis of neurons and to clarify its internal mechanism. METHODS Rat primary spinal cord neurons were treated with oxygen-glucose deprivation (OGD) for 1, 4 or 8 h, and then cell viability, ROS and MDA levels, glutathione peroxidase (GSH-Px) activity, and the expression of ferroptosis-related proteins GPX4, FTH1 and PTGS2 were detected. OGD/R-induced neurons were transfected with pcDNA-SYVN1 or si-HMGB1, and then cell functions were detected. Transmission electron microscope (TEM) was used to detect cell ferroptosis. The interplay between SYVN1 and high mobility group box 1 (HMGB1) was confirmed with Co-immunoprecipitation (Co-IP) assay. The stability of HMGB1 was measured by ubiquitination assay. Also, cells were treated with pcDNA-SYVN1 or together with ubiquitination inhibitor MG132, as well as treated with pcDNA-SYVN1 and pcDNA-HMGB1 or together with NRF2 activator dimethyl fumarate (DMF), and then Western blotting was used to detect the expression of HMGB1, nuclear NRF2 and HO-1 proteins. In addition, SD rats were occluded left common carotid artery and aortic arch to establish a SCIRI rat model. And rats were injected intrathecal with adenovirus-mediated SYVN1 overexpression vector (Ad-SYVN1, 2 μL, virus titer 5 × 1013 transduction unit [TU]/mL) to overexpress SYVN1. The motion function of rats was quantified using the Basso Rat Scale (BMS) for Locomotion. The ferroptosis and the number of neurons in the spinal cord tissue of rats were detected. RESULTS SYVN1 overexpression inhibited ferroptosis of SCIRI rats and OGD/R-treated primary spinal cord neurons, and down-regulated the expression of HMGB1. In terms of mechanism, the binding of SYVN1 and HMGB1 promoted the ubiquitination and degradation of HMGB1, and negatively regulated the expression of HMGB1. Moreover, under OGD/R conditions, MG132 treatment or HMGB1 overexpression eliminated the inhibitory effect of SYVN1 overexpression on the ferroptosis of neurons and the activation of the NRF2/HO-1 pathway, and DMF treatment abolished the inhibition of HMGB1 overexpression on the NRF2/HO-1 pathway. Finally, in vivo experiments showed that SYVN1 overexpression could alleviate the spinal cord ischemia-reperfusion injury in rats by down-regulating HMGB1 and promoting the activation of the NRF2/HO-1 pathway. CONCLUSION SYVN1 regulates ferroptosis through the HMGB1/NRF2/HO-1 axis to prevent spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Lili Guo
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dong Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiaoyan Ren
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
12
|
Zhang X, Liu Y, Zhang T, Tan Y, Dai X, Yang YG, Zhang X. Advances in the potential roles of Cullin-RING ligases in regulating autoimmune diseases. Front Immunol 2023; 14:1125224. [PMID: 37006236 PMCID: PMC10064048 DOI: 10.3389/fimmu.2023.1125224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Cullin-RING ligases (CRLs) are the largest class of E3 ubiquitin ligases regulating the stability and subsequent activity of a large number of important proteins responsible for the development and progression of various diseases, including autoimmune diseases (AIDs). However, the detailed mechanisms of the pathogenesis of AIDs are complicated and involve multiple signaling pathways. An in-depth understanding of the underlying regulatory mechanisms of the initiation and progression of AIDs will aid in the development of effective therapeutic strategies. CRLs play critical roles in regulating AIDs, partially by affecting the key inflammation-associated pathways such as NF-κB, JAK/STAT, and TGF-β. In this review, we summarize and discuss the potential roles of CRLs in the inflammatory signaling pathways and pathogenesis of AIDs. Furthermore, advances in the development of novel therapeutic strategies for AIDs through targeting CRLs are also highlighted.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yuying Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| |
Collapse
|
13
|
MAP4K4 promotes ovarian cancer metastasis through diminishing ADAM10-dependent N-cadherin cleavage. Oncogene 2023; 42:1438-1452. [PMID: 36922678 PMCID: PMC10154218 DOI: 10.1038/s41388-023-02650-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Peritoneal metastasis is a key feature of advanced ovarian cancer, but the critical protein required for ovarian cancer metastasis and progression is yet to be defined. Thus, an unbiased high throughput and in-depth study is warranted to unmask the mechanism. Transcriptomic sequencing of paired primary ovarian tumors and metastases unveiled that MAP4K4, a serine/threonine kinase belongs to the Ste20 family of kinases, was highly expressed in metastatic sites. Increased MAP4K4 expression in metastasis was further validated in other independent patients, with higher MAP4K4 expression associated with poorer survival, higher level of CA125 and more advanced FIGO stage. Down regulation of MAP4K4 inhibited cancer cell adhesion, migration, and invasion. Notably, MAP4K4 was found to stabilize N-cadherin. Further results showed that MAP4K4 mediated phosphorylation of ADAM10 at Ser436 results in suppression of N-cadherin cleavage by ADAM10, leading to N-cadherin stabilization. Pharmacologic inhibition of MAP4K4 abrogated peritoneal metastases. Overall, our data reveal MAP4K4 as a significant promoter in ovarian cancer metastasis. Targeting MAP4K4 may be a potential therapeutic approach for ovarian cancer patients.
Collapse
|
14
|
Wu Y, Tan HWS, Lin JY, Shen HM, Wang H, Lu G. Molecular mechanisms of autophagy and implications in liver diseases. LIVER RESEARCH 2023; 7:56-70. [PMID: 39959698 PMCID: PMC11792062 DOI: 10.1016/j.livres.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Autophagy is a highly conserved process in which cytosolic contents are degraded by the lysosome, which plays an important role in energy and nutrient balance, and protein or organelle quality control. The liver is the most important organ for metabolism. Studies to date have revealed a significant role of autophagy in the maintenance of liver homeostasis under basal and stressed conditions, and the impairment of autophagy has been closely linked to various liver diseases. Therefore, a comprehensive understanding of the roles of autophagy in liver diseases may help in the development of therapeutic strategies via targeting autophagy. In this review, we will summarize the latest understanding of the molecular mechanisms of autophagy and systematically discuss its implications in various liver diseases, including alcohol-related liver disease, non-alcoholic fatty liver disease, viral hepatitis, hepatocellular carcinoma, and acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Yuankai Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Yi Lin
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Song JM, Kang M, Lee S, Kim J, Park S, Park DH, Lee S, Suh YH. Deneddylating enzyme SENP8 regulates neuronal development. J Neurochem 2023; 165:348-361. [PMID: 36847487 DOI: 10.1111/jnc.15797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Neddylation is a cellular process in which the neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) is conjugated to the lysine residue of target proteins via serial enzymatic cascades. Recently, it has been demonstrated that neddylation is required for synaptic clustering of metabotropic glutamate receptor 7 (mGlu7) and postsynaptic density protein 95 (PSD-95), and the inhibition of neddylation impairs neurite outgrowth and excitatory synaptic maturation. Similar to the balanced role of deubiquitylating enzymes (DUBs) in the ubiquitination process, we hypothesized that deneddylating enzymes can regulate neuronal development by counteracting the process of neddylation. We find that the SUMO peptidase family member, NEDD8 specific (SENP8) acts as a key neuronal deneddylase targeting the global neuronal substrates in primary rat cultured neurons. We demonstrate that SENP8 expression levels are developmentally regulated, peaking around the first postnatal week and gradually diminishing in mature brain and neurons. We find that SENP8 negatively regulates neurite outgrowth through multiple pathways, including actin dynamics, Wnt/β-catenin signaling, and autophagic processes. Alterations in neurite outgrowth by SENP8 subsequently result in the impairment of excitatory synapse maturation. Our data indicate that SENP8 plays an essential role in neuronal development and is a promising therapeutic target for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jae-Man Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Minji Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seungha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jungho Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sunha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Da-Ha Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sanghyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Lu G, Tan HWS, Schmauck-Medina T, Wang L, Chen J, Cho YL, Chen K, Zhang JZ, He W, Wu Y, Xia D, Zhou J, Fang EF, Fang L, Liu W, Shen HM. WIPI2 positively regulates mitophagy by promoting mitochondrial recruitment of VCP. Autophagy 2022; 18:2865-2879. [PMID: 35389758 PMCID: PMC9673930 DOI: 10.1080/15548627.2022.2052461] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mammalian Atg18 ortholog WIPI2 is a key regulator of LC3 lipidation to promote autophagosome biogenesis during nonselective macroautophagy, while its functions in selective autophagy such as mitophagy remain largely unexplored. In this study, we explored the role of WIPI2 in PINK1-PRKN/parkin-mediated mitophagy. First, we found that WIPI2 is recruited to damaged mitochondria upon mitophagy induction. Second, loss of WIPI2 impedes mitochondrial damaging agents-induced mitophagy. Third, at molecular level, WIPI2 binds to and promotes AAA-ATPase VCP/p97 (valosin containing protein) to damaged mitochondria; and WIPI2 depletion blunts the recruitment of VCP to damaged mitochondria, leading to reduction in degradation of outer mitochondrial membrane (OMM) proteins and mitophagy. Finally, WIPI2 is implicated in cell fate decision as cells deficient in WIPI2 are largely resistant to cell death induced by mitochondrial damage. In summary, our study reveals a critical regulatory role of WIPI2 in mitochondrial recruitment of VCP to promote OMM protein degradation and eventual mitophagy.Abbreviations: ATG, autophagy related; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CCCP, carbonyl cyanide chlorophenylhydrazone; CYCS, cytochrome c, somatic; HSPD1/HSP60, heat shock protein family D (Hsp60) member 1; IMM, inner mitochondrial membrane; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; NPLOC4, NPL4 homolog, ubiquitin recognition factor; OMM, outer mitochondrial membrane; OPTN, optineurin; PtdIns3P, phosphatidylinositol-3-phosphate; PINK1, PTEN induced kinase 1; PRKN/Parkin, parkin RBR E3 ubiquitin protein ligase; UBXN6/UBXD1, UBX domain protein 6; UFD1, ubiquitin recognition factor in ER associated degradation 1; VCP/p97, valosin containing protein; WIPI2, WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Jiaqing Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kelie Chen
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Jing-Zi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School & Chemistry and Biomedicine Innovation Center of Nanjing University, Nanjing, Jiangsu, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yihua Wu
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Dajing Xia
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School & Chemistry and Biomedicine Innovation Center of Nanjing University, Nanjing, Jiangsu, China
| | - Wei Liu
- Department of Biochemistry, School of Medicine, Zhejiang University, Zhejiang, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China,CONTACT Han-Ming Shen Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
17
|
Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen H. Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm (Beijing) 2022; 3:e150. [PMID: 35845350 PMCID: PMC9271889 DOI: 10.1002/mco2.150] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionally conserved catabolic process in which cytosolic contents, such as aggregated proteins, dysfunctional organelle, or invading pathogens, are sequestered by the double-membrane structure termed autophagosome and delivered to lysosome for degradation. Over the past two decades, autophagy has been extensively studied, from the molecular mechanisms, biological functions, implications in various human diseases, to development of autophagy-related therapeutics. This review will focus on the latest development of autophagy research, covering molecular mechanisms in control of autophagosome biogenesis and autophagosome-lysosome fusion, and the upstream regulatory pathways including the AMPK and MTORC1 pathways. We will also provide a systematic discussion on the implication of autophagy in various human diseases, including cancer, neurodegenerative disorders (Alzheimer disease, Parkinson disease, Huntington's disease, and Amyotrophic lateral sclerosis), metabolic diseases (obesity and diabetes), viral infection especially SARS-Cov-2 and COVID-19, cardiovascular diseases (cardiac ischemia/reperfusion and cardiomyopathy), and aging. Finally, we will also summarize the development of pharmacological agents that have therapeutic potential for clinical applications via targeting the autophagy pathway. It is believed that decades of hard work on autophagy research is eventually to bring real and tangible benefits for improvement of human health and control of human diseases.
Collapse
Affiliation(s)
- Guang Lu
- Department of Physiology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yin Shi
- Department of BiochemistryZhejiang University School of MedicineHangzhouChina
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic MedicineSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn ResearchSouthwest HospitalArmy Medical UniversityChongqingChina
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of PathophysiologyNingbo University School of MedicineNingboZhejiangChina
| | - Han‐Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
18
|
Goenka A, Cheng SY. Targeting Neddylation in Cancer. Neuro Oncol 2022; 24:1869-1870. [PMID: 35749751 PMCID: PMC9629445 DOI: 10.1093/neuonc/noac159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
Zhou J, Luo Y, Kang X, Bian F, Liu D. The root extract of Scutellaria baicalensis Georgi promotes β cell function and protects from apoptosis by inducing autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114790. [PMID: 34737007 DOI: 10.1016/j.jep.2021.114790] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi (SBG) is a traditional Chinese medicine with a remarkable remedial effect on diabetes mellitus. However, the precise mechanism involved has not been fully elucidated yet. Here, we aimed to explore the anti-diabetes effects of its traditional decoction in vitro and elucidate the autophagy-related mechanism. AIM OF THE STUDY This study was designed to investigate the effects of the water extract of SBG (WSB) on the β cell viability, insulin secretion and the mechanism related to autophagy. MATERIALS AND METHODS Detection of insulin secretion using an enzyme immunoassay method, and analysis of apoptosis rate in MIN-6 cells by the flow cytometry with PI and Annexin V-FITC staining. In addition, the autophagy levels and pathways were evaluated from the number of autophagosomes and the expression of autophagy-related proteins. 3-Methyladenine (3-MA) was used as the autophagy inhibitor. Autophagosomes were observed using a confocal microscopy, and autophagy-related proteins (LC3-II/I, p62, S6k, p-AMPK/AMPK, p-mTOR/mTOR) were measured by Western blot. RESULTS Here we detected a significant increase in insulin release from MIN-6 cells after treated with WSB. It is about 1.6 times as much as that of the control group with 2.8 mM glucose and 2.2 times more than the 16.8 mM glucose group. At the same time, WSB increased the number of autophagosomes and the ratio of LC3 Ⅱ/LC3 Ⅰ, indicating that autophagy were activated in MIN-6 cells. When inhibiting autophagy, there was no significant difference in insulin release between the two groups. The apoptotic rate of the high glucose group was as high as 33.23%. After pretreatment with WSB, the apoptotic rate decreased to 14.95%, and increased to 22.57% when treated with 3-MA and WSB. At the same time, WSB treatment enhanced the phosphorylation of AMPK, but had no significant effect on the expression of mTOR and S6K. CONCLUSION Our data suggested that WSB increased insulin secretion and reduced apoptosis under high glucose by inducing autophagy through the AMPK pathway, which elucidated the mechanism of WSB in the treatment of diabetes.
Collapse
Affiliation(s)
- Jiali Zhou
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China; State Key Laboratory of Subhealth Intervention Technology, Changsha, 410128, China
| | - Yushuang Luo
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China; State Key Laboratory of Subhealth Intervention Technology, Changsha, 410128, China
| | - Xincong Kang
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Fangzhou Bian
- University of California Irvine, Irvine, CA, 92697, United States
| | - Dongbo Liu
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, 410128, China; State Key Laboratory of Subhealth Intervention Technology, Changsha, 410128, China; Hunan Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128, China.
| |
Collapse
|
20
|
Discovery of a small molecule inhibitor of cullin neddylation that triggers ER stress to induce autophagy. Acta Pharm Sin B 2021; 11:3567-3584. [PMID: 34900537 PMCID: PMC8642603 DOI: 10.1016/j.apsb.2021.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 12/30/2022] Open
Abstract
Protein neddylation is catalyzed by a three-enzyme cascade, namely an E1 NEDD8-activating enzyme (NAE), one of two E2 NEDD8 conjugation enzymes and one of several E3 NEDD8 ligases. The physiological substrates of neddylation are the family members of cullin, the scaffold component of cullin RING ligases (CRLs). Currently, a potent E1 inhibitor, MLN4924, also known as pevonedistat, is in several clinical trials for anti-cancer therapy. Here we report the discovery, through virtual screening and structural modifications, of a small molecule compound HA-1141 that directly binds to NAE in both in vitro and in vivo assays and effectively inhibits neddylation of cullins 1–5. Surprisingly, unlike MLN4924, HA-1141 also triggers non-canonical endoplasmic reticulum (ER) stress and PKR-mediated terminal integrated stress response (ISR) to activate ATF4 at an early stage, and to inhibit protein synthesis and mTORC1 activity at a later stage, eventually leading to autophagy induction. Biologically, HA-1141 suppresses growth and survival of cultured lung cancer cells and tumor growth in in vivo xenograft lung cancer models at a well-tolerated dose. Taken together, our study has identified a small molecule compound with the dual activities of blocking neddylation and triggering ER stress, leading to growth suppression of cancer cells.
Collapse
|
21
|
Wang X, Wang Y, Li Z, Qin J, Wang P. Regulation of Ferroptosis Pathway by Ubiquitination. Front Cell Dev Biol 2021; 9:699304. [PMID: 34485285 PMCID: PMC8414903 DOI: 10.3389/fcell.2021.699304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Ferroptosis is an iron-dependent form of programmed cell death, which plays crucial roles in tumorigenesis, ischemia–reperfusion injury and various human degenerative diseases. Ferroptosis is characterized by aberrant iron and lipid metabolisms. Mechanistically, excess of catalytic iron is capable of triggering lipid peroxidation followed by Fenton reaction to induce ferroptosis. The induction of ferroptosis can be inhibited by sufficient glutathione (GSH) synthesis via system Xc– transporter-mediated cystine uptake. Therefore, induction of ferroptosis by inhibition of cystine uptake or dampening of GSH synthesis has been considered as a novel strategy for cancer therapy, while reversal of ferroptotic effect is able to delay progression of diverse disorders, such as cardiopathy, steatohepatitis, and acute kidney injury. The ubiquitin (Ub)–proteasome pathway (UPP) dominates the majority of intracellular protein degradation by coupling Ub molecules to the lysine residues of protein substrate, which is subsequently recognized by the 26S proteasome for degradation. Ubiquitination is crucially involved in a variety of physiological and pathological processes. Modulation of ubiquitination system has been exhibited to be a potential strategy for cancer treatment. Currently, more and more emerged evidence has demonstrated that ubiquitous modification is involved in ferroptosis and dominates the vulnerability to ferroptosis in multiple types of cancer. In this review, we will summarize the current findings of ferroptosis surrounding the viewpoint of ubiquitination regulation. Furthermore, we also highlight the potential effect of ubiquitination modulation on the perspective of ferroptosis-targeted cancer therapy.
Collapse
Affiliation(s)
- Xinbo Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanjin Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zan Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieling Qin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Cardioprotective effect of MLN4924 on ameliorating autophagic flux impairment in myocardial ischemia-reperfusion injury by Sirt1. Redox Biol 2021; 46:102114. [PMID: 34454165 PMCID: PMC8406034 DOI: 10.1016/j.redox.2021.102114] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Neddylation is essential for cardiomyocyte survival in the presence of oxidative stress, and it participates in autophagy regulation. However, whether MLN4924-an inhibitor of neddylation-exerts cardioprotective effects against myocardial ischemia/reperfusion (MI/R) remains unknown. In the present study, MLN4924 exerted strong cardioprotective effects, demonstrated by significantly elevated cell viability, a decreased LDH leakage rate, and improved cell morphology following H2O2-induced injury in vitro. MLN4924 also markedly decreased the serum myocardial zymogram level, ameliorated cardiac histopathological alterations, and alleviated left ventricular contractile dysfunction, thus limiting the cardiac infarct size in vivo compared with those in MI/R mice. Amazingly, such action of MLN4924 was abrogated by a combined treatment with the autophagic flux inhibitor, chloroquine. The mRFP-GFP-LC3 assay illustrated that MLN4924 restored the defective autophagic flux via enhancing the autolysosome formation. Notably, the expression levels of Rab7 and Atg5 were markedly up-regulated in MLN4924 treated cells and mice subjected to H2O2 or MI/R, respectively, while knockdown of Sirt1 in cells and heart tissue largely blocked such effect and induced autophagosome accumulation by inhibiting its fusion with lysosomes. Transmission electron microscopic analysis, histopathological assay and TUNEL detection of the heart tissues showed that the absence of Sirt1 blocked the cardioprotective effect of MLN4924 by further exacerbating the impaired autophagic flux during MI/R injury in vivo. Taken together, MLN4924 exhibited the strong cardioprotective action via restoring the impaired autophagic flux in H2O2-induced injury in vitro and in MI/R mice. Our work implicated that Sirt1 played a critical role in autophagosome clearance, likely through up-regulating Rab7 in MI/R.
Collapse
|