1
|
Shangguan X, Huang Y, Chen C, Wu W, Ma X, You C, Chen L, Huang J. Prognostic assessment value of immune escape-related genes in patients with acute myeloid leukemia. Leuk Lymphoma 2025; 66:72-83. [PMID: 39311489 DOI: 10.1080/10428194.2024.2404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025]
Abstract
This study explores the prognostic value of immune escape-related genes in acute myeloid leukemia (AML) patients. Using TARGET_AML and GSE37642 datasets, we identified CEP55, DNAJC13, and EMC2 as significant prognostic indicators, with high transcript abundance correlating with poor outcomes. Consensus clustering divided patients into two groups, with Cluster 1 showing worse prognosis. A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the high-risk group experiencing worse outcomes. The risk score was an independent prognostic factor. Functional analysis revealed that high-risk genes could promote cell cycle progression. The selected genes were strongly associated with immune cells, particularly mast cells and CD8+ T cells. This study enriches the prognostic evaluation system for AML and suggests a new therapeutic direction.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Prognosis
- Biomarkers, Tumor/genetics
- Gene Expression Profiling
- Female
- Male
- Tumor Escape/genetics
- Middle Aged
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Xiaohui Shangguan
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yanhong Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Congjie Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Weihao Wu
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiaomei Ma
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Chongdeng You
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Longtian Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jianqing Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
2
|
Zhou L, Zhu Y, Guo F, Long H, Yin M. Pan-cancer analysis of oncogenic role of CEP55 and experiment validation in clear cell renal cell carcinoma. Sci Rep 2024; 14:28279. [PMID: 39550427 PMCID: PMC11569145 DOI: 10.1038/s41598-024-80057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Immunotherapy has emerged as a vital component in the contemporary landscape of cancer treatment. Recent studies have indicated that CEP55 plays an oncogenic role; however, its specific mechanisms in promoting tumor proliferation and its potential value in prognosis and immunotherapy prediction across various cancers remain to be elucidated. CEP55 was significantly overexpressed in 22 cancer types compared with their adjacent normal tissues. Elevated CEP55 expression was positively correlated with younger onset age, worse tumor stage, lower response rate to the first treatment, lower tumor-free survival rate, and poorer overall survival (OS) and disease-free survival (DFS) prognosis in most cancers. Moreover, CEP55 expression was positively correlated with its binding and related genes, such as KIF11 (R = 0.83, P < 0.001), CDK1 (R = 0.77, P < 0.001) and CCNA2 (R = 0.76, P < 0.001), and the classic proliferation markers, including MKI67 and PCNA. Enrichment analyses indicated that CEP55 was predominantly associated with cell division, cell cycle activities and proliferation. Immune cell infiltration analysis by TIMER2.0 revealed that CEP55 expression was positively correlated with many kinds of infiltrating cells, such as Th2 cells and some CD4+ T cell subsets. The CEP55 expression was positively associated with increased MSI and TMB in various cancers. Our analyzation indicated that the CEP55 expression level in patients with complete remission (CR) or partial remission (PR) to anti-PDL1 therapy was significantly higher than patients with stable disease (SD) or progressive disease (PD) based on IMvigor210 cohort. We also used Gene Set Cancer Analysis (GSCA) to predict a serious of small molecule CEP55 targeted drugs, such as AZ628, SB52334, SB590885, A-770,041, AZD7762, Elesclomol, panobinostat, BRD-A94377914, and LRRK2-IN-1. Furthermore, the patients with high level of CEP55-posivie tumor epithelial cells had inferior overall survival in ccRCC according to single-cell analysis. Finally, our wet lab experiments verified that the CEP55-positive rate in ccRCC tissues (19/30, 63.3%) was significantly higher than that in renal adjacent tissues (10/30, 33.3%). The clinicopathologic analysis revealed that CEP55 protein level was significantly associated with tumor size (P = 0.044), histology grade (P < 0.001) and stage (P = 0.034). Our study indicated that CEP55 overexpression in most caner types was associated with poor prognosis. Notably, CEP55 was closely relevant to immune cell infiltration and impacted the response to immunotherapy and small molecule drugs against cancers.
Collapse
Affiliation(s)
- Libin Zhou
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yimeng Zhu
- Department of Nephrology, Zhejiang University Medical College Affiliated Sir Run Run Shaw Hospital, Shaoxing, Zhejiang, China
| | - Fei Guo
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang, China
| | - Huimin Long
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| | - Min Yin
- Department of Urology, The affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Pallavicini G, Moccia A, Iegiani G, Parolisi R, Peirent ER, Berto GE, Lorenzati M, Tshuva RY, Ferraro A, Balzac F, Turco E, Salvi SU, Myklebust HF, Wang S, Eisenberg J, Chitale M, Girgla NS, Boda E, Reiner O, Buffo A, Di Cunto F, Bielas SL. Modeling primary microcephaly with human brain organoids reveals fundamental roles of CIT kinase activity. J Clin Invest 2024; 134:e175435. [PMID: 39316437 PMCID: PMC11527453 DOI: 10.1172/jci175435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Brain size and cellular heterogeneity are tightly regulated by species-specific proliferation and differentiation of multipotent neural progenitor cells (NPCs). Errors in this process are among the mechanisms of primary hereditary microcephaly (MCPH), a group of disorders characterized by reduced brain size and intellectual disability. Biallelic citron rho-interacting serine/threonine kinase (CIT) missense variants that disrupt kinase function (CITKI/KI) and frameshift loss-of-function variants (CITFS/FS) are the genetic basis for MCPH17; however, the function of CIT catalytic activity in brain development and NPC cytokinesis is unknown. Therefore, we created the CitKI/KI mouse model and found that it did not phenocopy human microcephaly, unlike biallelic CitFS/FS animals. Nevertheless, both Cit models exhibited binucleation, DNA damage, and apoptosis. To investigate human-specific mechanisms of CIT microcephaly, we generated CITKI/KI and CITFS/FS human forebrain organoids. We found that CITKI/KI and CITFS/FS organoids lost cytoarchitectural complexity, transitioning from pseudostratified to simple neuroepithelium. This change was associated with defects that disrupted the polarity of NPC cytokinesis, in addition to elevating apoptosis. Together, our results indicate that both CIT catalytic and scaffolding functions in NPC cytokinesis are critical for human corticogenesis. Species differences in corticogenesis and the dynamic 3D features of NPC mitosis underscore the utility of human forebrain organoid models for understanding human microcephaly.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | | | - Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Emily R. Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gaia Elena Berto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Martina Lorenzati
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Rami Y. Tshuva
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Alessia Ferraro
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Fiorella Balzac
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | | | | | - Julia Eisenberg
- Department of Human Genetics and
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - Enrica Boda
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Orly Reiner
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Annalisa Buffo
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Stephanie L. Bielas
- Department of Human Genetics and
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Gibieža P, Petrikaitė V. The Complex Regulation of Cytokinesis upon Abscission Checkpoint Activation. Mol Cancer Res 2024; 22:909-919. [PMID: 39133919 DOI: 10.1158/1541-7786.mcr-24-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 10/03/2024]
Abstract
Cytokinetic abscission is a crucial process that guides the separation of daughter cells at the end of each cell division. This process involves the cleavage of the intercellular bridge, which connects the newly formed daughter cells. Over the years, researchers have identified several cellular contributors and intracellular processes that influence the spatial and temporal distribution of the cytoskeleton during cytokinetic abscission. This review presents the most important scientific discoveries that allow activation of the abscission checkpoint, ensuring a smooth and successful separation of a single cell into two cells during cell division. Here, we describe different factors, such as abscission checkpoint, ICB tension, nuclear pore defects, DNA replication stress, chromosomal stability, and midbody proteins, which play a role in the regulation and correct timing of cytokinetic abscission. Furthermore, we explore the downsides associated with the dysregulation of abscission, including its negative impact on cells and the potential to induce tumor formation in humans. Finally, we propose a novel factor for improving cancer therapy and give future perspectives in this research field.
Collapse
Affiliation(s)
- Paulius Gibieža
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| |
Collapse
|
5
|
Muhs S, Paraschiakos T, Schäfer P, Joosse SA, Windhorst S. Centrosomal Protein 55 Regulates Chromosomal Instability in Cancer Cells by Controlling Microtubule Dynamics. Cells 2024; 13:1382. [PMID: 39195269 PMCID: PMC11353242 DOI: 10.3390/cells13161382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Centrosomal Protein 55 (CEP55) exhibits various oncogenic activities; it regulates the PI3K-Akt-pathway, midbody abscission, and chromosomal instability (CIN) in cancer cells. Here, we analyzed the mechanism of how CEP55 controls CIN in ovarian and breast cancer (OvCa) cells. Down-regulation of CEP55 reduced CIN in all cell lines analyzed, and CEP55 depletion decreased spindle microtubule (MT)-stability in OvCa cells. Moreover, recombinant CEP55 accelerated MT-polymerization and attenuated cold-induced MT-depolymerization. To analyze a potential relationship between CEP55-controlled CIN and its impact on MT-stability, we identified the CEP55 MT-binding peptides inside the CEP55 protein. Thereafter, a mutant with deficient MT-binding activity was re-expressed in CEP55-depleted OvCa cells and we could show that this mutant did not restore reduced CIN in CEP55-depleted cells. This finding strongly indicates that CEP55 regulates CIN by controlling MT dynamics.
Collapse
Affiliation(s)
- Stefanie Muhs
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.M.); (T.P.); (P.S.)
| | - Themistoklis Paraschiakos
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.M.); (T.P.); (P.S.)
| | - Paula Schäfer
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.M.); (T.P.); (P.S.)
| | - Simon A. Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.M.); (T.P.); (P.S.)
| |
Collapse
|
6
|
Zhang H, Liu X, Shi J, Su X, Xie J, Meng Q, Dong H. Research progress on the mechanism of exosome-mediated virus infection. Front Cell Infect Microbiol 2024; 14:1418168. [PMID: 38988816 PMCID: PMC11233549 DOI: 10.3389/fcimb.2024.1418168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Exosomes are extracelluar vesicles that facilitate intercellular communication and are pivotal in post-transcriptional regulation within cellular gene regulatory networks, impacting pathogen dynamics. These vesicles serve as crucial regulators of immune responses, mediating cellular interactions and enabling the introduction of viral pathogenic regions into host cells. Exosomes released from virus-infected cells harbor diverse microRNAs (miRNAs), which can be transferred to recipient cells, thereby modulating virus infection. This transfer is a critical element in the molecular interplay mediated by exosomes. Additionally, the endosomal sorting complex required for transport (ESCRT) within exosomes plays a vital role in virus infection, with ESCRT components binding to viral proteins to facilitate virus budding. This review elucidates the roles of exosomes and their constituents in the invasion of host cells by viruses, aiming to shed new light on the regulation of viral transmission via exosomes.
Collapse
Affiliation(s)
- Hanjia Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuanyi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiuming Shi
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuan Su
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiayuan Xie
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Qingfeng Meng
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Zhang J, Ruiz M, Bergh PO, Henricsson M, Stojanović N, Devkota R, Henn M, Bohlooly-Y M, Hernández-Hernández A, Alsheimer M, Borén J, Pilon M, Shibuya H. Regulation of meiotic telomere dynamics through membrane fluidity promoted by AdipoR2-ELOVL2. Nat Commun 2024; 15:2315. [PMID: 38485951 PMCID: PMC10940294 DOI: 10.1038/s41467-024-46718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Nena Stojanović
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Marius Henn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | | | - Abrahan Hernández-Hernández
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- National Genomics Infrastructure, Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
8
|
Wang Y, Sheng F, Ying L, Lou Q, Yu Z, Wang K, Wang H. CEP55-associated lethal fetal syndrome: a case report of a Chinese family. Front Genet 2023; 14:1267241. [PMID: 37928238 PMCID: PMC10623345 DOI: 10.3389/fgene.2023.1267241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Background: Research on fetal loss related to germline mutations in single genes remains limited. Disruption of CEP55 has recently been established in association with perinatal deaths characterized by hydranencephaly, renal dysplasia, oligohydramnios, and characteristic dysmorphisms. We herein present a Chinese family with recurrent fetal losses due to compound heterozygous nonsense CEP55 variants. Case presentations: The Chinese couple had a history of five pregnancies, with four of them proceeding abnormally. Two stillbirths (II:3 and II:4) sequentially occurred in the third and fourth pregnancy. Prenatal ultrasound scans revealed phenotypic similarities between fetuses II:3 and II:4, including oligohydramnios, bilateral renal dysplasia and hydrocephalus/hydranencephaly. Clubfoot and syndactyly were also present in both stillborn babies. Fetus II:3 presented with endocardial cushion defects while fetus II:4 did not. With the product of conception in the fourth pregnancy, whole exome sequencing (WES) on fetus II:4 identified compound heterozygous nonsense CEP55 variants comprised of c.190C>T(p.Arg64*) and c.208A>T(p.Lys70*). Both variants were expected to result in lack of the TSG101 and ALIX binding domain. Sanger sequencing confirmed the presence and cosegregation of both variants. Conclusion: This is the fifth reported family wherein biallelic CEP55 variants lead to multiple perinatal deaths. Our findings, taken together with previously described phenotypically similar cases and even those with a milder and viable phenotype, broaden the genotypic and phenotypic spectrum of CEP55-associated lethal fetal syndrome, highlighting the vital biomolecular function of CEP55.
Collapse
Affiliation(s)
- Yeping Wang
- Jinhua Maternity and Child Health Care Hospital, Jinhua, China
- Jinhua Municipal Central Hospital, Jinhua, China
| | - Fang Sheng
- Jinhua Maternity and Child Health Care Hospital, Jinhua, China
| | | | - Qiaoli Lou
- Wuyi County First People's Hospital, Jinhua, China
| | - Zhaonan Yu
- Medical School of Tianjin University, Tianjin, China
- Hangzhou D. A. Medical Laboratory, Hangzhou, China
| | - Kaixuan Wang
- Jinhua Municipal Central Hospital, Jinhua, China
| | - Haoyi Wang
- Hangzhou D. A. Medical Laboratory, Hangzhou, China
- Precision Diagnosis and Treatment Center of Jinhua City, Jinhua, China
| |
Collapse
|
9
|
Xiao L, Pang J, Qin H, Dou L, Yang M, Wang J, Zhou X, Li Y, Duan J, Sun Z. Amorphous silica nanoparticles cause abnormal cytokinesis and multinucleation through dysfunction of the centralspindlin complex and microfilaments. Part Fibre Toxicol 2023; 20:34. [PMID: 37608338 PMCID: PMC10464468 DOI: 10.1186/s12989-023-00544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND With the large-scale production and application of amorphous silica nanoparticles (aSiNPs), its adverse health effects are more worthy of our attention. Our previous research has demonstrated for the first time that aSiNPs induced cytokinesis failure, which resulted in abnormally high incidences of multinucleation in vitro, but the underlying mechanisms remain unclear. Therefore, the purpose of this study was firstly to explore whether aSiNPs induced multinucleation in vivo, and secondly to investigate the underlying mechanism of how aSiNPs caused abnormal cytokinesis and multinucleation. METHODS Male ICR mice with intratracheal instillation of aSiNPs were used as an experimental model in vivo. Human hepatic cell line (L-02) was introduced for further mechanism study in vitro. RESULTS In vivo, histopathological results showed that the rate of multinucleation was significantly increased in the liver and lung tissue after aSiNPs treatment. In vitro, immunofluorescence results manifested that aSiNPs directly caused microfilaments aggregation. Following mechanism studies indicated that aSiNPs increased ROS levels. The accumulation of ROS further inhibited the PI3k 110β/Aurora B pathway, leading to a decrease in the expression of centralspindlin subunits MKLP1 and CYK4 as well as downstream cytokines regulation related proteins Ect2, Cep55, CHMP2A and RhoA. Meanwhile, the particles caused abnormal co-localization of the key mitotic regulatory kinase Aurora B and the centralspindlin complex by inhibiting the PI3k 110β/Aurora B pathway. PI3K activator IGF increased the phosphorylation level of Aurora B and improved the relative ratio of the centralspindlin cluster. And ROS inhibitors NAC reduced the ratio of multinucleation, alleviated the PI3k 110β/Aurora B pathway inhibition, and then increased the expression of MKLP1, CYK4 and cytokinesis-related proteins, whilst NAC restored the clustering of the centralspindlin. CONCLUSION This study demonstrated that aSiNPs led to multinucleation formation both in vivo and in vitro. ASiNPs exposure caused microfilaments aggregation and inhibited the PI3k 110β/Aurora B pathway through excessive ROS, which then hindered the centralspindlin cluster as well as restrained the expression of centralspindlin subunits and cytokinesis-related proteins, which ultimately resulted in cytokinesis failure and the formation of multinucleation.
Collapse
Affiliation(s)
- Liyan Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Jinyan Pang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Hua Qin
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Department of Chemistry, College of Sciences, Northeastern University, 110819, Shenyang, P.R. China
| | - Liyang Dou
- Department of Geriatric Medicine, Medical Health Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, P.R. China
| | - Man Yang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Xianqing Zhou
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Yang Li
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China.
| | - Junchao Duan
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| |
Collapse
|
10
|
A decoupled Virotrap approach to study the interactomes of N-terminal proteoforms. Methods Enzymol 2023; 684:253-287. [DOI: 10.1016/bs.mie.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
11
|
Krishnan N, Swoger M, Rathbun LI, Fioramonti PJ, Freshour J, Bates M, Patteson AE, Hehnly H. Rab11 endosomes and Pericentrin coordinate centrosome movement during pre-abscission in vivo. Life Sci Alliance 2022; 5:e202201362. [PMID: 35304423 PMCID: PMC8933627 DOI: 10.26508/lsa.202201362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
The last stage of cell division involves two daughter cells remaining interconnected by a cytokinetic bridge that is cleaved during abscission. Conserved between the zebrafish embryo and human cells, we found that the oldest centrosome moves in a Rab11-dependent manner towards the cytokinetic bridge sometimes followed by the youngest. Rab11-endosomes are organized in a Rab11-GTP dependent manner at the mother centriole during pre-abscission, with Rab11 endosomes at the oldest centrosome being more mobile compared with the youngest. The GTPase activity of Rab11 is necessary for the centrosome protein, Pericentrin, to be enriched at the centrosome. Reduction in Pericentrin expression or optogenetic disruption of Rab11-endosome function inhibited both centrosome movement towards the cytokinetic bridge and abscission, resulting in daughter cells prone to being binucleated and/or having supernumerary centrosomes. These studies suggest that Rab11-endosomes contribute to centrosome function during pre-abscission by regulating Pericentrin organization resulting in appropriate centrosome movement towards the cytokinetic bridge and subsequent abscission.
Collapse
Affiliation(s)
- Nikhila Krishnan
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Maxx Swoger
- Department of Physics, Syracuse University, Physics Building, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Lindsay I Rathbun
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Peter J Fioramonti
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Judy Freshour
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Michael Bates
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Alison E Patteson
- Department of Physics, Syracuse University, Physics Building, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse, NY, USA
- BioInspired Institute, Syracuse University, Syracuse, NY, USA
| |
Collapse
|