1
|
Xie G, Cao S, Wang G, Zhang X, Zhang Y, Wu H, Shen S, Le J, Li K, Huang Z. Vitamin A and its influence on tumour extracellular matrix. Discov Oncol 2025; 16:16. [PMID: 39775988 PMCID: PMC11707171 DOI: 10.1007/s12672-025-01751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Vitamin A is a crucial nutrient renowned for its role in visual health and cellular regulation. Its derivatives influence cell differentiation, proliferation, and tissue homeostasis, making them significant in cancer research due to their effects on both normal and tumour cells. This review explores the intricate relationship between vitamin A metabolism and the extracellular matrix (ECM) in cancer. The ECM profoundly affects tumour behaviour, including proliferation, invasion, and metastasis. Alterations in the ECM can facilitate tumour progression, and vitamin A derivatives have shown potential in modulating these changes. Through transcriptional regulation, vitamin A impacts ECM components and matrix metalloproteinases, influencing tumour dynamics. The review highlights the potential of vitamin A and its derivatives as adjunctive agents in cancer therapy. Despite promising laboratory findings, their clinical application remains limited due to challenges in translating these effects into therapeutic outcomes. Future research should focus on the modulation of retinol metabolism within tumours and the development of targeted therapies to enhance treatment efficacy and improve patient prognosis.
Collapse
Affiliation(s)
- Guoqing Xie
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shun Cao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianzhong Zhang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Urology, the First Affiliated Hospital of Peking University, Beijing, China
| | - Haofan Wu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuxian Shen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- School of Medicine, Cancer Institute, Tongji University, Shanghai, China
| | - Jiandong Le
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Keqiang Li
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- School of Medicine, Cancer Institute, Tongji University, Shanghai, China.
| | - Zhenlin Huang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
2
|
Jiang C, Centonze A, Song Y, Chrisnandy A, Tika E, Rezakhani S, Zahedi Z, Bouvencourt G, Dubois C, Van Keymeulen A, Lütolf M, Sifrim A, Blanpain C. Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice. Nat Commun 2024; 15:10482. [PMID: 39695111 PMCID: PMC11655882 DOI: 10.1038/s41467-024-54843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as basal cell transplantation, luminal cell ablation, and oncogene expression can reinduce adult basal SC (BaSCs) multipotency in different glandular epithelia. The mechanisms regulating the reactivation of multipotency are incompletely understood. Here, we have found that Collagen I expression is commonly upregulated in BaSCs across the different multipotent conditions. Increasing collagen concentration or stiffness of the extracellular matrix (ECM) promotes BaSC multipotency in MG and prostate organoids. Single cell RNA-seq of MG organoids in stiff conditions have uncovered the importance of β1 integrin/FAK/AP-1 axis in the regulation of BaSC multipotency. Altogether our study uncovers the key role of Collagen signaling and ECM stiffness in the regulation of multipotency in glandular epithelia.
Collapse
Affiliation(s)
- Chen Jiang
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alessia Centonze
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonius Chrisnandy
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elisavet Tika
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Saba Rezakhani
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zahra Zahedi
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaëlle Bouvencourt
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Matthias Lütolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL, Lausanne, Switzerland
- Institute of Human Biology (IHB), Pharma Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Alejandro Sifrim
- Laboratory of Multi-Omic Integrative Bioinformatics (LMIB), Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WEL Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
3
|
Laisné M, Rodgers B, Benlamara S, Wicinski J, Nicolas A, Djerroudi L, Gupta N, Ferry L, Kirsh O, Daher D, Philippe C, Okada Y, Charafe-Jauffret E, Cristofari G, Meseure D, Vincent-Salomon A, Ginestier C, Defossez PA. A novel bioinformatic approach reveals cooperation between Cancer/Testis genes in basal-like breast tumors. Oncogene 2024; 43:1369-1385. [PMID: 38467851 PMCID: PMC11065691 DOI: 10.1038/s41388-024-03002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Breast cancer is the most prevalent type of cancer in women worldwide. Within breast tumors, the basal-like subtype has the worst prognosis, prompting the need for new tools to understand, detect, and treat these tumors. Certain germline-restricted genes show aberrant expression in tumors and are known as Cancer/Testis genes; their misexpression has diagnostic and therapeutic applications. Here we designed a new bioinformatic approach to examine Cancer/Testis gene misexpression in breast tumors. We identify several new markers in Luminal and HER-2 positive tumors, some of which predict response to chemotherapy. We then use machine learning to identify the two Cancer/Testis genes most associated with basal-like breast tumors: HORMAD1 and CT83. We show that these genes are expressed by tumor cells and not by the microenvironment, and that they are not expressed by normal breast progenitors; in other words, their activation occurs de novo. We find these genes are epigenetically repressed by DNA methylation, and that their activation upon DNA demethylation is irreversible, providing a memory of past epigenetic disturbances. Simultaneous expression of both genes in breast cells in vitro has a synergistic effect that increases stemness and activates a transcriptional profile also observed in double-positive tumors. Therefore, we reveal a functional cooperation between Cancer/Testis genes in basal breast tumors; these findings have consequences for the understanding, diagnosis, and therapy of the breast tumors with the worst outcomes.
Collapse
Affiliation(s)
- Marthe Laisné
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Brianna Rodgers
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Sarah Benlamara
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Julien Wicinski
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - André Nicolas
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005, Paris, France
| | - Lounes Djerroudi
- Department of Pathology, Institut Curie, 26 Rue d'Ulm, 75005, Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Diana Daher
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | | | - Yuki Okada
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | | | - Didier Meseure
- Platform of Experimental Pathology, Department of Diagnostic and Theranostic Medicine, Institut Curie-Hospital, 75005, Paris, France
| | | | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | | |
Collapse
|
4
|
Chalmers SB, van der Wal T, Fre S, Jonkers J. Fourteenth Annual ENBDC Workshop: Methods in Mammary Gland Biology and Breast Cancer. J Mammary Gland Biol Neoplasia 2023; 28:22. [PMID: 37801168 PMCID: PMC10558360 DOI: 10.1007/s10911-023-09549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
The fourteenth annual workshop of the European Network for Breast Development and Cancer (ENBDC) on Methods in Mammary Gland Biology and Breast Cancer was held on April 26th - 29th in Weggis, Switzerland. For the first time, early career researchers organised and took part in an additional ECR workshop on the 26th of April, which was received with great enthusiasm. The topics of the main workshop included mammary branching and morphogenesis, novel experimental systems (model organisms), systemic influences on tumour progression and the tumour microenvironment. Novel and recent findings were shared across excellent oral and poster presentations.
Collapse
Affiliation(s)
| | - Tanne van der Wal
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Silvia Fre
- Department of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands.
| |
Collapse
|