1
|
Liu J, Wang Z, Liang W, Zhang Z, Deng Y, Chen X, Hou Z, Xie Y, Wang Q, Li Y, Bai C, Li D, Mo F, Wang H, Wang D, Yuan J, Wang Y, Teng ZQ, Hu B. Microglial TMEM119 binds to amyloid-β to promote its clearance in an Aβ-depositing mouse model of Alzheimer's disease. Immunity 2025:S1074-7613(25)00181-5. [PMID: 40373772 DOI: 10.1016/j.immuni.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/19/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025]
Abstract
The progression of Alzheimer's disease (AD) involves temporal dynamics of microglial activation. Restoring or maintaining microglial homeostasis has emerged as a promising therapeutic strategy to combat AD. Transmembrane protein 119 (TMEM119) is a homeostatic marker of microglia but has not been fully studied under AD pathological conditions. Here, we observed that amyloid-beta (Aβ) induced a decrease in TMEM119 expression in microglia, and TMEM119 deficiency increased AD progression in the 5×FAD mouse model. TMEM119 bound to Aβ oligomers and recruited low-density lipoprotein receptor 1, which in turn degraded TMEM119 itself. Overexpression of TMEM119 in microglia enhanced their phagocytic activity and alleviated cognitive deficits in 5xFAD mice. Administration of the small molecules Kartogenin and SRI-011381, which we found enhanced TMEM119 expression, substantially promoted Aβ clearance and improved cognitive function in AD mice, even during the mid-stage of the disease. These findings identify TMEM119 as a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhimeng Wang
- School of Pharmaceutical Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing 100191, China
| | - Wenwen Liang
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing 100191, China
| | - Zhenhao Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yusen Deng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongren Hou
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanzhi Xie
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Wang
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing 100191, China
| | - Yuan Li
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing 100191, China
| | - Chaobo Bai
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing 100191, China
| | - Da Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Mo
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huinan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junliang Yuan
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing 100191, China.
| | - Yukai Wang
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baoyang Hu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Mamun MAA, Bakunts AG, Chernorudskiy AL. Targeted degradation of extracellular proteins: state of the art and diversity of degrader designs. J Hematol Oncol 2025; 18:52. [PMID: 40307925 PMCID: PMC12044797 DOI: 10.1186/s13045-025-01703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Selective elimination of proteins associated with the pathogenesis of diseases is an emerging therapeutic modality with distinct advantages over traditional inhibitor-based approaches. This strategy, called targeted protein degradation (TPD), is based on hijacking the cellular proteolytic machinery using chimeric degrader molecules that physically link the target protein of interest with the degradation effectors. The TPD era began with the development of PROteolysis TAtrgeting Chimeras (PROTACs) in 2001, with various methods and applications currently available. Classical PROTAC molecules are heterobifunctional chimeras linking target proteins with E3 ubiquitin ligases. This induced interaction leads to the ubiquitylation of the target protein, which is needed for its recognition and subsequent degradation by the cellular proteasomes. However, this technology is limited to intracellular proteins since the effectors involved (E3 ubiquitin ligases and proteasomes) are located in the cytosol. The related methods for selective destruction of proteins present in the extracellular space have only emerged recently and are collectively termed extracellular TPD (eTPD). The prototypic eTPD technology utilizes LYsosomal TArgeting Chimeras (LYTACs) that link extracellular target proteins (secreted or membrane-associated) to lysosome-targeting receptors (LTRs) on the cell surface. The resulting complex is then internalized by endocytosis and trafficked to lysosomes, where the target protein is degraded. The successful elimination of various extracellular proteins via LYTACs and related approaches has been reported, including several important targets in oncology that drive tumor growth and dissemination. This review summarizes current progress in the eTPD field and focuses primarily on the respective technological developments. It discusses the design principles and diversity of degrader molecules and the landscape of available targets and effectors that can be employed for eTPD. Finally, it emphasizes current open questions, challenges, and perspectives of this technological platform to promote the expansion of the eTPD toolkit and further development of its therapeutic applications.
Collapse
Affiliation(s)
- M A A Mamun
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Anush G Bakunts
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Alexander L Chernorudskiy
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China.
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, 20156, Italy.
| |
Collapse
|
3
|
Aynaci A, Toussaint M, Gilis F, Albert M, Gaussin JF, Jadot M, Boonen M. Disruption of Man-6-P-Dependent Sorting to Lysosomes Confers IGF1R-Mediated Apoptosis Resistance. Int J Mol Sci 2025; 26:3586. [PMID: 40332073 PMCID: PMC12026698 DOI: 10.3390/ijms26083586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Mutations in GNPTAB underlie mucolipidosis II and mucolipidosis III α/β, which are inherited lysosomal storage disorders caused by a defective UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosamine phosphotransferase. As a result, newly synthesized acid hydrolases fail to acquire Mannose-6-Phosphate (Man-6-P) sorting signals, or do so to a lesser extent, and exhibit an impaired trafficking to lysosomes. Interestingly, we found that GNPTAB knockout HeLa cells are resistant to several cytotoxic agents: doxorubicin, chloroquine, staurosporine and paclitaxel. While we detected an increased trapping of weak bases in the expanded lysosomal population of these cells, which could reduce the effect of doxorubicin and chloroquine; the decreased cell response to staurosporine and paclitaxel suggested the involvement of alternative resistance mechanisms. Indeed, further investigation revealed that the hyperactivation of the Insulin-like Growth Factor 1 Receptor (IGF1R) pathway is a central player in the apoptosis resistance exhibited by Man-6-P sorting deficient cells.
Collapse
Affiliation(s)
- Asena Aynaci
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Maxence Toussaint
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Florentine Gilis
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Martine Albert
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
| | - Jean-François Gaussin
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
| | - Michel Jadot
- Laboratory of Physiological Chemistry, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium;
| | - Marielle Boonen
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, UNamur, 61 rue de Bruxelles, 5000 Namur, Belgium; (A.A.); (M.T.); (F.G.); (M.A.); (J.-F.G.)
| |
Collapse
|
4
|
Mishra S, Morshed N, Sidhu SB, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's Disease Gene SORL1 Regulates Lysosome Function in Human Microglia. Glia 2025. [PMID: 40183375 DOI: 10.1002/glia.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/31/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
The SORL1 gene encodes the sortilin-related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed in the central nervous system, including in microglia, the tissue-resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia-like cells (hMGLs). However, how SORLA deficiency contributes to lysosomal dysfunction in microglia and how this contributes to AD pathogenesis is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA-deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. An alternative mechanism of lysosome clearance, lysosomal exocytosis, is also impaired in SORL1-deficient microglia, which may contribute to an altered immune response. Overall, these data suggest that SORLA has an important role in the proper trafficking of lysosomal hydrolases in hMGLs, which is critical for microglial function. This further substantiates the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to the development of AD. Additionally, our findings may inform the development of novel lysosome and microglia-associated drug targets for AD.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Nader Morshed
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sonia Beant Sidhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Suman Jayadev
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Doray B, Jennings BC, Yang X, Liu L, Venkatarangan V, Kornfeld S, Li M. LYSET facilitates integration of both the N- and C-terminal transmembrane helices/cytoplasmic domains of GlcNAc-1-phosphotransferase. Mol Biol Cell 2025; 36:br12. [PMID: 39937677 PMCID: PMC12005095 DOI: 10.1091/mbc.e24-08-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
LYSET is a recently identified Golgi transmembrane (TM) protein, and inactivating mutations in the LYSET gene phenocopy mucolipidosis II (MLII), the lysosomal storage disease caused by loss of function of GlcNAc-1-phosphotransferase αβ (GNPTαβ), which tags lysosomal hydrolases with the mannose 6-phosphate (M6P) tag for delivery to lysosomes. It is conceivable that LYSET facilitates integration of both hydrophilic TM helices (TMHs) of GNPTαβ and retain the latter in the Golgi, although this has only been directly demonstrated for the N-terminal TMH wherein a membrane-stabilized GNPTαβ variant restores lysosomal function in cells lacking LYSET. Here we show that the C-terminal TMH of GNPTαβ also contributes to LYSET-mediated Golgi retention. In addition, disease-causing patient mutations in the N-terminal TMH of GNPTαβ, which increase the hydrophilicity of the helix, are partly rescued by overexpression of LYSET. Finally, we show that a membrane-stabilized GNPTαβ variant, despite overcoming the requirement for LYSET, still requires COPI-mediated recycling via the N-terminal cytosolic domain (CD) for GNPTαβ retention and function in the Golgi.
Collapse
Affiliation(s)
- Baraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin C. Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Lin Liu
- M6P Therapeutics, St. Louis, MO 63108
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Ren WW, Kawahara R, Suzuki KG, Dipta P, Yang G, Thaysen-Andersen M, Fujita M. MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation. J Cell Biol 2025; 224:e202407068. [PMID: 39751400 PMCID: PMC11697975 DOI: 10.1083/jcb.202407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis. Interestingly, lysosomal exocytosis preferentially occurred in the vicinity of focal adhesions, protein complexes connecting the actin cytoskeleton to the extracellular matrix. Through genome-wide knockout screening, we identified that MYO18B, an actin crosslinker, is required for focal adhesion maturation, facilitating lysosomal exocytosis and the release of paucimannosidic lysosomal proteins to the extracellular milieu. Moreover, a mechanosensitive cation channel PIEZO1 locally activated at focal adhesions imports Ca2+ necessary for lysosome-plasma membrane fusion. Collectively, our study unveiled an intimate relationship between lysosomal exocytosis and focal adhesion, shedding light on the unexpected interplay between lysosomal activities and cellular mechanosensing.
Collapse
Affiliation(s)
- Wei-Wei Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Rebeca Kawahara
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
| | - Kenichi G.N. Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
- Division of Advanced Bioimaging, National Cancer Center Research Institute, Tokyo, Japan
| | - Priya Dipta
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Morten Thaysen-Andersen
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| |
Collapse
|
7
|
Akaaboune SR, Javed A, Bui S, Wierenga A, Wang Y. GRASP55 regulates sorting and maturation of the lysosomal enzyme β-hexosaminidase A. Mol Biol Cell 2025; 36:ar30. [PMID: 39841559 PMCID: PMC11974951 DOI: 10.1091/mbc.e24-10-0452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
The Golgi apparatus plays a crucial role in the delivery of lysosomal enzymes. Golgi reassembly stacking proteins, GRASP55 and GRASP65, are vital for maintaining Golgi structure and function. GRASP55 depletion results in the missorting and secretion of the lysosomal enzyme cathepsin D, though the mechanisms remain unclear. In this study, we conducted secretomic analyses of GRASP55 knockout cells and found a significant increase in lysosome-associated proteins in the extracellular medium. Using the lysosomal beta-hexosaminidase subunit alpha (HEXA) as a model, we found that GRASP55 depletion disrupted normal trafficking and processing of HEXA, resulting in increased secretion of the immature (pro-form) HEXA into the extracellular milieu, along with decreased levels of the mature form and enzymatic activity within the cell. GRASP55 depletion significantly reduced the complex formation between HEXA and mannose 6-phosphate (M6P) receptors (MPR), despite no overall change in MPR expression. Finally, we found there was a notable reduction in the expression of GNPTAB, leading to a reduction in M6P modification of HEXA, hindering its efficient targeting to lysosomes. These findings reveal the role of GRASP55 in regulating lysosomal enzyme dynamics, emphasizing its role in the sorting and trafficking of lysosomal proteins.
Collapse
Affiliation(s)
- Sarah Reem Akaaboune
- Department of Molecular, Cellular and Developmental Biology, the University of Michigan, Ann Arbor, MI 48109
| | - Aadil Javed
- Department of Molecular, Cellular and Developmental Biology, the University of Michigan, Ann Arbor, MI 48109
| | - Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, the University of Michigan, Ann Arbor, MI 48109
| | - Alissa Wierenga
- Department of Molecular, Cellular and Developmental Biology, the University of Michigan, Ann Arbor, MI 48109
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, the University of Michigan, Ann Arbor, MI 48109
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| |
Collapse
|
8
|
Yamada K. Minor acidic glycans: Review of focused glycomics methods. BBA ADVANCES 2025; 7:100150. [PMID: 40051816 PMCID: PMC11883302 DOI: 10.1016/j.bbadva.2025.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 03/09/2025] Open
Abstract
Glycans are modified by acidic molecules, including sialic acid, sulfates, phosphates, and glucuronic acid, forming acidic glycans. Among these, sialylated glycans form major components of deuterostome glycomes, and their structure and function have been widely studied. The other acidic glycans, comprising minor components of the glycome, are often overlooked by glycomics and glycoproteomics methods, although they are implicated in conditions such as inflammatory diseases, neurological diseases, and viral infections. Therefore, minor acidic glycans are high-priority targets for glycomics, and analytical techniques focused on minor acidic glycans are being developed. This review examines the methods of enriching the minor acidic glycans from biological glycomes and examines their structure, providing examples of the application of these techniques in biological and clinical samples.
Collapse
Affiliation(s)
- Keita Yamada
- The Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka, 584-8540, Japan
| |
Collapse
|
9
|
Yang X, Doray B, Venkatarangan V, Jennings BC, Henn D, Liang J, Zhao H, Zhang W, Zhang B, Yu L, Chen L, Kornfeld S, Li M. Molecular Insights into the Regulation of GNPTAB by TMEM251. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627003. [PMID: 39677738 PMCID: PMC11643035 DOI: 10.1101/2024.12.05.627003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In vertebrates, newly synthesized lysosomal enzymes traffick to lysosomes through the mannose-6-phosphate (M6P) pathway. The Golgi membrane protein TMEM251 was recently discovered to regulate lysosome biogenesis by controlling the level of GlcNAc-1-phosphotransferase (GNPT). However, its precise function remained unclear. In this study, we demonstrate that TMEM251 is a two-transmembrane protein indispensable for GNPT stability, cleavage by Site-1-Protease (S1P), and enzymatic activity. We reconcile conflicting models by showing that TMEM251 enhances GNPT cleavage and prevents its mislocalization to lysosomes for degradation. We further establish that TMEM251 achieves this by interacting with GOLPH3 and retromer complexes to anchor the TMEM251-GNPT complex at the Golgi. Alanine mutagenesis identified F4XXR7 motif in TMEM251's N-tail for GOLPH3 binding. Together, our findings uncover TMEM251's multi-faceted role in stabilizing GNPT, retaining it at the Golgi, and ensuring the fidelity of the M6P pathway, thereby providing insights into its molecular function.
Collapse
Affiliation(s)
- Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Current address: Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
| | - Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin C. Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Danielle Henn
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiaxuan Liang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haikun Zhao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weichao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bokai Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linchen Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liang Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Wang X, Zhou S, Huang Y, Chu P, Zhu L, Chen X. Nanoplastics and bisphenol A exposure alone or in combination induce hepatopancreatic damage and disturbances in carbohydrate metabolism in the Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107145. [PMID: 39546969 DOI: 10.1016/j.aquatox.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bisphenol A (BPA) is a widely found endocrine-disrupting chemical (EDC). Nanoplastics (NPs) represent a novel environmental pollutant, and the combined toxicity of these pollutants on the hepatopancreas of marine arthropods is understudied. To investigate the potential risks associated with co-exposure to BPA and NPs on the hepatopancreas, Portunus trituberculatus was treated with 100 μg/L BPA, 104 particles/L NPs, and a combination of 100 μg/L BPA + 104 particles/L NPs for 21 days, respectively. Histological observation demonstrated that co-exposure severely damaged both hepatopancreas tissue and mitochondrial structure. Transcriptome analysis revealed that 1498 transcripts were differentially expressed under different exposure conditions, and these transcripts are involved in biological processes such as cellular processes and carbohydrate metabolism. BPA and NPs co-exposure modulate pyruvic acid (PA) levels by increasing the activity of pyruvate kinase (PK), leading to changes in glycogen and glucose (GLU) content within tissues, thus affecting glycolysis. The dysregulation of the CHI3L1, ACSS2 and ACYP2 genes induced by BPA and NPs co-exposure may collectively regulate the process of carbohydrate metabolism. Notably, the downregulation of the VPS4 gene and the upregulation of the GBA1, Pin1 and CCND2 gene may affect the cell cycle, potentially impacting cell proliferation after BPA and NPs co-exposure. These data indicate that co-exposure to BPA and NPs is more significantly cytotoxic and leads to changes in carbohydrate metabolism, cell proliferation, and histological damage in the hepatopancreas of P. trituberculatus. This knowledge emphasizes the need for proactive measures to mitigate the adverse effects of these environmental pollutants on human and ecological health while also providing valuable insights into the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Xiaotian Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Shangjie Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Yutong Huang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Long Zhu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China.
| | - Xiaocong Chen
- Key Laboratory of Applied Aquacultral Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
Scrima S, Lambrughi M, Favaro L, Maeda K, Jäättelä M, Papaleo E. Acidic sphingomyelinase interactions with lysosomal membranes and cation amphiphilic drugs: A molecular dynamics investigation. Comput Struct Biotechnol J 2024; 23:2516-2533. [PMID: 38974886 PMCID: PMC11226985 DOI: 10.1016/j.csbj.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Lysosomes are pivotal in cellular functions and disease, influencing cancer progression and therapy resistance with Acid Sphingomyelinase (ASM) governing their membrane integrity. Moreover, cation amphiphilic drugs (CADs) are known as ASM inhibitors and have anti-cancer activity, but the structural mechanisms of their interactions with the lysosomal membrane and ASM are poorly explored. Our study, leveraging all-atom explicit solvent molecular dynamics simulations, delves into the interaction of glycosylated ASM with the lysosomal membrane and the effects of CAD representatives, i.e., ebastine, hydroxyebastine and loratadine, on the membrane and ASM. Our results confirm the ASM association to the membrane through the saposin domain, previously only shown with coarse-grained models. Furthermore, we elucidated the role of specific residues and ASM-induced membrane curvature in lipid recruitment and orientation. CADs also interfere with the association of ASM with the membrane at the level of a loop in the catalytic domain engaging in membrane interactions. Our computational approach, applicable to various CADs or membrane compositions, provides insights into ASM and CAD interaction with the membrane, offering a valuable tool for future studies.
Collapse
Affiliation(s)
- Simone Scrima
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
- Cancer System Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby 2800, Denmark
| | - Matteo Lambrughi
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
| | - Lorenzo Favaro
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen 2100, Denmark
- Cancer System Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby 2800, Denmark
| |
Collapse
|
12
|
Zubkov N, Munro S. New players and targets in mannose 6-phosphate-dependent lysosomal sorting. EMBO J 2024; 43:6233-6235. [PMID: 39587298 PMCID: PMC11649812 DOI: 10.1038/s44318-024-00310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
A new study shows how a Golgi-resident protein is sent to the lysosome for degradation.
Collapse
Affiliation(s)
- Nikita Zubkov
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
13
|
Brauer BK, Chen Z, Beirow F, Li J, Meisinger D, Capriotti E, Schweizer M, Wagner L, Wienberg J, Hobohm L, Blume L, Qiao W, Narimatsu Y, Carette JE, Clausen H, Winter D, Braulke T, Jabs S, Voss M. GOLPH3 and GOLPH3L maintain Golgi localization of LYSET and a functional mannose 6-phosphate transport pathway. EMBO J 2024; 43:6264-6290. [PMID: 39587297 PMCID: PMC11649813 DOI: 10.1038/s44318-024-00305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Glycosylation, which plays an important role in modifying lipids and sorting of proteins, is regulated by asymmetric intra-Golgi distribution and SPPL3-mediated cleavage of Golgi enzymes. We found that cells lacking LYSET/TMEM251, a retention factor for Golgi N-acetylglucosamine-1-phosphotransferase (GNPT), display SPPL3-dependent hypersecretion of the Golgi membrane protein B4GALT5. We demonstrate that in wild-type cells B4GALT5 is tagged with mannose 6-phosphate (M6P), a sorting tag typical of soluble lysosomal hydrolases. Hence, M6P-tagging of B4GALT5 may represent a novel degradative lysosomal pathway. We also observed B4GALT5 hypersecretion and prominent destabilization of LYSET-GNPT complexes, impaired M6P-tagging, and disturbed maturation and trafficking of lysosomal enzymes in multiple human cell lines lacking the COPI adaptors GOLPH3 and GOLPH3L. Mechanistically, we identified LYSET as a novel, atypical client of GOLPH3/GOLPH3L. Thus, by ensuring the cis-Golgi localization of the LYSET-GNPT complex and maintaining its Golgi polarity, GOLPH3/GOLPH3L is essential for the integrity of the M6P-tagging machinery and homeostasis of lysosomes.
Collapse
Affiliation(s)
- Berit K Brauer
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Zilei Chen
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Felix Beirow
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Jiaran Li
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | | | - Emanuela Capriotti
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Hamburg, Germany
| | - Lea Wagner
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | | | - Laura Hobohm
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Lukas Blume
- Institute of Biochemistry, Kiel University, Kiel, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yoshiki Narimatsu
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Henrik Clausen
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Thomas Braulke
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Jabs
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Kiel, Germany.
| |
Collapse
|
14
|
Badenetti L, Yu SH, Colonna MB, Hull R, Bethard JR, Ball L, Flanagan-Steet H, Steet R. Multi-omic analysis of a mucolipidosis II neuronal cell model uncovers involvement of pathways related to neurodegeneration and drug metabolism. Mol Genet Metab 2024; 143:108596. [PMID: 39461112 PMCID: PMC11569414 DOI: 10.1016/j.ymgme.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Defining the molecular consequences of lysosomal dysfunction in neuronal cell types remains an area of investigation that is needed to understand many underappreciated phenotypes associated with lysosomal disorders. Here we characterize GNPTAB-knockout DAOY medulloblastoma cells using different genetic and proteomic approaches, with a focus on how altered gene expression and cell surface abundance of glycoproteins may explain emerging neurological issues in individuals with GNPTAB-related disorders, including mucolipidosis II (ML II) and mucolipidosis IIIα/β (ML IIIα/β). The two knockout clones characterized demonstrated all the biochemical hallmarks of this disease, including loss of intracellular glycosidase activity due to impaired mannose 6-phosphate-dependent lysosomal sorting, lysosomal cholesterol accumulation, and increased markers of autophagic dysfunction. RNA sequencing identified altered transcript abundance of several neuronal markers and genes involved in drug metabolism and transport, and neurodegeneration-related pathways. Using selective exo-enzymatic labeling (SEEL) coupled with proteomics to profile cell surface glycoproteins, we demonstrated altered abundance of several glycoproteins in the knockout cells. Most striking was increased abundance of the amyloid precursor protein and apolipoprotein B, indicating that loss of GNPTAB function in these cells corresponds with elevation in proteins associated with neurodegeneration. The implication of these findings on lysosomal disease pathogenesis and the emerging neurological manifestations of GNPTAB-related disorders is discussed.
Collapse
Affiliation(s)
- Lorenzo Badenetti
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America
| | - Seok-Ho Yu
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America
| | - Maxwell B Colonna
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America
| | - Rony Hull
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Jennifer R Bethard
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Lauren Ball
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | | | - Richard Steet
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America.
| |
Collapse
|
15
|
Colella P. Advances in Pompe Disease Treatment: From Enzyme Replacement to Gene Therapy. Mol Diagn Ther 2024; 28:703-719. [PMID: 39134822 DOI: 10.1007/s40291-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 10/27/2024]
Abstract
Pompe disease is a neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), hydrolyzing glycogen to glucose. Pathological glycogen storage, the hallmark of the disease, disrupts the metabolism and function of various cell types, especially muscle cells, leading to cardiac, motor, and respiratory dysfunctions. The spectrum of Pompe disease manifestations spans two main forms: classical infantile-onset (IOPD) and late-onset (LOPD). IOPD, caused by almost complete GAA deficiency, presents at birth and leads to premature death by the age of 2 years without treatment. LOPD, less severe due to partial GAA activity, appears in childhood, adolescence, or adulthood with muscle weakness and respiratory problems. Since 2006, enzyme replacement therapy (ERT) has been approved for Pompe disease, offering clinical benefits but not a cure. However, advances in early diagnosis through newborn screening, recognizing disease manifestations, and developing improved treatments are set to enhance Pompe disease care. This article reviews recent progress in ERT and ongoing translational research, including the approval of second-generation ERTs, a clinical trial of in utero ERT, and preclinical development of gene and substrate reduction therapies. Notably, gene therapy using intravenous delivery of adeno-associated virus (AAV) vectors is in phase I/II clinical trials for both LOPD and IOPD. Promising data from LOPD trials indicate that most participants met the criteria to discontinue ERT several months after gene therapy. The advantages and challenges of this approach are discussed. Overall, significant progress is being made towards curative therapies for Pompe disease. While several challenges remain, emerging data are promising and suggest the potential for a once-in-a-lifetime treatment.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Voss M. Proteolytic cleavage of Golgi glycosyltransferases by SPPL3 and other proteases and its implications for cellular glycosylation. Biochim Biophys Acta Gen Subj 2024; 1868:130668. [PMID: 38992482 DOI: 10.1016/j.bbagen.2024.130668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Glycosylation of proteins and lipids is of fundamental importance in multicellular eukaryotes. The vast diversity of glycan structures observed is generated in the Golgi apparatus by the concerted activity of >100 distinct enzymes, which include glycosyltransferases and other glycan-modifying enzymes. Well-known for decades, the majority of these enzymes is released from the Golgi apparatus and subsequently secreted into the extracellular space following endoproteolytic cleavage, but the underlying molecular mechanisms and the physiological implications have remained unexplored. This review will summarize our current knowledge of Golgi enzyme proteolysis and secretion and will discuss its conceptual implications for the regulation of cellular glycosylation and the organization of the Golgi apparatus. A particular focus will lie on the intramembrane protease SPPL3, which recently emerged as key protease facilitating Golgi enzyme release and has since been shown to affect a multitude of glycosylation-dependent physiological processes.
Collapse
Affiliation(s)
- Matthias Voss
- Institute of Biochemistry, Kiel University, Kiel, Germany.
| |
Collapse
|
17
|
Moulton MJ, Atala K, Zheng Y, Dutta D, Grange DK, Lin WW, Wegner DJ, Wambach JA, Duker AL, Bober MB, Kratz L, Wise CA, Oxendine I, Khanshour A, Wangler MF, Yamamoto S, Cole FS, Rios J, Bellen HJ. Dominant missense variants in SREBF2 are associated with complex dermatological, neurological, and skeletal abnormalities. Genet Med 2024; 26:101174. [PMID: 38847193 DOI: 10.1016/j.gim.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/21/2024] Open
Abstract
PURPOSE We identified 2 individuals with de novo variants in SREBF2 that disrupt a conserved site 1 protease (S1P) cleavage motif required for processing SREBP2 into its mature transcription factor. These individuals exhibit complex phenotypic manifestations that partially overlap with sterol regulatory element binding proteins (SREBP) pathway-related disease phenotypes, but SREBF2-related disease has not been previously reported. Thus, we set out to assess the effects of SREBF2 variants on SREBP pathway activation. METHODS We undertook ultrastructure and gene expression analyses using fibroblasts from an affected individual and utilized a fly model of lipid droplet (LD) formation to investigate the consequences of SREBF2 variants on SREBP pathway function. RESULTS We observed reduced LD formation, endoplasmic reticulum expansion, accumulation of aberrant lysosomes, and deficits in SREBP2 target gene expression in fibroblasts from an affected individual, indicating that the SREBF2 variant inhibits SREBP pathway activation. Using our fly model, we discovered that SREBF2 variants fail to induce LD production and act in a dominant-negative manner, which can be rescued by overexpression of S1P. CONCLUSION Taken together, these data reveal a mechanism by which SREBF2 pathogenic variants that disrupt the S1P cleavage motif cause disease via dominant-negative antagonism of S1P, limiting the cleavage of S1P targets, including SREBP1 and SREBP2.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Kristhen Atala
- Center for Translational Research, Scottish Rite for Children, Dallas, TX
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX; Current address: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Dorothy K Grange
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| | - Angela L Duker
- Skeletal Dysplasia Program, Orthogenetics, Nemours Children's Hospital, Wilmington, DE
| | - Michael B Bober
- Skeletal Dysplasia Program, Orthogenetics, Nemours Children's Hospital, Wilmington, DE
| | - Lisa Kratz
- Kennedy Krieger Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carol A Wise
- Center for Translational Research, Scottish Rite for Children, Dallas, TX; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ila Oxendine
- Center for Translational Research, Scottish Rite for Children, Dallas, TX
| | - Anas Khanshour
- Center for Translational Research, Scottish Rite for Children, Dallas, TX
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| | - Jonathan Rios
- Center for Translational Research, Scottish Rite for Children, Dallas, TX; Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX; Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX.
| |
Collapse
|
18
|
Lu CY, Wu JZ, Yao HHY, Liu RJY, Li L, Pluthero FG, Freeman SA, Kahr WHA. Acidification of α-granules in megakaryocytes by vacuolar-type adenosine triphosphatase is essential for organelle biogenesis. J Thromb Haemost 2024; 22:2294-2305. [PMID: 38718926 DOI: 10.1016/j.jtha.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Platelets coordinate blood coagulation at sites of vascular injury and play fundamental roles in a wide variety of (patho)physiological processes. Key to many platelet functions is the transport and secretion of proteins packaged within α-granules, organelles produced by platelet precursor megakaryocytes. Prominent among α-granule cargo are fibrinogen endocytosed from plasma and endogenously synthesized von Willebrand factor. These and other proteins are known to require acidic pH for stable packaging. Luminal acidity has been confirmed for mature α-granules isolated from platelets, but direct measurement of megakaryocyte granule acidity has not been reported. OBJECTIVES To determine the luminal pH of α-granules and their precursors in megakaryocytes and assess the requirement of vacuolar-type adenosine triphosphatase (V-ATPase) activity to establish and maintain the luminal acidity and integrity of these organelles. METHODS Cresyl violet staining was used to detect acidic granules in megakaryocytes. Endocytosis of fibrinogen tagged with the pH-sensitive fluorescent dye fluorescein isothiocyanate was used to load a subset of these organelles. Ratiometric fluorescence analysis was used to determine their luminal pH. RESULTS We show that most of the acidic granules detected in megakaryocytes appear to be α-granules/precursors, for which we established a median luminal pH of 5.2 (IQR, 5.0-5.5). Inhibition of megakaryocyte V-ATPase activity led to enlargement of cargo-containing compartments detected by fluorescence microscopy and electron microscopy. CONCLUSION These observations reveal that V-ATPase activity is required to establish and maintain a luminal acidic pH in megakaryocyte α-granules/precursors, confirming its importance for stable packaging of cargo proteins such as von Willebrand factor.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jing Ze Wu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Helen H Y Yao
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Y Liu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Liu Q, Wang W, Xu L, Zhang Q, Wang H. The host mannose-6-phosphate pathway and viral infection. Front Cell Infect Microbiol 2024; 14:1349221. [PMID: 38357444 PMCID: PMC10865371 DOI: 10.3389/fcimb.2024.1349221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Viruses, despite their simple structural composition, engage in intricate and complex interactions with their hosts due to their parasitic nature. A notable demonstration of viral behavior lies in their exploitation of lysosomes, specialized organelles responsible for the breakdown of biomolecules and clearance of foreign substances, to bolster their own replication. The man-nose-6-phosphate (M6P) pathway, crucial for facilitating the proper transport of hydrolases into lysosomes and promoting lysosome maturation, is frequently exploited for viral manipulation in support of replication. Recently, the discovery of lysosomal enzyme trafficking factor (LYSET) as a pivotal regulator within the lysosomal M6P pathway has introduced a fresh perspective on the intricate interplay between viral entry and host factors. This groundbreaking revelation illuminates unexplored dimensions of these interactions. In this review, we endeavor to provide a thorough overview of the M6P pathway and its intricate interplay with viral factors during infection. By consolidating the current understanding in this field, our objective is to establish a valuable reference for the development of antiviral drugs that selectively target the M6P pathway.
Collapse
Affiliation(s)
- Qincheng Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Weiqi Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Liwei Xu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Qisheng Zhang
- Shanghai Sino Organoid Lifesciences Co., Ltd., Shanghai, China
| | - Hongna Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| |
Collapse
|
20
|
Uribe-Carretero E, Rey V, Fuentes JM, Tamargo-Gómez I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. BIOLOGY 2024; 13:34. [PMID: 38248465 PMCID: PMC10813815 DOI: 10.3390/biology13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field.
Collapse
Affiliation(s)
- Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
21
|
Huber RJ, Kim WD, Wilson-Smillie MLDM. Mechanisms regulating the intracellular trafficking and release of CLN5 and CTSD. Traffic 2024; 25:e12925. [PMID: 38272448 DOI: 10.1111/tra.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Ceroid lipofuscinosis neuronal 5 (CLN5) and cathepsin D (CTSD) are soluble lysosomal enzymes that also localize extracellularly. In humans, homozygous mutations in CLN5 and CTSD cause CLN5 disease and CLN10 disease, respectively, which are two subtypes of neuronal ceroid lipofuscinosis (commonly known as Batten disease). The mechanisms regulating the intracellular trafficking of CLN5 and CTSD and their release from cells are not well understood. Here, we used the social amoeba Dictyostelium discoideum as a model system to examine the pathways and cellular components that regulate the intracellular trafficking and release of the D. discoideum homologs of human CLN5 (Cln5) and CTSD (CtsD). We show that both Cln5 and CtsD contain signal peptides for secretion that facilitate their release from cells. Like Cln5, extracellular CtsD is glycosylated. In addition, Cln5 release is regulated by the amount of extracellular CtsD. Autophagy induction promotes the release of Cln5, and to a lesser extent CtsD. Release of Cln5 requires the autophagy proteins Atg1, Atg5, and Atg9, as well as autophagosomal-lysosomal fusion. Atg1 and Atg5 are required for the release of CtsD. Together, these data support a model where Cln5 and CtsD are actively released from cells via their signal peptides for secretion and pathways linked to autophagy. The release of Cln5 and CtsD from cells also requires microfilaments and the D. discoideum homologs of human AP-3 complex mu subunit, the lysosomal-trafficking regulator LYST, mucopilin-1, and the Wiskott-Aldrich syndrome-associated protein WASH, which all regulate lysosomal exocytosis in this model organism. These findings suggest that lysosomal exocytosis also facilitates the release of Cln5 and CtsD from cells. In addition, we report the roles of ABC transporters, microtubules, osmotic stress, and the putative D. discoideum homologs of human sortilin and cation-independent mannose-6-phosphate receptor in regulating the intracellular/extracellular distribution of Cln5 and CtsD. In total, this study identifies the cellular mechanisms regulating the release of Cln5 and CtsD from D. discoideum cells and provides insight into how altered trafficking of CLN5 and CTSD causes disease in humans.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | | |
Collapse
|