1
|
Wu H, Hamilton C, Porritt H, Winbo A, Zeltner N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J Physiol 2025; 603:1865-1885. [PMID: 39235952 PMCID: PMC11955871 DOI: 10.1113/jp286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our lifetime the heart executes cycles of contraction and relaxation to meet the body's ever-changing metabolic needs. This vital function is continuously regulated by the autonomic nervous system. Cardiovascular dysfunction and autonomic dysregulation are also closely associated; however, the degrees of cause and effect are not always readily discernible. Thus, to better understand cardiovascular disorders, it is crucial to develop model systems that can be used to study the neurocardiac interaction in healthy and diseased states. Human pluripotent stem cell (hiPSC) technology offers a unique human-based modelling system that allows for studies of disease effects on the cells of the heart and autonomic neurons as well as of their interaction. In this review, we summarize current understanding of the embryonic development of the autonomic, cardiac and neurocardiac systems, their regulation, as well as recent progress of in vitro modelling systems based on hiPSCs. We further discuss the advantages and limitations of hiPSC-based models in neurocardiac research.
Collapse
Affiliation(s)
- Hsueh‐Fu Wu
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Harrison Porritt
- Department of PhysiologyThe University of AucklandAucklandNew Zealand
- Department of Chemical and Materials Engineering, Faculty of EngineeringThe University of AucklandAucklandNew Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyWellingtonNew Zealand
| | - Annika Winbo
- Department of PhysiologyThe University of AucklandAucklandNew Zealand
- Manaaki Manawa Centre for Heart ResearchUniversity of AucklandAucklandNew Zealand
| | - Nadja Zeltner
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Shiu YJ, Chen FY, Chen CH, Chen MY, Lee WC, Lin YZ, Chiu CH. Caffeinated chewing gum improves the batting and pitching performance of female softball players: a randomized crossover study. J Sports Med Phys Fitness 2024; 64:1118-1126. [PMID: 39225020 DOI: 10.23736/s0022-4707.24.15801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND The purpose of this study was to investigate the effects of caffeinated chewing gum on female softball pitching and hitting performance in trained female softball fielders and pitchers. METHODS Twenty-four trained female softball players (10 pitchers and 14 fielders) were divided into a caffeine chewing gum trial (CAF) or a placebo trial (PLA) in a single-blind, randomized, crossover experimental design. Two pieces of gum containing 100 mg of caffeine (CAF) or without caffeine (PLA) were chewed for 10 minutes and then spit out, followed by a 15-minute warm-up. The physical tests included grip strength and countermovement jump (CMJ). The softball-specific tests included pitching or hitting. The two trials were separated by seven days. RESULTS The CAF trial had significantly higher grip strength than the PAL trial in fielder (P=0.032, Cohen's d=0.29) and pitcher (P=0.016, Cohen's d=0.33). The height of CMJ in fielders was significantly higher in the CAF trial than in the PLA trial (P=0.015, Cohen's d=0.65) but not in pitchers (P=0.596, Cohen's d=0.15). The fielder's average and maximum batting exit speeds were significantly higher in the CAF trial than in the PLA trial (P<0.05). The average and max fastball speeds of the CAF trial were significantly higher than that of the PLA trial in pitchers (P<0.05). CONCLUSIONS The study showed that chewing gum containing two pieces of gum containing 100 mg of caffeine effectively improved female softball fielder's batting performance and pitcher's pitching performance.
Collapse
Affiliation(s)
- Yi-Jie Shiu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan (ROC)
| | - Feng-Yin Chen
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan (ROC)
| | - Che-Hsiu Chen
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan (ROC)
| | - Miao-Yi Chen
- Department of Athletic Performance, National Taiwan Normal University, Taipei, Taiwan (ROC)
| | - Wei-Ching Lee
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan (ROC)
| | - Yun-Zheng Lin
- Department of Exercise and Health Sciences, National Taiwan University of Sport, Taichung, Taiwan (ROC)
| | - Chih-Hui Chiu
- Department of Exercise and Health Sciences, National Taiwan University of Sport, Taichung, Taiwan (ROC) -
| |
Collapse
|
3
|
Dhalla NS, Elimban V, Adameova AD. Role of Na +-K + ATPase Alterations in the Development of Heart Failure. Int J Mol Sci 2024; 25:10807. [PMID: 39409137 PMCID: PMC11476929 DOI: 10.3390/ijms251910807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Na+-K+ ATPase is an integral component of cardiac sarcolemma and consists of three major subunits, namely the α-subunit with three isoforms (α1, α2, and α3), β-subunit with two isoforms (β1 and β2) and γ-subunit (phospholemman). This enzyme has been demonstrated to transport three Na and two K ions to generate a trans-membrane gradient, maintain cation homeostasis in cardiomyocytes and participate in regulating contractile force development. Na+-K+ ATPase serves as a receptor for both exogenous and endogenous cardiotonic glycosides and steroids, and a signal transducer for modifying myocardial metabolism as well as cellular survival and death. In addition, Na+-K+ ATPase is regulated by different hormones through the phosphorylation/dephosphorylation of phospholemman, which is tightly bound to this enzyme. The activity of Na+-K+ ATPase has been reported to be increased, unaltered and depressed in failing hearts depending upon the type and stage of heart failure as well as the association/disassociation of phospholemman and binding with endogenous cardiotonic steroids, namely endogenous ouabain and marinobufagenin. Increased Na+-K+ ATPase activity in association with a depressed level of intracellular Na+ in failing hearts is considered to decrease intracellular Ca2+ and serve as an adaptive mechanism for maintaining cardiac function. The slight to moderate depression of Na+-K+ ATPase by cardiac glycosides in association with an increased level of Na+ in cardiomyocytes is known to produce beneficial effects in failing hearts. On the other hand, markedly reduced Na+-K+ ATPase activity associated with an increased level of intracellular Na+ in failing hearts has been demonstrated to result in an intracellular Ca2+ overload, the occurrence of cardiac arrhythmias and depression in cardiac function during the development of heart failure. Furthermore, the status of Na+-K+ ATPase activity in heart failure is determined by changes in isoform subunits of the enzyme, the development of oxidative stress, intracellular Ca2+-overload, protease activation, the activity of inflammatory cytokines and sarcolemmal lipid composition. Evidence has been presented to show that marked alterations in myocardial cations cannot be explained exclusively on the basis of sarcolemma alterations, as other Ca2+ channels, cation transporters and exchangers may be involved in this event. A marked reduction in Na+-K+ ATPase activity due to a shift in its isoform subunits in association with intracellular Ca2+-overload, cardiac energy depletion, increased membrane permeability, Ca2+-handling abnormalities and damage to myocardial ultrastructure appear to be involved in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Adriana Duris Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia;
| |
Collapse
|
4
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
5
|
Angelovski M, Hadzi-Petrushev N, Mitrokhin V, Kamkin A, Mladenov M. Myocardial infarction and oxidative damage in animal models: objective and expectations from the application of cysteine derivatives. Toxicol Mech Methods 2023; 33:1-17. [PMID: 35450505 DOI: 10.1080/15376516.2022.2069530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) and associated oxidative stress are the main contributors to pathophysiological changes following myocardial infarction (MI), which is the principal cause of death from cardiovascular disease. The glutathione (GSH)/glutathione peroxidase (GPx) system appears to be the main and most active cardiac antioxidant mechanism. Hence, enhancement of the myocardial GSH system might have protective effects in the setting of MI. It follows that by increasing antioxidant capacity, the heart will be able to reduce the damage associated with MI and even prevent/weaken the occurrence of oxidative stress, which is highly ranked among the factors responsible for the occurrence of acute MI. For these reasons, the primary goal of future investigations should be to address the effects of different antioxidative compounds and especially cysteine derivatives like N-acetyl cysteine (NAC) and L-2-oxothiazolidine-4-carboxylic acid (OTC) as precursors responsible for the enhancement of the GSH-related antioxidant system's capacity. It is assumed that this will lay down the basis for elucidation of the mechanisms throughout which applicable doses of OTC will manifest a potentially positive impact in the reduction of adverse effects of acute MI. The inclusion of OTC in the models for prediction of the distribution of oxygen in infarcted animal hearts can help to upgrade existing computational models. Such a model would be based on computational geometries of the heart, but the inclusion of biochemical redox features in addition to angiogenic therapy, despite improvement of the post-infarcted oxygenated outcome could enhance the accuracy of the predictive values of oxygenation.
Collapse
Affiliation(s)
- Marija Angelovski
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia.,Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Qin J, Zhang J, Lin L, Haji-Ghassemi O, Lin Z, Woycechowsky KJ, Van Petegem F, Zhang Y, Yuchi Z. Structures of PKA-phospholamban complexes reveal a mechanism of familial dilated cardiomyopathy. eLife 2022; 11:75346. [PMID: 35297759 PMCID: PMC8970585 DOI: 10.7554/elife.75346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 01/07/2023] Open
Abstract
Several mutations identified in phospholamban (PLN) have been linked to familial dilated cardiomyopathy (DCM) and heart failure, yet the underlying molecular mechanism remains controversial. PLN interacts with sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and regulates calcium uptake, which is modulated by the protein kinase A (PKA)-dependent phosphorylation of PLN during the fight-or-flight response. Here, we present the crystal structures of the catalytic domain of mouse PKA in complex with wild-type and DCM-mutant PLNs. Our structures, combined with the results from other biophysical and biochemical assays, reveal a common disease mechanism: the mutations in PLN reduce its phosphorylation level by changing its conformation and weakening its interactions with PKA. In addition, we demonstrate that another more ubiquitous SERCA-regulatory peptide, called another-regulin (ALN), shares a similar mechanism mediated by PKA in regulating SERCA activity.
Collapse
Affiliation(s)
- Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Jingfeng Zhang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhanChina
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British ColumbiaVancouverCanada
| | - Zhi Lin
- School of Life Sciences, Tianjin UniversityTianjinChina
| | - Kenneth J Woycechowsky
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British ColumbiaVancouverCanada
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina,Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for CancerTianjinChina
| |
Collapse
|
7
|
Wright PT, Gorelik J, Harding SE. Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells 2021; 10:cells10092456. [PMID: 34572106 PMCID: PMC8468945 DOI: 10.3390/cells10092456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/09/2023] Open
Abstract
Beta-adrenoceptors (βAR) are often viewed as archetypal G-protein coupled receptors. Over the past fifteen years, investigations in cardiovascular biology have provided remarkable insights into this receptor family. These studies have shifted pharmacological dogma, from one which centralized the receptor to a new focus on structural micro-domains such as caveolae and t-tubules. Important studies have examined, separately, the structural compartmentation of ion channels and βAR. Despite links being assumed, relatively few studies have specifically examined the direct link between structural remodeling and electrical remodeling with a focus on βAR. In this review, we will examine the nature of receptor and ion channel dysfunction on a substrate of cardiomyocyte microdomain remodeling, as well as the likely ramifications for cardiac electrophysiology. We will then discuss the advances in methodologies in this area with a specific focus on super-resolution microscopy, fluorescent imaging, and new approaches involving microdomain specific, polymer-based agonists. The advent of powerful computational modelling approaches has allowed the science to shift from purely empirical work, and may allow future investigations based on prediction. Issues such as the cross-reactivity of receptors and cellular heterogeneity will also be discussed. Finally, we will speculate as to the potential developments within this field over the next ten years.
Collapse
Affiliation(s)
- Peter T. Wright
- School of Life & Health Sciences, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK;
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
| | - Sian E. Harding
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK;
- Correspondence:
| |
Collapse
|
8
|
de las Heras N, Galiana A, Ballesteros S, Olivares-Álvaro E, Fuller PJ, Lahera V, Martín-Fernández B. Proanthocyanidins Maintain Cardiac Ionic Homeostasis in Aldosterone-Induced Hypertension and Heart Failure. Int J Mol Sci 2021; 22:ijms22179602. [PMID: 34502509 PMCID: PMC8431754 DOI: 10.3390/ijms22179602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Excess aldosterone promotes pathological remodeling of the heart and imbalance in cardiac ion homeostasis of sodium, potassium and calcium. Novel treatment with proanthocyanidins in aldosterone-treated rats has resulted in downregulation of cardiac SGK1, the main genomic aldosterone-induced intracellular mediator of ion handling. It therefore follows that proanthocyanidins could be modulating cardiac ion homeostasis in aldosterone-treated rats. Male Wistar rats received aldosterone (1 mg kg−1 day−1) +1% NaCl for three weeks. Half of the animals in each group were simultaneously treated with the proanthocyanidins-rich extract (80% w/w) (PRO80, 5 mg kg−1 day−1). PRO80 prevented cardiac hypertrophy and decreased calcium content. Expression of ion channels (ROMK, NHE1, NKA and NCX1) and calcium transient mediators (CAV1.2, pCaMKII and oxCaMKII) were reduced by PRO80 treatment in aldosterone-treated rats. To conclude, our data indicate that PRO80 may offer an alternative treatment to conventional MR-blockade in the prevention of aldosterone-induced cardiac pathology.
Collapse
Affiliation(s)
- Natalia de las Heras
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Adrián Galiana
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Sandra Ballesteros
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Elena Olivares-Álvaro
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Peter J. Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
| | - Vicente Lahera
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
| | - Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain; (N.d.l.H.); (A.G.); (S.B.); (E.O.-Á.); (V.L.)
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Correspondence: ; Tel.: +34-987-291-000 (ext. 3650)
| |
Collapse
|
9
|
Mi X, Ding WG, Toyoda F, Kojima A, Omatsu-Kanbe M, Matsuura H. Selective activation of adrenoceptors potentiates I Ks current in pulmonary vein cardiomyocytes through the protein kinase A and C signaling pathways. J Mol Cell Cardiol 2021; 161:86-97. [PMID: 34375616 DOI: 10.1016/j.yjmcc.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Delayed rectifier K+ current (IKs) is a key contributor to repolarization of action potentials. This study investigated the mechanisms underlying the adrenoceptor-induced potentiation of IKs in pulmonary vein cardiomyocytes (PVC). PVC were isolated from guinea pig pulmonary vein. The action potentials and IKs current were recorded using perforated and conventional whole-cell patch-clamp techniques. The expression of IKs was examined using immunocytochemistry and Western blotting. KCNQ1, a IKs pore-forming protein was detected as a signal band approximately 100 kDa in size, and its immunofluorescence signal was found to be mainly localized on the cell membrane. The IKs current in PVC was markedly enhanced by both β1- and β2-adrenoceptor stimulation with a negative voltage shift in the current activation, although the potentiation was more effectively induced by β2-adrenoceptor stimulation than β1-adrenoceptor stimulation. Both β-adrenoceptor-mediated increases in IKs were attenuated by treatment with the adenylyl cyclase (AC) inhibitor or protein kinase A (PKA) inhibitor. Furthermore, the IKs current was increased by α1-adrenoceptor agonist but attenuated by the protein kinase C (PKC) inhibitor. PVC exhibited action potentials in normal Tyrode solution which was slightly reduced by HMR-1556 a selective IKs blocker. However, HMR-1556 markedly reduced the β-adrenoceptor-potentiated firing rate. The stimulatory effects of β- and α1-adrenoceptor on IKs in PVC are mediated via the PKA and PKC signal pathways. HMR-1556 effectively reduced the firing rate under β-adrenoceptor activation, suggesting that the functional role of IKs might increase during sympathetic excitation under in vivo conditions.
Collapse
Affiliation(s)
- Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The role of autoantibodies in arrhythmogenesis has been the subject of research in recent times. This review focuses on the rapidly expanding field of autoantibody-mediated cardiac arrhythmias. RECENT FINDINGS Since the discovery of cardiac autoantibodies more than three decades ago, a great deal of effort has been devoted to understanding their contribution to arrhythmias. Different cardiac receptors and ion channels were identified as targets for autoantibodies, the binding of which either initiates a signaling cascade or serves as a biomarker of underlying remodeling process. Consequently, the wide spectrum of heart rhythm disturbances may emerge, ranging from atrial to ventricular arrhythmias as well as conduction diseases, irrespective of concomitant structural heart disease or manifest autoimmune disorder. The time has come to acknowledge autoimmune cardiac arrhythmias as a distinct disease entity. Establishing the autoantibody profile of patients will help to develop novel treatment approaches for patients.
Collapse
Affiliation(s)
- Jin Li
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland. .,Department of Cardiology, Lausanne University Hospital, rue du Bugnon 46, 1011, Lausanne, Switzerland.
| |
Collapse
|
11
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Pan XQ, Chang XL, Zhang W, Meng HX, Zhang J, Shi JY, Guo JH. Late-onset multiple acyl-CoA dehydrogenase deficiency with cardiac syncope: A case report. World J Clin Cases 2020; 8:995-1001. [PMID: 32190638 PMCID: PMC7062611 DOI: 10.12998/wjcc.v8.i5.995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 02/14/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is an uncommon autosomal recessive disorder of mitochondrial fatty acid beta-oxidation. Syncope is a transient loss of consciousness due to acute global cerebral hypoperfusion. Late-onset MADD with syncope has not been reported previously.
CASE SUMMARY We report a 17-year-old girl with exercise intolerance and muscle weakness. She felt palpitation and shortness of breath after short bouts of exercise. She also suffered from a transient loss of consciousness many times. Muscle biopsy showed lipid storage. Genetic mutation analysis indicated a compound heterozygous mutation c.250G > A (p.A84T) and c.872T > G (p.V291G) in the ETFDH gene. The results of Holter electrocardiogram monitoring showed supraventricular tachycardia when the patient experienced a loss of consciousness. After treatment with riboflavin and carnitine, muscle weakness and palpitation symptoms improved rapidly. No loss of consciousness occurred, and the Holter electrocardiogram monitoring was normal.
CONCLUSION Late-onset MADD with supraventricular tachycardia can cause cardiac syncope. Carnitine and riboflavin supplement were beneficial for treating the late-onset MADD with cardiac syncope. Attention should be paid to the prevention of cardiac syncope when diagnosing late-onset MADD.
Collapse
Affiliation(s)
- Xue-Qi Pan
- Department of Neurology, Frist Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xue-Li Chang
- Department of Neurology, Frist Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Wei Zhang
- Department of Neurology, Frist Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Hua-Xing Meng
- Department of Neurology, Frist Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jing Zhang
- Department of Neurology, Frist Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jia-Ying Shi
- Department of Neurology, Frist Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jun-Hong Guo
- Department of Neurology, Frist Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
13
|
Clossey DG, Martin A, Im DD, Reisner AT, Wittels K, Wilcox SR. A Rare Cause of Quadriparesis. J Emerg Med 2020; 58:506-508. [PMID: 32184055 DOI: 10.1016/j.jemermed.2019.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/27/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Affiliation(s)
- David G Clossey
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alister Martin
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts; Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Dana D Im
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts; Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew T Reisner
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts; Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen Wittels
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts; Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Susan R Wilcox
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Pianca N, Di Bona A, Lazzeri E, Costantini I, Franzoso M, Prando V, Armani A, Rizzo S, Fedrigo M, Angelini A, Basso C, Pavone FS, Rubart M, Sacconi L, Zaglia T, Mongillo M. Cardiac sympathetic innervation network shapes the myocardium by locally controlling cardiomyocyte size through the cellular proteolytic machinery. J Physiol 2019; 597:3639-3656. [DOI: 10.1113/jp276200] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023] Open
Affiliation(s)
- Nicola Pianca
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Biomedical SciencesUniversity of Padova Padova Italy
| | - Anna Di Bona
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Erica Lazzeri
- European Laboratory for Non‐linear SpectroscopyUniversity of Florence Florence Italy
| | - Irene Costantini
- European Laboratory for Non‐linear SpectroscopyUniversity of Florence Florence Italy
- National Institute of Optics, National Research CouncilUniversity of Florence Florence Italy
| | - Mauro Franzoso
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Biomedical SciencesUniversity of Padova Padova Italy
| | - Valentina Prando
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Andrea Armani
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Biomedical SciencesUniversity of Padova Padova Italy
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Marny Fedrigo
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Francesco S. Pavone
- European Laboratory for Non‐linear SpectroscopyUniversity of Florence Florence Italy
- National Institute of Optics, National Research CouncilUniversity of Florence Florence Italy
- Department of Physics and AstronomyUniversity of Florence Florence Italy
| | - Michael Rubart
- Indiana University School of Medicine Indianapolis IN USA
| | - Leonardo Sacconi
- European Laboratory for Non‐linear SpectroscopyUniversity of Florence Florence Italy
- National Institute of Optics, National Research CouncilUniversity of Florence Florence Italy
| | - Tania Zaglia
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Biomedical SciencesUniversity of Padova Padova Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public HealthUniversity of Padova Padova Italy
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Biomedical SciencesUniversity of Padova Padova Italy
- CNR Institute of Neuroscience Padova Italy
| |
Collapse
|
15
|
Strauss M, Smith W, Wei W, Fedorova OV, Schutte AE. Autonomic activity and its relationship with the endogenous cardiotonic steroid marinobufagenin: the African-PREDICT study. Nutr Neurosci 2019; 23:849-859. [PMID: 30614779 DOI: 10.1080/1028415x.2018.1564985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aim: Marinobufagenin (MBG), a cardiotonic steroid and a natriuretic hormone, is elevated in response to high salt diet consumption. In animal models salt intake stimulates adrenocortical MBG secretion via increased angiotensin II, sympathetic activity and aldosterone. No evidence in humans exists to suggest the involvement of the angiotensinergic-sympatho-excitatory pathway in MBG production. We investigated whether MBG is related to indices of autonomic activity in men and women. Methods: This cross-sectional study included 680 black and white, men and women from the African-PREDICT study (aged 20-30 years). Continuous 24 hr ECG recordings were used to obtain low and high frequency (LF, HF) heart rate variability (HRV). We measured 24 hr urinary MBG excretion and serum aldosterone. Results: We found a positive association of MBG excretion with estimated salt intake (P < 0.001) and aldosterone (P < 0.001) in women and men. In women only, a positive relationship was evident between MBG excretion and LF HRV in multivariate adjusted regression analyses (Adj. R 2 = 0.33; β = 0.11; P = 0.030). In men, MBG excretion associated positively with HF HRV in similar regression analyses (R 2 = 0.36; β = 0.12; P = 0.034). Sex-specific results were corroborated only in blacks, namely, a positive association of MBG excretion with LF HRV in black women (R 2 = 0.38; β = 0.13; P = 0.036), and negative association with HF HRV in black men (R 2 = 0.40; β = 0.18; P = 0.045). No relationships were evident in white women (P = 0.58) or men (P = 0.27). Conclusion: Our findings in this human cohort support suggested mechanisms whereby MBG is elevated as a result of increased salt intake, including autonomic activity, previously demonstrated in Dahl salt-sensitive hypertension.
Collapse
Affiliation(s)
- Michél Strauss
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Wayne Smith
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,MRC Research Unit: Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Wen Wei
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Olga V Fedorova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,MRC Research Unit: Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
16
|
Liu Y, Shi Q, Ma Y, Liu Q. The role of immune cells in atrial fibrillation. J Mol Cell Cardiol 2018; 123:198-208. [PMID: 30267749 DOI: 10.1016/j.yjmcc.2018.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/23/2022]
|
17
|
Yeo JM, Tse V, Kung J, Lin HY, Lee YT, Kwan J, Yan BP, Tse G. Isolated heart models for studying cardiac electrophysiology: a historical perspective and recent advances. J Basic Clin Physiol Pharmacol 2018; 28:191-200. [PMID: 28063261 DOI: 10.1515/jbcpp-2016-0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/12/2016] [Indexed: 01/25/2023]
Abstract
Experimental models used in cardiovascular research range from cellular to whole heart preparations. Isolated whole hearts show higher levels of structural and functional integration than lower level models such as tissues or cellular fragments. Cardiovascular diseases are multi-factorial problems that are dependent on highly organized structures rather than on molecular or cellular components alone. This article first provides a general introduction on the animal models of cardiovascular diseases. It is followed by a detailed overview and a historical perspective of the different isolated heart systems with a particular focus on the Langendorff perfusion method for the study of cardiac arrhythmias. The choice of species, perfusion method, and perfusate composition are discussed in further detail with particular considerations of the theoretical and practical aspects of experimental settings.
Collapse
Affiliation(s)
- Jie Ming Yeo
- School of Medicine, Imperial College London, London
| | - Vivian Tse
- Department of Physiology, McGill University, Montreal, Quebec
| | - Judy Kung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Joseph Kwan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Bryan P Yan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R
| |
Collapse
|
18
|
Zaglia T, Mongillo M. Cardiac sympathetic innervation, from a different point of (re)view. J Physiol 2018; 595:3919-3930. [PMID: 28240352 DOI: 10.1113/jp273120] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
The audience of basic and clinical scientists is familiar with the notion that the sympathetic nervous system controls heart function during stresses. However, evidence indicates that the neurogenic control of the heart spans from the maintenance of housekeeping functions in resting conditions to the recruitment of maximal performance, in the fight-or-flight responses, across a whole range of intermediate states. To perform such sophisticated functions, sympathetic ganglia integrate both peripheral and central inputs, and transmit information to the heart via 'motor' neurons, directly interacting with target cardiomyocytes. To date, the dynamics and mode of communication between these two cell types, which determine how neuronal information is adequately translated into the wide spectrum of cardiac responses, are still blurry. By combining the anatomical and structural information brought to light by recent imaging technologies and the functional evidence in cellular systems, we focus on the interface between neurons and cardiomyocytes, and advocate the existence of a specific 'neuro-cardiac junction', where sympathetic neurotransmission occurs in a 'quasi-synaptic' way. The properties of such junctional-type communication fit well with those of the physiological responses elicited by the cardiac sympathetic nervous system, and explain its ability to tune heart function with precision, specificity and elevated temporal resolution.
Collapse
Affiliation(s)
- Tania Zaglia
- Department of Cardiac, Thoracic and Vascular Sciences, via Giustiniani 2, 35128, University of Padova, Padova, Italy.,Department of Biomedical Sciences, via Ugo Bassi 58/B, 35131, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, via G.Orus, 2, 35129, Padova, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, via Ugo Bassi 58/B, 35131, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, via G.Orus, 2, 35129, Padova, Italy.,CNR institute of Neurosciences, viale Colombo 3, 35133, Padova, Italy
| |
Collapse
|
19
|
Wang ZY, Liu YY, Liu GH, Lu HB, Mao CY. l-Carnitine and heart disease. Life Sci 2017; 194:88-97. [PMID: 29241711 DOI: 10.1016/j.lfs.2017.12.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/03/2017] [Accepted: 12/09/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is a key cause of deaths worldwide, comprising 15-17% of healthcare expenditure in developed countries. Current records estimate an annual global average of 30 million cardiac dysfunction cases, with a predicted escalation by two-three folds for the next 20-30years. Although β-blockers and angiotensin-converting-enzymes are commonly prescribed to control CVD risk, hepatotoxicity and hematological changes are frequent adverse events associated with these drugs. Search for alternatives identified endogenous cofactor l-carnitine, which is capable of promoting mitochondrial β-oxidation towards a balanced cardiac energy metabolism. l-Carnitine facilitates transport of long-chain fatty acids into the mitochondrial matrix, triggering cardioprotective effects through reduced oxidative stress, inflammation and necrosis of cardiac myocytes. Additionally, l-carnitine regulates calcium influx, endothelial integrity, intracellular enzyme release and membrane phospholipid content for sustained cellular homeostasis. Carnitine depletion, characterized by reduced expression of "organic cation transporter-2" gene, is a metabolic and autosomal recessive disorder that also frequently associates with CVD. Hence, exogenous carnitine administration through dietary and intravenous routes serves as a suitable protective strategy against ventricular dysfunction, ischemia-reperfusion injury, cardiac arrhythmia and toxic myocardial injury that prominently mark CVD. Additionally, carnitine reduces hypertension, hyperlipidemia, diabetic ketoacidosis, hyperglycemia, insulin-dependent diabetes mellitus, insulin resistance, obesity, etc. that enhance cardiovascular pathology. These favorable effects of l-carnitine have been evident in infants, juvenile, young, adult and aged patients of sudden and chronic heart failure as well. This review describes the mechanism of action, metabolism and pharmacokinetics of l-carnitine. It specifically emphasizes upon the beneficial role of l-carnitine in cardiomyopathy.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Ying-Yi Liu
- Department of Anesthesia, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Guo-Hui Liu
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Hai-Bin Lu
- College of Pharmacy, Jilin University, Changchun, PR China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, PR China.
| |
Collapse
|
20
|
Mamidi R, Gresham KS, Li J, Stelzer JE. Cardiac myosin binding protein-C Ser 302 phosphorylation regulates cardiac β-adrenergic reserve. SCIENCE ADVANCES 2017; 3:e1602445. [PMID: 28345052 PMCID: PMC5345928 DOI: 10.1126/sciadv.1602445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/02/2017] [Indexed: 05/22/2023]
Abstract
Phosphorylation of cardiac myosin binding protein-C (MyBP-C) modulates cardiac contractile function; however, the specific roles of individual serines (Ser) within the M-domain that are targets for β-adrenergic signaling are not known. Recently, we demonstrated that significant accelerations in in vivo pressure development following β-agonist infusion can occur in transgenic (TG) mouse hearts expressing phospho-ablated Ser282 (that is, TGS282A) but not in hearts expressing phospho-ablation of all three serines [that is, Ser273, Ser282, and Ser302 (TG3SA)], suggesting an important modulatory role for other Ser residues. In this regard, there is evidence that Ser302 phosphorylation may be a key contributor to the β-agonist-induced positive inotropic responses in the myocardium, but its precise functional role has not been established. Thus, to determine the in vivo and in vitro functional roles of Ser302 phosphorylation, we generated TG mice expressing nonphosphorylatable Ser302 (that is, TGS302A). Left ventricular pressure-volume measurements revealed that TGS302A mice displayed no accelerations in the rate of systolic pressure rise and an inability to maintain systolic pressure following dobutamine infusion similar to TG3SA mice, implicating Ser302 phosphorylation as a critical regulator of enhanced systolic performance during β-adrenergic stress. Dynamic strain-induced cross-bridge (XB) measurements in skinned myocardium isolated from TGS302A hearts showed that the molecular basis for impaired β-adrenergic-mediated enhancements in systolic function is due to the absence of protein kinase A-mediated accelerations in the rate of cooperative XB recruitment. These results demonstrate that Ser302 phosphorylation regulates cardiac contractile reserve by enhancing contractile responses during β-adrenergic stress.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kenneth S. Gresham
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Corresponding author.
| |
Collapse
|
21
|
Liu L, Wu J, Kennedy DJ. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms. Front Physiol 2016; 7:382. [PMID: 27667975 PMCID: PMC5016610 DOI: 10.3389/fphys.2016.00382] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo Toledo, OH, USA
| | - Jian Wu
- Center for Craniofacial Molecular Biology, University of Southern California Los Angeles, CA, USA
| | - David J Kennedy
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo Toledo, OH, USA
| |
Collapse
|
22
|
Cairns SP, Borrani F. β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling. J Physiol 2016; 593:4713-27. [PMID: 26400207 DOI: 10.1113/jp270909] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/28/2015] [Indexed: 02/04/2023] Open
Abstract
Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.
Collapse
Affiliation(s)
- Simeon P Cairns
- Sports Performance Research Institute New Zealand, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Silvani A, Calandra-Buonaura G, Dampney RAL, Cortelli P. Brain-heart interactions: physiology and clinical implications. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0181. [PMID: 27044998 DOI: 10.1098/rsta.2015.0181] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2016] [Indexed: 05/03/2023]
Abstract
The brain controls the heart directly through the sympathetic and parasympathetic branches of the autonomic nervous system, which consists of multi-synaptic pathways from myocardial cells back to peripheral ganglionic neurons and further to central preganglionic and premotor neurons. Cardiac function can be profoundly altered by the reflex activation of cardiac autonomic nerves in response to inputs from baro-, chemo-, nasopharyngeal and other receptors as well as by central autonomic commands, including those associated with stress, physical activity, arousal and sleep. In the clinical setting, slowly progressive autonomic failure frequently results from neurodegenerative disorders, whereas autonomic hyperactivity may result from vascular, inflammatory or traumatic lesions of the autonomic nervous system, adverse effects of drugs and chronic neurological disorders. Both acute and chronic manifestations of an imbalanced brain-heart interaction have a negative impact on health. Simple, widely available and reliable cardiovascular markers of the sympathetic tone and of the sympathetic-parasympathetic balance are lacking. A deeper understanding of the connections between autonomic cardiac control and brain dynamics through advanced signal and neuroimage processing may lead to invaluable tools for the early detection and treatment of pathological changes in the brain-heart interaction.
Collapse
Affiliation(s)
| | - Giovanna Calandra-Buonaura
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Block G, Via Altura 3, 40139 Bologna, Italy
| | - Roger A L Dampney
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research, University of Sydney, Sidney, New South Wales, Australia
| | - Pietro Cortelli
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Block G, Via Altura 3, 40139 Bologna, Italy
| |
Collapse
|
24
|
Opioid Facilitation of β-Adrenergic Blockade: A New Pharmacological Condition? Pharmaceuticals (Basel) 2015; 8:664-74. [PMID: 26426025 PMCID: PMC4695804 DOI: 10.3390/ph8040664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 01/07/2023] Open
Abstract
Recently, propranolol was suggested to prevent hyperlactatemia in a child with hypovolemic shock through β-adrenergic blockade. Though it is a known inhibitor of glycolysis, propranolol, outside this observation, has never been reported to fully protect against lactate overproduction. On the other hand, literature evidence exists for a cross-talk between β-adrenergic receptors (protein targets of propranolol) and δ-opioid receptor. In this literature context, it is hypothesized here that anti-diarrheic racecadotril (a pro-drug of thiorphan, an inhibitor of enkephalinases), which, in the cited observation, was co-administered with propranolol, might have facilitated the β-blocker-driven inhibition of glycolysis and resulting lactate production. The opioid-facilitated β-adrenergic blockade would be essentially additivity or even synergism putatively existing between antagonism of β-adrenergic receptors and agonism of δ-opioid receptor in lowering cellular cAMP and dependent functions.
Collapse
|
25
|
Uhl S, Freichel M, Mathar I. Contractility Measurements on Isolated Papillary Muscles for the Investigation of Cardiac Inotropy in Mice. J Vis Exp 2015:53076. [PMID: 26436250 PMCID: PMC4692609 DOI: 10.3791/53076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Papillary muscle isolated from adult mouse hearts can be used to study cardiac contractility during different physiological/pathological conditions. The contractile characteristics can be evaluated independently of external influences such as vascular tonus or neurohumoral status. It depicts a scientific approach between single cell measurements with isolated cardiac myocytes and in vivo studies like echocardiography. Thus, papillary muscle preparations serve as an excellent model to study cardiac physiology/pathophysiology and can be used for investigations like the modulation by pharmacological agents or the exploration of transgenic animal models. Here, we describe a method of isolating the murine left anterior papillary muscle to investigate cardiac contractility in an organ bath setup. In contrast to a muscle strip preparation isolated from the ventricular wall, the papillary muscle can be prepared in toto without damaging the muscle tissue severely. The organ bath setup consists of several temperature-controlled, gassed and electrode-equipped organ bath chambers. The isolated papillary muscle is fixed in the organ bath chamber and electrically stimulated. The evoked twitch force is recorded using a pressure transducer and parameters such as twitch force amplitude and twitch kinetics are analyzed. Different experimental protocols can be performed to investigate the calcium- and frequency-dependent contractility as well as dose-response curves of contractile agents such as catecholamines or other pharmaceuticals. Additionally, pathologic conditions like acute ischemia can be simulated.
Collapse
Affiliation(s)
| | | | - Ilka Mathar
- Pharmakologisches Institut, Universität Heidelberg;
| |
Collapse
|
26
|
Liaudet L, Calderari B, Pacher P. Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity. Heart Fail Rev 2015; 19:815-24. [PMID: 24398587 DOI: 10.1007/s10741-014-9418-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Overactivation of the sympatho-adrenergic system is an essential mechanism providing short-term adaptation to the stressful conditions of critical illnesses. In the same way, the administration of exogenous catecholamines is mandatory to support the failing circulation in acutely ill patients. In contrast to these short-term benefits, prolonged adrenergic stress is detrimental to the cardiovascular system by initiating a series of adverse effects triggering significant cardiotoxicity, whose pathophysiological mechanisms are complex and only partially elucidated. In addition to the development of myocardial oxygen supply/demand imbalance induced by the sustained activation of adrenergic receptors, catecholamines can damage cardiomyocytes by fostering mitochondrial dysfunction, via two main mechanisms. The first one is calcium overload, consecutive to β-adrenergic receptor-mediated activation of protein kinase A and subsequent phosphorylation of multiple Ca(2+)-cycling proteins. The second one is oxidative stress, primarily related to the transformation of catecholamines into "aminochromes," which undergo redox cycling in mitochondria to generate copious amounts of oxygen-derived free radicals. In turn, calcium overload and oxidative stress promote mitochondrial permeability transition and cardiomyocyte cell death, both via the apoptotic and necrotic pathways. Comparable mechanisms of myocardial toxicity, including marked oxidative stress and mitochondrial dysfunction, have been reported with the use of cocaine, a common recreational drug with potent sympathomimetic activity. The aim of the current review is to present in detail the pathophysiological processes underlying the development of catecholamine and cocaine-induced cardiomyopathy, as such conditions may be frequently encountered in the clinical practice of cardiologists and ICU specialists.
Collapse
Affiliation(s)
- Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, Faculty of Biology and Medicine, University Hospital Medical Center, BH 08-621, 1010, Lausanne, Switzerland,
| | | | | |
Collapse
|
27
|
Shaw JR, Hampton TH, King BL, Whitehead A, Galvez F, Gross RH, Keith N, Notch E, Jung D, Glaholt SP, Chen CY, Colbourne JK, Stanton BA. Natural selection canalizes expression variation of environmentally induced plasticity-enabling genes. Mol Biol Evol 2014; 31:3002-15. [PMID: 25158801 PMCID: PMC4209136 DOI: 10.1093/molbev/msu241] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many organisms survive fluctuating and extreme environmental conditions by manifesting multiple distinct phenotypes during adulthood by means of developmental processes that enable phenotypic plasticity. We report on the discovery of putative plasticity-enabling genes that are involved in transforming the gill of the euryhaline teleost fish, Fundulus heteroclitus, from its freshwater to its seawater gill-type, a process that alters both morphology and function. Gene expression that normally enables osmotic plasticity is inhibited by arsenic. Gene sets defined by antagonistic interactions between arsenic and salinity show reduced transcriptional variation among individual fish, suggesting unusually accurate and precise regulatory control of these genes, consistent with the hypothesis that they participate in a canalized developmental response. We observe that natural selection acts to preserve canalized gene expression in populations of killifish that are most tolerant to abrupt salinity change and that these populations show the least variability in their transcription of genes enabling plasticity of the gill. We found that genes participating in this highly canalized and conserved plasticity-enabling response had significantly fewer and less complex associations with transcriptional regulators than genes that respond only to arsenic or salinity. Collectively these findings, which are drawn from the relationships between environmental challenge, plasticity, and canalization among populations, suggest that the selective processes that facilitate phenotypic plasticity do so by targeting the regulatory networks that gives rise to the response. These findings also provide a generalized, conceptual framework of how genes might interact with the environment and evolve toward the development of plastic traits.
Collapse
Affiliation(s)
- Joseph R Shaw
- The School of Public and Environmental Affairs, Indiana University, Bloomington The Center for Genomics and Bioinformatics, Indiana University, Bloomington The Mount Desert Island Biological Laboratory, Salisbury Cove, ME Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas H Hampton
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Benjamin L King
- The Mount Desert Island Biological Laboratory, Salisbury Cove, ME
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis
| | - Fernando Galvez
- Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Robert H Gross
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - Nathan Keith
- The School of Public and Environmental Affairs, Indiana University, Bloomington
| | - Emily Notch
- The Mount Desert Island Biological Laboratory, Salisbury Cove, ME Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Dawoon Jung
- The Mount Desert Island Biological Laboratory, Salisbury Cove, ME Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Stephen P Glaholt
- The School of Public and Environmental Affairs, Indiana University, Bloomington
| | - Celia Y Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - John K Colbourne
- The Center for Genomics and Bioinformatics, Indiana University, Bloomington The Mount Desert Island Biological Laboratory, Salisbury Cove, ME Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Bruce A Stanton
- The Mount Desert Island Biological Laboratory, Salisbury Cove, ME Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
28
|
Yuan Q, Zhou QY, Liu D, Yu L, Zhan L, Li XJ, Peng HY, Zhang XL, Yuan XC. Advanced glycation end-products impair Na⁺/K⁺-ATPase activity in diabetic cardiomyopathy: role of the adenosine monophosphate-activated protein kinase/sirtuin 1 pathway. Clin Exp Pharmacol Physiol 2014; 41:127-33. [PMID: 24341361 DOI: 10.1111/1440-1681.12194] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 01/13/2023]
Abstract
Decreased Na(+) /K(+) -ATPase activity, and both sirtuin 1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK) have been reported to be involved in the development of diabetic cardiomyopathy (DCM). The present study aimed to investigate the advanced glycation end-products (AGE) that impair Na(+) /K(+) -ATPase stability by regulating the AMPK/SIRT1 pathway during progression of DCM. To study type 1 diabetic mellitus (T1DM), a disease model in rats was established by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg), and neonatal rat cardiomyocytes were also cultured. Heart function was detected by Doppler, and SIRT1 and AMPK protein expression were detected by immunohistochemistry and western blotting. Na(+) /K(+) -ATPase activity was also monitored. Using in vivo rat models of DCM, we showed that Na(+) /K(+) -ATPase activity decreased when both AMPK and SIRT1 expression were downregulated. In vitro, AGE impaired Na(+) /K(+) -ATPase activity and decreased the AMPK and SIRT1 expression. Sirtuin 1 overexpression increased Na(+) /K(+) -ATPase activity. 5-aminoimidazole-4-carboxamide-3-ribonucleoside (AICAR) upregulated SIRT1 expression and increased Na(+) /K(+) -ATPase activity, which could be partially abolished by splitomicin. Our results suggest that the dysfunction of DCM is related to AGE-induced Na(+) /K(+) -ATPase activity impairment through a mechanism involving the AMPK/SIRT1 pathway.
Collapse
Affiliation(s)
- Qiong Yuan
- Department of Pharmacology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Uhl S, Mathar I, Vennekens R, Freichel M. Adenylyl cyclase-mediated effects contribute to increased Isoprenaline-induced cardiac contractility in TRPM4-deficient mice. J Mol Cell Cardiol 2014; 74:307-17. [PMID: 24972051 DOI: 10.1016/j.yjmcc.2014.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
TRPM4 and TRPM5 proteins belong to the Transient Receptor Potential (TRP) ion channel family and form Ca(2+)-activated nonselective cation channels. Recently we showed a significant increase of Isoprenaline-induced inotropy in TRPM4-deficient (Trpm4(-/-)) mice. This is caused by increased Ca(2+) entry via L-type calcium channels due to faster action potential repolarization in Trpm4(-/-) ventricular myocytes [Mathar et al., 2013]. Here, we investigated the contribution of various steps of the β-adrenergic signalling cascade to the augmented positive inotropic response in the absence of TRPM4, and whether the closely related TRPM5 additively contributes to this process using TRPM4/TRPM5-double deficient (Trpm4/Trpm5((-/-)2)) mice. We performed contractility measurements on isolated papillary muscles from wild type, Trpm4(-/-) and Trpm4/Trpm5((-/-)2) mice. As shown in Trpm4(-/-) mice, Isoprenaline-induced inotropy in Trpm4/Trpm5((-/-)2) papillary muscles was significantly increased compared to wild type, whereas basal, frequency- and Ca(2+)-dependent contractility was unaltered. Equivalent to Isoprenaline, activation of adenylyl cyclase using Forskolin led to a significantly increased twitch force in Trpm4(-/-) heart preparations whereas the Isoprenaline-mediated increase in cAMP level was comparable to wild type mice. Notably, the positive inotropic response evoked by phosphodiesterase inhibition with 3-isobutyl-1-methylxanthine (IBMX) was unchanged between both genotypes. Furthermore, experiments performed with increasing concentrations of IBMX after prestimulation with Forskolin and vice versa did not provide evidence that the increased β-adrenergic positive inotropic response in TRPM4-deficient papillary muscles is due to differences in accumulation of cAMP. Compared to inhibition of phosphodiesterase, the rise of intracellular cAMP by activating adenylyl cyclase is accompanied by ATP breakdown. To test the relevance of TRPM4 during forced ATP consumption we measured contractility under ischemic conditions. Here, Trpm4(-/-) papillary muscles showed improved contractile function in comparison to wild type. Our results are consistent with the hypothesis that TRPM4 has a limiting effect on cardiac contractility specifically in ATP depleting conditions. The increased positive inotropic response in Trpm4(-/-) papillary muscles evoked by stimulation of adenylyl cyclase activity is not observed without active enhancement of ATP hydrolysis. Furthermore, the contractility of Trpm4(-/-) papillary muscles was also increased during ischemic simulation. These data underscore the potential of TRPM4 inactivation as an approach to increase inotropy in specific conditions associated with increased catecholamine levels, such as heart failure and ischemia.
Collapse
Affiliation(s)
- Sebastian Uhl
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Ilka Mathar
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany; Laboratory of Ion Channel Research, Department of Molecular and Cellular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Molecular and Cellular Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Marc Freichel
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany; Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
30
|
Bueno-Orovio A, Sánchez C, Pueyo E, Rodriguez B. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach. Pflugers Arch 2013; 466:183-93. [PMID: 23674099 DOI: 10.1007/s00424-013-1293-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022]
Abstract
The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK,
| | | | | | | |
Collapse
|
31
|
Despa S, Bers DM. Na⁺ transport in the normal and failing heart - remember the balance. J Mol Cell Cardiol 2013; 61:2-10. [PMID: 23608603 DOI: 10.1016/j.yjmcc.2013.04.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/22/2013] [Accepted: 04/11/2013] [Indexed: 12/12/2022]
Abstract
In the heart, intracellular Na(+) concentration ([Na(+)]i) is a key modulator of Ca(2+) cycling, contractility and cardiac myocyte metabolism. Several Na(+) transporters are electrogenic, thus they both contribute to shaping the cardiac action potential and at the same time are affected by it. [Na(+)]i is controlled by the balance between Na(+) influx through various pathways, including the Na(+)/Ca(2+) exchanger and Na(+) channels, and Na(+) extrusion via the Na(+)/K(+)-ATPase. [Na(+)]i is elevated in HF due to a combination of increased entry through Na(+) channels and/or Na(+)/H(+) exchanger and reduced activity of the Na(+)/K(+)-ATPase. Here we review the major Na(+) transport pathways in cardiac myocytes and how they participate in regulating [Na(+)]i in normal and failing hearts. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes."
Collapse
Affiliation(s)
- Sanda Despa
- Department of Pharmacology, University of California, Davis, CA, USA.
| | | |
Collapse
|
32
|
Galougahi KK, Liu CC, Garcia A, Fry NAS, Hamilton EJ, Rasmussen HH, Figtree GA. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling. J Physiol 2013; 591:2999-3015. [PMID: 23587884 DOI: 10.1113/jphysiol.2013.252817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The widely reported stimulation of the cardiac Na(+)-K(+) pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na(+) levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits and reduced myocardial O2(•-)-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na(+)-K(+) pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na(+) in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure.
Collapse
|
33
|
Beaugé L, Dipolo R, Bollo M, Cousido A, Berberián G, Podjarny A. Metabolic regulation of the squid nerve Na(+)/Ca (2+) exchanger: recent developments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:149-61. [PMID: 23224877 DOI: 10.1007/978-1-4614-4756-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
In squid nerves, MgATP modulation of the Na(+)/Ca(2+) exchanger requires the presence of a cytosolic protein which becomes phosphorylated during the process. This factor has been recently identified. Mass spectroscopy and Western blot analysis established that it is a member of the lipocalin superfamily of lipid-binding proteins (LBP or FABP) of 132 amino acids. We called it regulatory protein of squid nerve sodium/calcium exchanger (ReP1-NCXSQ, access to GenBank EU981897).ReP1-NCXSQ was cloned, expressed, and purified. Circular dichroism, far-UV, and infrared spectroscopy suggest a secondary structure, predominantly of beta-sheets. The tertiary structure prediction provides ten beta-sheets and two alpha-helices, characteristic of most of LPB. Functional experiments showed that, to be active, ReP1-NCXSQ must be phosphorylated by MgATP, through the action of a kinase present in the plasma membrane. Moreover, PO4-ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. An additional crucial observation was that, in proteoliposomes containing only the purified Na(+)/Ca(2+) exchanger, PO4-ReP1-NCXSQ promotes activation; therefore, this upregulation has no other requirement than a lipid membrane and the incorporated exchanger protein.Recently, we solved the crystal structure of ReP1-NCXSQ which was as predicted: a "barrel" consisting of ten beta-sheets and two alpha-helices. Inside the barrel is the fatty acid coordinated by hydrogen bonds with Arg126 and Tyr128. Point mutations showed that neither Tyr20Ala, Arg58Val, Ser99Ala, nor Arg126Val is necessary for protein phosphorylation or activity. On the other hand, Tyr128 is essential for activity but not for phosphorylation. We can conclude that (1) for the first time, a role of an LBP is demonstrated in the metabolic regulation of an ion exchanger; (2) phosphorylation of this LBP can be separated from the activation capacity; and (3) Tyr128, a candidate to coordinate lipid binding inside the barrel, is essential for activity.
Collapse
Affiliation(s)
- Luis Beaugé
- Laboratorio de Biofísica, Instituto de Investigación Médica, Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|
34
|
Yakushev S, Band M, Tissot van Patot MC, Gassmann M, Avivi A, Bogdanova A. Cross talk between S-nitrosylation and S-glutathionylation in control of the Na,K-ATPase regulation in hypoxic heart. Am J Physiol Heart Circ Physiol 2012; 303:H1332-43. [PMID: 22982781 DOI: 10.1152/ajpheart.00145.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oxygen-induced regulation of Na,K-ATPase was studied in rat myocardium. In rat heart, Na,K-ATPase responded to hypoxia with a dose-dependent inhibition in hydrolytic activity. Inhibition of Na,K-ATPase in hypoxic rat heart was associated with decrease in nitric oxide (NO) production and progressive oxidative stress. Accumulation of oxidized glutathione (GSSG) and decrease in NO availability in hypoxic rat heart were followed by a decrease in S-nitrosylation and upregulation of S-glutathionylation of the catalytic α-subunit of the Na,K-ATPase. Induction of S-glutathionylation of the α-subunit by treatment of tissue homogenate with GSSG resulted in complete inhibition of the enzyme in rat a myocardial tissue homogenate. Inhibitory effect of GSSG in rat sarcolemma could be significantly decreased upon activation of NO synthases. We have further tested whether oxidative stress and suppression of the Na,K-ATPase activity are observed in hypoxic heart of two subterranean hypoxia-tolerant blind mole species (Spalax galili and Spalax judaei). In both hypoxia-tolerant Spalax species activity of the enzyme and tissue redox state were maintained under hypoxic conditions. However, localization of cysteines within the catalytic subunit of the Na,K-ATPase was preserved and induction of S-glutathionylation by GSSG in tissue homogenate inhibited the Spalax ATPase as efficiently as in rat heart. The obtained data indicate that oxygen-induced regulation of the Na,K-ATPase in the heart is mediated by a switch between S-glutathionylation and S-nitrosylation of the regulatory thiol groups localized at the catalytic subunit of the enzyme.
Collapse
Affiliation(s)
- Sergej Yakushev
- Institute of Veterinary Physiology, Vetsuisse Department and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Yang D, Lyashkov AE, Li Y, Ziman BD, Lakatta EG. RGS2 overexpression or G(i) inhibition rescues the impaired PKA signaling and slow AP firing of cultured adult rabbit pacemaker cells. J Mol Cell Cardiol 2012; 53:687-94. [PMID: 22921807 DOI: 10.1016/j.yjmcc.2012.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 07/23/2012] [Accepted: 08/10/2012] [Indexed: 12/16/2022]
Abstract
Freshly isolated adult rabbit sinoatrial node cells (f-SANC) are an excellent model for studies of autonomic signaling, but are not amenable to genetic manipulation. We have developed and characterized a stable cultured rabbit SANC (c-SANC) model that is suitable for genetic manipulation to probe mechanisms of spontaneous action potential (AP) firing. After 48 h in culture, c-SANC generate stable, rhythmic APs at 34±0.5°C, at a rate that is 50% less than f-SANC. In c- vs. f-SANC: AP duration is prolonged; phosphorylation of phospholamban at Ser(16) and type2 ryanodine receptor (RyR2) at Ser(2809) are reduced; and the level of type2 regulator of G-protein signaling (RGS2), that facilitates adenylyl cyclases/cAMP/protein kinase A (PKA) via G(i) inhibition, is substantially reduced. Consistent with the interpretation that cAMP/PKA signaling becomes impaired in c-SANC, acute β-adrenergic receptor stimulation increases phospholamban and RyR2 phosphorylation, enhances RGS2-labeling density, and accelerates the AP firing rate to the similar maximum in c- and f-SANC. Specific PKA inhibition completely inhibits all β-adrenergic receptor effects. Adv-RGS2 infection, or pertussis toxin treatment to disable G(i)-signaling, each partially rescues the c-SANC spontaneous AP firing rate. Thus, a G(i)-dependent reduction in PKA-dependent protein phosphorylation, including that of Ca(2+) cycling proteins, reduces the spontaneous AP firing rate of c-SANC, and can be reversed by genetic or pharmacologic manipulation of PKA signaling.
Collapse
Affiliation(s)
- Dongmei Yang
- Laboratory of Cardiovascular Science, IRP, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | | | | | | | | |
Collapse
|
36
|
Yang JH, Saucerman JJ. Phospholemman is a negative feed-forward regulator of Ca2+ in β-adrenergic signaling, accelerating β-adrenergic inotropy. J Mol Cell Cardiol 2012; 52:1048-55. [PMID: 22289214 PMCID: PMC3327824 DOI: 10.1016/j.yjmcc.2011.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/21/2011] [Accepted: 12/29/2011] [Indexed: 01/20/2023]
Abstract
Sympathetic stimulation enhances cardiac contractility by stimulating β-adrenergic signaling and protein kinase A (PKA). Recently, phospholemman (PLM) has emerged as an important PKA substrate capable of regulating cytosolic Ca(2+) transients. However, it remains unclear how PLM contributes to β-adrenergic inotropy. Here we developed a computational model to clarify PLM's role in the β-adrenergic signaling response. Simulating Na(+) and sarcoplasmic reticulum (SR) Ca(2+) clamps, we identify an effect of PLM phosphorylation on SR unloading as the key mechanism by which PLM confers cytosolic Ca(2+) adaptation to long-term β-adrenergic receptor (β-AR) stimulation. Moreover, we show that phospholamban (PLB) opposes and overtakes these actions on SR load, forming a negative feed-forward loop in the β-adrenergic signaling cascade. This network motif dominates the negative feedback conferred by β-AR desensitization and accelerates β-AR-induced inotropy. Model analysis therefore unmasks key actions of PLM phosphorylation during β-adrenergic signaling, indicating that PLM is a critical component of the fight-or-flight response.
Collapse
Affiliation(s)
- Jason H. Yang
- Department of Biomedical Engineering, University of Virginia; Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia; Robert M. Berne Cardiovascular Research Center, University of Virginia
| |
Collapse
|
37
|
Lewis JE, Tannenbaum SL, Gao J, Melillo AB, Long EG, Alonso Y, Konefal J, Woolger JM, Leonard S, Singh PK, Chen L, Tiozzo E. Comparing the accuracy of ES-BC, EIS-GS, and ES Oxi on body composition, autonomic nervous system activity, and cardiac output to standardized assessments. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2011; 4:169-77. [PMID: 22915943 PMCID: PMC3417887 DOI: 10.2147/mder.s24291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND PURPOSE THE ELECTRO SENSOR COMPLEX (ESC) IS SOFTWARE THAT COMBINES THREE DEVICES USING BIOELECTRICAL IMPEDANCE, GALVANIC SKIN RESPONSE, AND SPECTROPHOTOMETRY: (1) ES-BC (Electro Sensor-Body Composition; LD Technology, Miami, FL) to assess body composition, (2) EIS-GS (Electro Interstitial Scan-Galvanic Skin; LD Technology) to predict autonomic nervous system activity, and (3) ES Oxi (Electro Sensor Oxi; LD Technology) to assess cardiac output. The objective of this study was to compare each to a standardized assessment: ES-BC to dual-energy X-ray absorptiometry (DXA), EIS-GS to heart rate variability, and ES Oxi to BioZ Dx Diagnostic System (BioZ Dx; SonoSite Inc, Bothell, WA). PATIENTS AND METHODS The study was conducted in two waves. Fifty subjects were assessed for body composition and autonomic nervous system activity. Fifty-one subjects were assessed for cardiac output. RESULTS We found adequate relative and absolute agreement between ES-BC and DXA for fat mass (r = 0.97, P < 0.001) with ES-BC overestimating fat mass by 0.1 kg and for body fat percentage (r = 0.92, P < 0.001) with overestimation of fat percentage by 0.4%. For autonomic nervous system activity, we found marginal relative agreement between EIS-GS and heart rate variability by using EIS-GS as the predictor in a linear regression equation (adjusted R(2) = 0.56, P = 0.03). For cardiac output, adequate relative and absolute agreement was found between ES Oxi and BioZ Dx at baseline (r = 0.60, P < 0.001), after the first exercise stage (r = 0.79, P < 0.001), and after the second exercise stage (r = 0.86, P < 0.001). Absolute agreement was found at baseline and after both bouts of exercise; ES Oxi overestimated baseline and stage 1 exercise cardiac output by 0.3 L/minute and 0.1 L/minute, respectively, but exactly estimated stage 2 exercise cardiac output. CONCLUSION ES-BC and ES Oxi accurately assessed body composition and cardiac output compared to standardized instruments, whereas EIS-GS showed marginal predictive ability for autonomic nervous system activity. The ESC software managing the three devices would be useful to help detect complications related to metabolic syndrome, diabetes, and cardiovascular disease and to noninvasively and rapidly manage treatment follow-up.
Collapse
Affiliation(s)
- John E Lewis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
El-Armouche A, Wittköpper K, Fuller W, Howie J, Shattock MJ, Pavlovic D. Phospholemman-dependent regulation of the cardiac Na/K-ATPase activity is modulated by inhibitor-1 sensitive type-1 phosphatase. FASEB J 2011; 25:4467-75. [PMID: 21849407 DOI: 10.1096/fj.11-184903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac Na/K-ATPase (NKA) is regulated by its accessory protein phospholemman (PLM). Whereas kinase-induced PLM phosphorylation has been shown to mediate NKA stimulation, the role of endogenous phosphatases is presently unknown. We investigated the role of protein phosphatase-1 (PP-1) on PLM phosphorylation and NKA activity in rat cardiomyocytes and failing human hearts. Incubation of rat cardiomyocytes with the chemical PP-1/PP-2A inhibitor okadaic acid or the specific PP-1-inhibitor peptide (I-1ct) identified PLM phosphorylation at Ser-68 as the main substrate for PP-1. Moreover, myocytes adenovirally overexpressing PP-1 inhibitor-1 protein (I-1,Ad-I-1/eGFP) showed a 70% increase in PLM Ser-68 phosphorylation and 65% increase in NKA current, compared with enhanced green fluorescence protein (eGFP)-infected controls (Ad-eGFP), using Western blotting and voltage clamping, respectively. Notably, in left ventricular myocardium from patients with heart failure, PLM Ser-68 phosphorylation was ≈ 50% lower (n=7) than in nonfailing controls (n=7). We provide the first physiological and biochemical evidence that PLM phosphorylation and cardiac Na/K-ATPase activity are negatively regulated by PP-1 and that this regulatory mechanism could be counteracted by I-1. This novel mechanism is markedly perturbed in failing hearts favoring PLM dephosphorylation and NKA deactivation and thus may contribute to maladaptive hypertrophy and arrhythmogenesis via chronically higher intracellular Na and Ca concentrations.
Collapse
Affiliation(s)
- Ali El-Armouche
- Department of Pharmacology, Heart Center, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Lee HC, Huang KTL, Wang XL, Shen WK. Autoantibodies and cardiac arrhythmias. Heart Rhythm 2011; 8:1788-95. [PMID: 21740882 DOI: 10.1016/j.hrthm.2011.06.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022]
Abstract
Autoimmune diseases are associated with significant morbidity and mortality, afflicting about 5% of the US population. They encompass a wide range of disorders that affect all organs of the human body and have a predilection for women. In the past, autoimmune pathogenesis was not thought to be a major mechanism for cardiovascular disorders, and potential relationships remain understudied. However, accumulating evidence suggests that a number of vascular and cardiac conditions are autoimmune mediated. Recent studies indicate that autoantibodies play an important role in the development of cardiac arrhythmias, including atrial fibrillation, modulation of autonomic influences on heart rate and rhythm, conduction system abnormalities, and ventricular arrhythmias. This article will review the current evidence for the role of autoantibodies in the development of cardiac arrhythmias.
Collapse
Affiliation(s)
- Hon-Chi Lee
- Department of Internal Medicine, Division of Cardiovascular Diseases, Mayo Clinic Rochester, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
40
|
Winslow RL, Greenstein JL. Cardiac myocytes and local signaling in nano-domains. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:48-59. [PMID: 21718716 DOI: 10.1016/j.pbiomolbio.2011.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
It is well known that calcium-induced calcium-release in cardiac myocytes takes place in spatially restricted regions known as dyads, where discrete patches of junctional sarcoplasmic reticulum tightly associate with the t-tubule membrane. The dimensions of a dyad are so small that it contains only a few Ca²⁺ ions at any given time. Ca²⁺ signaling in the dyad is therefore noisy, and dominated by the Brownian motion of Ca²⁺ ions in a potential field. Remarkably, from this complexity emerges the integrated behavior of the myocyte in which, under normal conditions, precise control of Ca²⁺ release and muscle contraction is maintained over the life of the cell. This is but one example of how signal processing within the cardiac myocyte and other cells often occurs in small "nano-domains" where proteins and protein complexes interact at spatial dimensions on the order of ∼1-10 nm and at time-scales on the order of nanoseconds to perform the functions of the cell. In this article, we will review several examples of local signaling in nano-domains, how it contributes to the integrative behavior of the cardiac myocyte, and present computational methods for modeling signal processing within these domains across differing spatio-temporal scales.
Collapse
Affiliation(s)
- Raimond L Winslow
- The Institute for Computational Medicine & Department of Biomedical Engineering, The Johns Hopkins University, School of Medicine & Whiting School of Engineering, Baltimore, MD 21218, USA.
| | | |
Collapse
|
41
|
Cirri E, Katz A, Mishra NK, Belogus T, Lifshitz Y, Garty H, Karlish SJD, Apell HJ. Phospholemman (FXYD1) raises the affinity of the human α1β1 isoform of Na,K-ATPase for Na ions. Biochemistry 2011; 50:3736-48. [PMID: 21449573 DOI: 10.1021/bi2001714] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human α(1)/His(10)-β(1) isoform of the Na,K-ATPase has been expressed in Pichia pastoris, solubilized in n-dodecyl-β-maltoside, and purified by metal chelate chromatography. The α(1)β(1) complex spontaneously associates in vitro with the detergent-solubilized purified human FXYD1 (phospholemman) expressed in Escherichia coli. It has been confirmed that FXYD1 spontaneously associates in vitro with the α(1)/His(10)-β(1) complex and stabilizes it in an active mode. The functional properties of the α(1)/His(10)-β(1) and α(1)/His(10)-β(1)/FXYD1 complexes have been investigated by fluorescence methods. The electrochromic dye RH421 which monitors binding to and release of ions from the binding sites has been applied in equilibrium titration experiments to determine ion binding affinities and revealed that FXYD1 induces an ∼30% increase of the Na(+)-binding affinity in both the E(1) and P-E(2) conformations. By contrast, it does not affect the affinities for K(+) and Rb(+) ions. Phosphorylation induced partial reactions of the enzyme have been studied as backdoor phosphorylation by inorganic phosphate and in kinetic experiments with caged ATP in order to evaluate the ATP-binding affinity and the time constant of the conformational transition, Na(3)E(1)-P → P-E(2)Na(3). No significant differences with or without FXYD1 could be detected. Rate constants of the conformational transitions Rb(2)E(1) → E(2)(Rb(2)) and E(2)(Rb(2)) → Na(3)E(1), investigated with fluorescein-labeled Na,K-ATPase, showed only minor or no effects of FXYD1, respectively. The conclusion from all these experiments is that FXYD1 raises the binding affinity of α(1)β(1) for Na ions, presumably at the third Na-selective binding site. In whole cell expression studies FXYD1 reduces the apparent affinity for Na ions. Possible reasons for the difference from this study using the purified recombinant Na,K-ATPase are discussed.
Collapse
Affiliation(s)
- Erica Cirri
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Song Q, Pallikkuth S, Bossuyt J, Bers DM, Robia SL. Phosphomimetic mutations enhance oligomerization of phospholemman and modulate its interaction with the Na/K-ATPase. J Biol Chem 2011; 286:9120-6. [PMID: 21220422 DOI: 10.1074/jbc.m110.198036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na/K-ATPase (NKA) activity is dynamically regulated by an inhibitory interaction with a small transmembrane protein, phospholemman (PLM). Inhibition is relieved upon PLM phosphorylation. Phosphorylation may alter how PLM interacts with NKA and/or itself, but details of these interactions are unknown. To address this, we quantified FRET between PLM and its regulatory target NKA in live cells. Phosphorylation of PLM was mimicked by mutation S63E (PKC site), S68E (PKA/PKC site), or S63E/S68E. The dependence of FRET on protein expression in live cells yielded information about the structure and binding affinity of the PLM-NKA regulatory complex. PLM phosphomimetic mutations altered the quaternary structure of the regulatory complex and reduced the apparent affinity of the PLM-NKA interaction. The latter effect was likely due to increased oligomerization of PLM phosphomimetic mutants, as suggested by PLM-PLM FRET measurements. Distance constraints obtained by FRET suggest that phosphomimetic mutations slightly alter the oligomer quaternary conformation. Photon-counting histogram measurements revealed that the major PLM oligomeric species is a tetramer. We conclude that phosphorylation of PLM increases its oligomerization into tetramers, decreases its binding to NKA, and alters the structures of both the tetramer and NKA regulatory complex.
Collapse
Affiliation(s)
- Qiujing Song
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
43
|
Bundgaard H, Liu CC, Garcia A, Hamilton EJ, Huang Y, Chia KKM, Hunyor SN, Figtree GA, Rasmussen HH. β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Circulation 2010; 122:2699-708. [PMID: 21135361 DOI: 10.1161/circulationaha.110.964619] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND inhibition of L-type Ca(2+) current contributes to negative inotropy of β(3) adrenergic receptor (β(3) AR) activation, but effects on other determinants of excitation-contraction coupling are not known. Of these, the Na(+)-K(+) pump is of particular interest because of adverse effects attributed to high cardiac myocyte Na(+) levels and upregulation of the β(3) AR in heart failure. METHODS AND RESULTS we voltage clamped rabbit ventricular myocytes and identified electrogenic Na(+)-K(+) pump current (I(p)) as the shift in holding current induced by ouabain. The synthetic β(3) AR agonists BRL37344 and CL316,243 and the natural agonist norepinephrine increased I(p). Pump stimulation was insensitive to the β(1)/β(2) AR antagonist nadolol and the protein kinase A inhibitor H-89 but sensitive to the β(3) AR antagonist L-748,337. Blockade of nitric oxide synthase abolished pump stimulation and an increase in fluorescence of myocytes loaded with a nitric oxide-sensitive dye. Exposure of myocytes to β(3) AR agonists decreased β(1) Na(+)-K(+) pump subunit glutathionylation, an oxidative modification that causes pump inhibition. The in vivo relevance of this was indicated by an increase in myocardial β(1) pump subunit glutathionylation with elimination of β(3) AR-mediated signaling in β(3) AR(-/-) mice. The in vivo effect of BRL37344 on contractility of the nonfailing and failing heart in sheep was consistent with a beneficial effect of Na(+)-K(+) pump stimulation in heart failure. CONCLUSIONS the β(3) AR mediates decreased β(1) subunit glutathionylation and Na(+)-K(+) pump stimulation in the heart. Upregulation of the receptor in heart failure may be a beneficial mechanism that facilitates the export of excess Na(+).
Collapse
Affiliation(s)
- Henning Bundgaard
- North Shore Heart Research Group, Kolling Institute of Medical Research, University of Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|