1
|
Qiu S, Sun J, Su S, Wu W, Zhang J, Qi J, Xu Y. Traditional Chinese Medicine YangxinDingji alleviates arrhythmias through inhibition of sodium and L-type calcium channels. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119803. [PMID: 40239882 DOI: 10.1016/j.jep.2025.119803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal formula YangxinDingji (YXDJ), derived from the classic ancient formula Zhigancao decoction that originated from Zhang Zhongjing's "shang han lun", is a modern preparation of a classic prescription, and is used for arrhythmia treatment in China. However, its antiarrhythmic mechanisms are not fully elucidated. AIM OF THE STUDY This study aimed to investigate the pharmacological and molecular mechanisms of YXDJ. MATERIALS AND METHODS Antiarrhythmic effects were evaluated in isolated guinea pig hearts subjected to ischemia/reperfusion (I/R) or isoproterenol (ISO) challenge, and in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) utilizing a multi-electrode array (MEA). Patch clamp recordings assessed the effects of YXDJ on sodium (INa, INa-L) and L-type calcium (ICa-L) currents, while potassium currents (IKr, IKs) were studied in heterologous cells. Optical mapping observed electrical activities and calcium transients. RESULTS YXDJ pretreatment at concentrations of 0.25, 0.5, and 1.0 mg/ml effectively prevented ventricular arrhythmias induced by I/R or ISO challenge, and mitigated electrical stimulation-induced arrhythmias in hiPSC-CMs. YXDJ inhibited INa, INa-L, and ICa-L currents in a concentration-dependent manner without affecting IKr and IKs, inhibited abnormal electrical activities and excitation reentry, decreased action potential duration dispersion and heterogeneity of excitation conduction, and restored intracellular calcium homeostasis. CONCLUSIONS Our results demonstrate that YXDJ exerts its antiarrhythmic effect through the inhibition of inward depolarizing currents, which prevents alterations in left ventricular repolarization dispersion. This leads to synchronized repolarization and a reduction in excitation reentry. Collectively, these findings suggest that YXDJ is a promising candidate for the treatment of arrhythmias.
Collapse
MESH Headings
- Animals
- Guinea Pigs
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Humans
- Anti-Arrhythmia Agents/pharmacology
- Anti-Arrhythmia Agents/therapeutic use
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/drug effects
- Male
- Induced Pluripotent Stem Cells/drug effects
- Calcium Channel Blockers/pharmacology
- Calcium Channel Blockers/therapeutic use
- Medicine, Chinese Traditional
- Sodium Channels/metabolism
- Action Potentials/drug effects
Collapse
Affiliation(s)
- Suhua Qiu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Shi Su
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Wenting Wu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Jiali Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, 050017, China.
| |
Collapse
|
2
|
Lei M, Wu L, Terrar DA, Huang CLH. The modernized classification of cardiac antiarrhythmic drugs: Its application to clinical practice. Heart Rhythm 2025:S1547-5271(25)02300-8. [PMID: 40187508 DOI: 10.1016/j.hrthm.2025.03.1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Cardiac arrhythmias pose a major public health problem, and pharmacologic intervention remains key to their therapy. The 1970 landmark Vaughan Williams (VW) classification utilizing known actions of then available antiarrhythmic drugs (AADs) became and remains central to management, but it requires revision in response to extensive subsequent advances. Our modernized AAD classification reflected and sought to facilitate such fundamental physiological and clinical development. Here we respond to requests for an adaptation of our scheme specifically focused on clinical practice. (1) This adaptation improves the accessibility of our original scheme to clinical practice, focusing on key AADs in clinical use rather than investigational new drugs (INDs) while conserving and encompassing the classic VW scheme. (2) We preserve a rational conceptual framework based on current understanding of the relevant electrophysiological events, their underlying cellular or molecular cardiomyocyte targets, and the functional mechanisms they mediate. (3) The adopted subclasses within each AAD class parallel clinical practice by including only subclasses containing established AADs, or approved potential off-label drugs, as opposed to those only including INDs. (4) The simplified scheme remains flexible, permitting drugs to be placed in multiple classes where required, and the addition of classes and subclasses in light of future investigations and clinical approvals. Thus, we derive from our comprehensive modernized AAD classification a more focused and simpler scheme for clinical use. This both modernizes yet preserves the classic VW classification and remains flexible, thus accommodating future developments.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| | - Lin Wu
- Department of Cardiology, Beijing University First Hospital, Beijing, China
| | - Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Piamsiri C, Fefelova N, Pamarthi SH, Gwathmey JK, Chattipakorn SC, Chattipakorn N, Xie LH. Potential Roles of IP 3 Receptors and Calcium in Programmed Cell Death and Implications in Cardiovascular Diseases. Biomolecules 2024; 14:1334. [PMID: 39456267 PMCID: PMC11506173 DOI: 10.3390/biom14101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a crucial role in maintaining intracellular/cytosolic calcium ion (Ca2+i) homeostasis. The release of Ca2+ from IP3Rs serves as a second messenger and a modulatory factor influencing various intracellular and interorganelle communications during both physiological and pathological processes. Accumulating evidence from in vitro, in vivo, and clinical studies supports the notion that the overactivation of IP3Rs is linked to the pathogenesis of various cardiac conditions. The overactivation of IP3Rs results in the dysregulation of Ca2+ concentration ([Ca2+]) within cytosolic, mitochondrial, and nucleoplasmic cellular compartments. In cardiovascular pathologies, two isoforms of IP3Rs, i.e., IP3R1 and IP3R2, have been identified. Notably, IP3R1 plays a pivotal role in cardiac ischemia and diabetes-induced arrhythmias, while IP3R2 is implicated in sepsis-induced cardiomyopathy and cardiac hypertrophy. Furthermore, IP3Rs have been reported to be involved in various programmed cell death (PCD) pathways, such as apoptosis, pyroptosis, and ferroptosis underscoring their multifaceted roles in cardiac pathophysiology. Based on these findings, it is evident that exploring potential therapeutic avenues becomes crucial. Both genetic ablation and pharmacological intervention using IP3R antagonists have emerged as promising strategies against IP3R-related pathologies suggesting their potential therapeutic potency. This review summarizes the roles of IP3Rs in cardiac physiology and pathology and establishes a foundational understanding with a particular focus on their involvement in the various PCD pathways within the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Chanon Piamsiri
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Sri Harika Pamarthi
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Judith K. Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA; (C.P.); (N.F.)
| |
Collapse
|
4
|
Terrar DA. Timing mechanisms to control heart rhythm and initiate arrhythmias: roles for intracellular organelles, signalling pathways and subsarcolemmal Ca 2. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220170. [PMID: 37122228 PMCID: PMC10150226 DOI: 10.1098/rstb.2022.0170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Rhythms of electrical activity in all regions of the heart can be influenced by a variety of intracellular membrane bound organelles. This is true both for normal pacemaker activity and for abnormal rhythms including those caused by early and delayed afterdepolarizations under pathological conditions. The influence of the sarcoplasmic reticulum (SR) on cardiac electrical activity is widely recognized, but other intracellular organelles including lysosomes and mitochondria also contribute. Intracellular organelles can provide a timing mechanism (such as an SR clock driven by cyclic uptake and release of Ca2+, with an important influence of intraluminal Ca2+), and/or can act as a Ca2+ store involved in signalling mechanisms. Ca2+ plays many diverse roles including carrying electric current, driving electrogenic sodium-calcium exchange (NCX) particularly when Ca2+ is extruded across the surface membrane causing depolarization, and activation of enzymes which target organelles and surface membrane proteins. Heart function is also influenced by Ca2+ mobilizing agents (cADP-ribose, nicotinic acid adenine dinucleotide phosphate and inositol trisphosphate) acting on intracellular organelles. Lysosomal Ca2+ release exerts its effects via calcium/calmodulin-dependent protein kinase II to promote SR Ca2+ uptake, and contributes to arrhythmias resulting from excessive beta-adrenoceptor stimulation. A separate arrhythmogenic mechanism involves lysosomes, mitochondria and SR. Interacting intracellular organelles, therefore, have profound effects on heart rhythms and NCX plays a central role. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Derek A Terrar
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
5
|
Ji M, Su L, Liu L, Zhuang M, Xiao J, Guan Y, Zhu S, Ma L, Pu H. CaMKII regulates the proteins TPM1 and MYOM2 and promotes diacetylmorphine-induced abnormal cardiac rhythms. Sci Rep 2023; 13:5827. [PMID: 37037889 PMCID: PMC10085977 DOI: 10.1038/s41598-023-32941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Although opioids are necessary for the treatment of acute pain, cancer pain, and palliative care, opioid abuse is a serious threat to society. Heroin (Diacetylmorphine) is the most commonly abused opioid, and it can have a variety of effects on the body's tissues and organs, including the well-known gastrointestinal depression and respiratory depression; however, there is little known about the effects of diacetylmorphine on cardiac damage. Here, we demonstrate that diacetylmorphine induces abnormal electrocardiographic changes in rats and causes damage to cardiomyocytes in vitro by an underlying mechanism of increased autophosphorylation of CaMKII and concomitant regulation of myocardial contractile protein TPM1 and MYOM2 protein expression. The CaMKII inhibitor KN-93 was first tested to rescue the toxic effects of heroin on cardiomyocytes in vitro and the abnormal ECG changes caused by heroin in SD rats, followed by the TMT relative quantitative protein technique to analyze the proteome changes. Diacetylmorphine causes increased phosphorylation at the CaMKII Thr287 site in myocardium, resulting in increased autophosphorylation of CaMKII and subsequent alterations in myocardial contractile proteins, leading to myocardial rhythm abnormalities. These findings provide a theoretical basis for the treatment and prevention of patients with arrhythmias caused by diacetylmorphine inhalation and injection.
Collapse
Affiliation(s)
- Min Ji
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Liping Su
- Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830054, China
| | - Li Liu
- Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830054, China
| | - Mengjie Zhuang
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Jinling Xiao
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Yaling Guan
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Sensen Zhu
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Lijuan Ma
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830017, China
| | - Hongwei Pu
- Department of Academic Construction, First Affiliated Hospital, Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
6
|
He XF, Kang YR, Fei XY, Chen LH, Li X, Ma YQ, Hu QQ, Qu SY, Wang HZ, Shao XM, Liu BY, Yi-Liang, Du JY, Fang JQ, Jiang YL. Inhibition of phosphorylated calcium/calmodulin-dependent protein kinase IIα relieves streptozotocin-induced diabetic neuropathic pain through regulation of P2X3 receptor in dorsal root ganglia. Purinergic Signal 2023; 19:99-111. [PMID: 34973115 PMCID: PMC9984656 DOI: 10.1007/s11302-021-09829-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic neuropathic pain (DNP) is frequent among patients with diabetes. We previously showed that P2X3 upregulation in dorsal root ganglia (DRG) plays a role in streptozotocin (STZ)-induced DNP but the underlying mechanism is unclear. Here, a rat model of DNP was established by a single injection of STZ (65 mg/kg). Fasting blood glucose was significantly elevated from the 1st to 3rd week. Paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs) in diabetic rats significantly reduced from the 2nd to 3rd week. Western blot analysis revealed that elevated p-CaMKIIα levels in the DRG of DNP rats were accompanied by pain-associated behaviors while CaMKIIα levels were unchanged. Immunofluorescence revealed significant increase in the proportion of p-CaMKIIα immune positive DRG neurons (stained with NeuN) in the 2nd and 3rd week and p-CaMKIIα was co-expressed with P2X3 in DNP rats. KN93, a CaMKII antagonist, significantly reduce mechanical hyperalgesia and thermal hyperalgesia and these effects varied dose-dependently, and suppressed p-CaMKIIα and P2X3 upregulation in the DRGs of DNP rats. These results revealed that the p-CaMKIIα upregulation in DRG is involved in DNP, which possibly mediated P2X3 upregulation, indicating CaMKIIα may be an effective pharmacological target for DNP management.
Collapse
Affiliation(s)
- Xiao-Fen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yu-Rong Kang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xue-Yu Fei
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.,Department of Acupucture, the Rehabilitation Hospital Affiliated To Tongxiang Health School, Jiaxing, Zhejiang, 314500, People's Republic of China
| | - Lu-Hang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiang Li
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yi-Qi Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Qun-Qi Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Si-Ying Qu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Han-Zhi Wang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Xiao-Mei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Bo-Yi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Yi-Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Jun-Ying Du
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Jian-Qiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China. .,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| | - Yong-Liang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China. .,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
7
|
MacLeod KT. Changes in cellular Ca 2+ and Na + regulation during the progression towards heart failure. J Physiol 2023; 601:905-921. [PMID: 35946572 PMCID: PMC10952717 DOI: 10.1113/jp283082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
In adapting to disease and loss of tissue, the heart shows great phenotypic plasticity that involves changes to its structure, composition and electrophysiology. Together with parallel whole body cardiovascular adaptations, the initial decline in cardiac function resulting from the insult is compensated. However, in the long term, the heart muscle begins to fail and patients with this condition have a very poor prognosis, with many dying from disturbances of rhythm. The surviving myocytes of these hearts gain Na+ , which is positively inotropic because of alterations to Ca2+ fluxes mediated by the Na+ /Ca2+ exchange, but compromises Ca2+ -dependent energy metabolism in mitochondria. Uptake of Ca2+ into the sarcoplasmic reticulum (SR) is reduced because of diminished function of SR Ca2+ ATPases. The result of increased Ca2+ influx and reduced SR Ca2+ uptake is an increase in the diastolic cytosolic Ca2+ concentration, which promotes spontaneous SR Ca2+ release and induces delayed afterdepolarisations. Action potential duration prolongs because of increased late Na+ current and changes in expression and function of other ion channels and transporters increasing the probability of the formation of early afterdepolarisations. There is a reduction in T-tubule density and so the normal spatial arrangements required for efficient excitation-contraction coupling are compromised and lead to temporal delays in Ca2+ release from the SR. Therefore, the structural and electrophysiological responses that occur to provide compensation do so at the expense of (1) increasing the likelihood of arrhythmogenesis; (2) activating hypertrophic, apoptotic and Ca2+ signalling pathways; and (3) decreasing the efficiency of SR Ca2+ release.
Collapse
Affiliation(s)
- Kenneth T. MacLeod
- National Heart & Lung InstituteImperial Centre for Translational and Experimental MedicineImperial CollegeHammersmith HospitalLondonUK
| |
Collapse
|
8
|
FGF5 protects heart from sepsis injury by attenuating cardiomyocyte pyroptosis through inhibiting CaMKII/NFκB signaling. Biochem Biophys Res Commun 2022; 636:104-112. [DOI: 10.1016/j.bbrc.2022.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022]
|
9
|
Effects of Sacubitril/Valsartan on the Expression of CaMKII/Cav1.2 in Atrial Fibrillation Stimulation Rabbit Model. BIOMED RESEARCH INTERNATIONAL 2022. [DOI: 10.1155/2022/5832543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background and Objective. Atrial fibrillation (AF) is linked to high morbidity and death rates throughout the world due to limited therapeutic options and thus presents a major challenge to the developed and developing countries. In this study, we aim to investigate the influence of sacubitril/valsartan (sac/val) treatment on the calmodulin-dependent protein kinase II (CaMKII)/Cav1.2 expression in AF models. Methods. Overall, 18 rabbits were randomly divided into control, pacing (600 beats/min), and pacing+sac/val groups. The rabbits in the pacing+sac/val cohort received oral sac/val (10 mg/kg twice daily) across the 21-day investigation period. After three weeks, the atrial effective refractory period (AERP) and AF induction rate were compared. HL-1 cultures were exposed to fast pacing (24 h) with and without LBQ657 (active sacubitril form)/valsartan. Western blots were used for detecting Cav1.2 and CaMKII expression within atrial muscles of the rabbits and HL-1 cultures of AF model. Results. In comparison to the sham cohort, the AF induction rate was markedly increased together with AERP reduction within pacing cohort. Such changes were markedly rescued through sac/val treatment in pacing+sac/val cohort. The proteomic expression profiles of CaMKII and Cav1.2 showed that the CaMKII expression was markedly upregulated, while Cav1.2 expression was downregulated in the pacing cohort. Importantly, these effects were absent in pacing+sac/val cohort. Conclusion. Results of this study show that sac/val treatment regulates the expression of CaMKII/Cav1.2 and could alter this pathway in atrial rapid electrical stimulation models. Therefore, this investigation could contribute to a novel strategy in AF therapeutics in clinical settings.
Collapse
|
10
|
Skogestad J, Aronsen JM. Regulation of Cardiac Contractility by the Alpha 2 Subunit of the Na+/K+-ATPase. Front Physiol 2022; 13:827334. [PMID: 35812308 PMCID: PMC9258780 DOI: 10.3389/fphys.2022.827334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Cytosolic Na + concentrations regulate cardiac excitation-contraction coupling and contractility. Inhibition of the Na+/K+-ATPase (NKA) activity increases cardiac contractility by increasing cytosolic Ca2+ levels, as increased cytosolic Na+ levels are coupled to less Ca2+ extrusion and/or increased Ca2+ influx from the Na+/Ca2+-exchanger. NKA consists of one α subunit and one β subunit, with α1 and α2 being the main α isoforms in cardiomyocytes. Substantial evidence suggests that NKAα2 is the primary regulator of cardiac contractility despite being outnumbered by NKAα1 in cardiomyocytes. This review will mainly focus on differential regulation and subcellular localization of the NKAα1 and NKAα2 isoforms, and their relation to the proposed concept of subcellular gradients of Na+ in cardiomyocytes. We will also discuss the potential roles of NKAα2 in mediating cardiac hypertrophy and ventricular arrhythmias.
Collapse
Affiliation(s)
- Jonas Skogestad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Jan Magnus Aronsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
- *Correspondence: Jan Magnus Aronsen,
| |
Collapse
|
11
|
Abstract
ABSTRACT Cardiovascular disease (CVD) remains the leading cause of death worldwide. Therefore, exploring the mechanism of CVDs and critical regulatory factors is of great significance for promoting heart repair, reversing cardiac remodeling, and reducing adverse cardiovascular events. Recently, significant progress has been made in understanding the function of protein kinases and their interactions with other regulatory proteins in myocardial biology. Protein kinases are positioned as critical regulators at the intersection of multiple signals and coordinate nearly every aspect of myocardial responses, regulating contractility, metabolism, transcription, and cellular death. Equally, reconstructing the disrupted protein kinases regulatory network will help reverse pathological progress and stimulate cardiac repair. This review summarizes recent researches concerning the function of protein kinases in CVDs, discusses their promising clinical applications, and explores potential targets for future treatments.
Collapse
|
12
|
Prakash O, Held M, McCormick LF, Gupta N, Lian LY, Antonyuk S, Haynes LP, Thomas NL, Helassa N. CPVT-associated calmodulin variants N53I and A102V dysregulate Ca2+ signalling via different mechanisms. J Cell Sci 2022; 135:274029. [PMID: 34888671 PMCID: PMC8917356 DOI: 10.1242/jcs.258796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear. Focusing on the interaction with the cardiac ryanodine receptor (RyR2), we determined the effect of CPVT-associated variants N53I and A102V on the structural characteristics of CaM and on Ca2+ fluxes in live cells. We provide novel data showing that interaction of both Ca2+/CaM-N53I and Ca2+/CaM-A102V with the RyR2 binding domain is decreased. Ca2+/CaM-RyR23583-3603 high-resolution crystal structures highlight subtle conformational changes for the N53I variant, with A102V being similar to wild type (WT). We show that co-expression of CaM-N53I or CaM-A102V with RyR2 in HEK293 cells significantly increased the duration of Ca2+ events; CaM-A102V exhibited a lower frequency of Ca2+ oscillations. In addition, we show that CaMKIIδ (also known as CAMK2D) phosphorylation activity is increased for A102V, compared to CaM-WT. This paper provides novel insight into the molecular mechanisms of CPVT-associated CaM variants and will facilitate the development of strategies for future therapies.
Collapse
Affiliation(s)
- Ohm Prakash
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Marie Held
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Liam F. McCormick
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Nitika Gupta
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Lu-Yun Lian
- Nuclear Magnetic Resonance Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Svetlana Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - N. Lowri Thomas
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Redwood Building, CF10 3NB, UK
| | - Nordine Helassa
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK,Author for correspondence ()
| |
Collapse
|
13
|
King DR, Entz M, Blair GA, Crandell I, Hanlon AL, Lin J, Hoeker GS, Poelzing S. The conduction velocity-potassium relationship in the heart is modulated by sodium and calcium. Pflugers Arch 2021; 473:557-571. [PMID: 33660028 PMCID: PMC7940307 DOI: 10.1007/s00424-021-02537-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/27/2023]
Abstract
The relationship between cardiac conduction velocity (CV) and extracellular potassium (K+) is biphasic, with modest hyperkalemia increasing CV and severe hyperkalemia slowing CV. Recent studies from our group suggest that elevating extracellular sodium (Na+) and calcium (Ca2+) can enhance CV by an extracellular pathway parallel to gap junctional coupling (GJC) called ephaptic coupling that can occur in the gap junction adjacent perinexus. However, it remains unknown whether these same interventions modulate CV as a function of K+. We hypothesize that Na+, Ca2+, and GJC can attenuate conduction slowing consequent to severe hyperkalemia. Elevating Ca2+ from 1.25 to 2.00 mM significantly narrowed perinexal width measured by transmission electron microscopy. Optically mapped, Langendorff-perfused guinea pig hearts perfused with increasing K+ revealed the expected biphasic CV-K+ relationship during perfusion with different Na+ and Ca2+ concentrations. Neither elevating Na+ nor Ca2+ alone consistently modulated the positive slope of CV-K+ or conduction slowing at 10-mM K+; however, combined Na+ and Ca2+ elevation significantly mitigated conduction slowing at 10-mM K+. Pharmacologic GJC inhibition with 30-μM carbenoxolone slowed CV without changing the shape of CV-K+ curves. A computational model of CV predicted that elevating Na+ and narrowing clefts between myocytes, as occur with perinexal narrowing, reduces the positive and negative slopes of the CV-K+ relationship but do not support a primary role of GJC or sodium channel conductance. These data demonstrate that combinatorial effects of Na+ and Ca2+ differentially modulate conduction during hyperkalemia, and enhancing determinants of ephaptic coupling may attenuate conduction changes in a variety of physiologic conditions.
Collapse
Affiliation(s)
- D Ryan King
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Michael Entz
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Grace A Blair
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Alexandra L Hanlon
- Center for Biostatistics and Health Data Science, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Joyce Lin
- Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Gregory S Hoeker
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Steven Poelzing
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- School of Medicine, Virginia Tech Carilion, Roanoke, VA, USA.
| |
Collapse
|
14
|
Stress-driven cardiac calcium mishandling via a kinase-to-kinase crosstalk. Pflugers Arch 2021; 473:363-375. [PMID: 33590296 PMCID: PMC7940337 DOI: 10.1007/s00424-021-02533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
Calcium homeostasis in the cardiomyocyte is critical to the regulation of normal cardiac function. Abnormal calcium dynamics such as altered uptake by the sarcoplasmic reticulum (SR) Ca2+-ATPase and increased diastolic SR calcium leak are involved in the development of maladaptive cardiac remodeling under pathological conditions. Ca2+/calmodulin-dependent protein kinase II-δ (CaMKIIδ) is a well-recognized key molecule in calcium dysregulation in cardiomyocytes. Elevated cellular stress is known as a common feature during pathological remodeling, and c-jun N-terminal kinase (JNK) is an important stress kinase that is activated in response to intrinsic and extrinsic stress stimuli. Our lab recently identified specific actions of JNK isoform 2 (JNK2) in CaMKIIδ expression, activation, and CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. This review focuses on the current understanding of cardiac SR calcium handling under physiological and pathological conditions as well as the newly identified contribution of the stress kinase JNK2 in CaMKIIδ-dependent SR Ca2+ abnormal mishandling. The new findings identifying dual roles of JNK2 in CaMKIIδ expression and activation are also discussed in this review.
Collapse
|
15
|
Nieto-Marín P, Tinaquero D, Utrilla RG, Cebrián J, González-Guerra A, Crespo-García T, Cámara-Checa A, Rubio-Alarcón M, Dago M, Alfayate S, Filgueiras D, Peinado R, López-Sendón JL, Jalife J, Tamargo J, Bernal JA, Caballero R, Delpón E. Tbx5 variants disrupt Nav1.5 function differently in patients diagnosed with Brugada or Long QT Syndrome. Cardiovasc Res 2021; 118:1046-1060. [PMID: 33576403 DOI: 10.1093/cvr/cvab045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS The transcription factor Tbx5 controls cardiogenesis and drives Scn5a expression in mice. We have identified two variants in TBX5 encoding p.D111Y and p.F206L Tbx5, respectively, in two unrelated patients with structurally normal hearts diagnosed with Long QT (LQTS) and Brugada (BrS) Syndrome. Here we characterized the consequences of each variant to unravel the underlying disease mechanisms. METHODS AND RESULTS We combined clinical analysis with in vivo and in vitro electrophysiological and molecular techniques in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), HL-1 cells, and cardiomyocytes from mice trans-expressing human wildtype (WT) or mutant proteins. Tbx5 increased transcription of SCN5A encoding cardiac Nav1.5 channels, while repressing CAMK2D and SPTBN4 genes encoding Ca-calmodulin kinase IIδ (CaMKIIδ) and βIV-spectrin, respectively. These effects significantly increased Na current (INa) in hiPSC-CMs and in cardiomyocytes from mice trans-expressing Tbx5. Consequently, action potential (AP) amplitudes increased and QRS interval narrowed in the mouse electrocardiogram. p.F206L Tbx5 bound to the SCN5A promoter failed to transactivate it, thus precluding the pro-transcriptional effect of WT Tbx5. Therefore, p.F206L markedly decreased INa in hiPSC-CM, HL-1 cells, and mouse cardiomyocytes. The INa decrease in p.F206L trans-expressing mice translated into QRS widening and increased flecainide sensitivity. p.D111Y Tbx5 increased SCN5A expression but failed to repress CAMK2D and SPTBN4. The increased CaMKIIδ and βIV-spectrin significantly augmented the late component of INa (INaL) which, in turn, significantly prolonged AP duration in both hiPSC-CMs and mouse cardiomyocytes. Ranolazine, a selective INaL inhibitor, eliminated the QT and QTc intervals prolongation seen in p.D111Y trans-expressing mice. CONCLUSIONS In addition to peak INa, Tbx5 critically regulates INaL and the duration of repolarization in human cardiomyocytes. Our original results suggest that TBX5 variants associate with and modulate the intensity of the electrical phenotype in LQTS and BrS patients.
Collapse
Affiliation(s)
- Paloma Nieto-Marín
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - David Tinaquero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Raquel G Utrilla
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | | | - Teresa Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - María Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Silvia Alfayate
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - David Filgueiras
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain
| | - Rafael Peinado
- Department of Cardiology. Hospital Universitario La Paz. Instituto de Investigación Sanitaria la Paz. 28046-Madrid Spain
| | - José Luis López-Sendón
- Department of Cardiology. Hospital Universitario La Paz. Instituto de Investigación Sanitaria la Paz. 28046-Madrid Spain
| | - José Jalife
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain.,Departments of Internal Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Juan Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Juan Antonio Bernal
- Fundación Centro Nacional de Investigaciones Cardiovasculares. 28029-Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid. Instituto de Investigación Gregorio Marañón. CIBERCV. 28040-Madrid, Spain
| | | |
Collapse
|
16
|
Liu Q, Sun J, Zhang L, Xu Y, Wu B, Cao J. The Agonist of Inward Rectifier Potassium Channel (I K1) Attenuates Rat Reperfusion Arrhythmias Linked to CaMKII Signaling. Int Heart J 2021; 62:1348-1357. [PMID: 34853227 DOI: 10.1536/ihj.21-379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inward rectifier potassium channels (IK1, Kir) are known to play critical roles in arrhythmogenesis. Thus, how IK1 agonist affects reperfusion arrhythmias needs to be clarified, and its underlying mechanisms should be determined. Reperfusion arrhythmias were modeled by coronary ligation (ischemia, 15 minutes) and release (reperfusion, 15 minutes). Zacopride (1.5-50 μg/kg in vivo, or 0.1-10 μmol/Lex vivo) was applied in the settings of pretreatment (3 minutes before coronary ligation) and posttreatment (5 minutes after coronary ligation). Hypoxia (45 minutes) /reoxygenation (30 minutes) model was established in cultured H9c2 (2-1) cardiomyocytes. Zacopride or KN93 was applied before hypoxia (pretreatment). In the setting of pre- or posttreatment, zacopride at 15 μg/kg in vivo or 1 μmol/Lin vitro exhibited superlative protections on reperfusion arrhythmias or intracellular calcium overload. Western blot data from ex vivo hearts or H9c2 (2-1) cardiomyocytes showed that I/R (H/R) induced the inhibition of Kir2.1 (the dominant subunit of IK1 channel in ventricle), phosphorylation and oxidation of CaMKII, downregulation of SERCA2, phosphorylation of phospholamban (at Thr17), and activation of caspase-3. Zacopride treatment (1 μmol/L) was noted to strikingly restore the expression of Kir2.1 and SERCA2 and decrease the activity of CaMKII, phospholamban, and caspase-3. These effects were largely eliminated by co-application of IK1 blocker BaCl2. CaMKII inhibitor KN93 attenuated calcium overload and p-PLB (Thr17) in an IK1-independent manner. IK1-depedent inhibition of CaMKII activity is found to be a key cardiac salvage signaling under Ca2+ dyshomeostasis and reactive oxygen species (ROS) stress. IK1 might be a novel target for pharmacological conditioning of reperfusion arrhythmia, especially for the application after unpredictable ischemia.
Collapse
Affiliation(s)
- Qinghua Liu
- Department of Pathophysiology, Shanxi Medical University
| | - Jiaxing Sun
- Department of Pathophysiology, Shanxi Medical University
| | - Lijun Zhang
- Department of Pathophysiology, Shanxi Medical University
| | - Yanwu Xu
- Department of Biochemistry, Shanghai University of Traditional Chinese Medicine
| | - Bowei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University
| |
Collapse
|
17
|
Takata T, Araki S, Tsuchiya Y, Watanabe Y. Persulfide Signaling in Stress-Initiated Calmodulin Kinase Response. Antioxid Redox Signal 2020; 33:1308-1319. [PMID: 32460522 DOI: 10.1089/ars.2020.8138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Significance: Calcium ion (Ca2+)/calmodulin (CaM)-dependent protein kinases (CaMKs) are activated by phosphorylation of a crucial threonine residue either by itself (CaMKII) or by upstream kinases, CaMK kinases (CaMKKs) (CaMKI and CaMKIV). CaMKs, present in most mammalian tissues, can phosphorylate many downstream targets, thereby regulating numerous cellular functions. Recent Advances: Aside from canonical post-translational modifications, cysteine-based redox switches in CaMKs affect their enzyme activities. In addition to reactive oxygen species (ROS) and reactive nitrogen species (RNS), reactive sulfur species (RSS) are also recognized as key signaling molecules, regulating protein function through polysulfidation, formation of polysulfides [-S-(S)n-H] on their reactive cysteine residues. To comprehend the biological significance of RSS signaling-related CaMK regulation, here we introduce a novel concept defining CaMKs as RSS targets in stress responses. The stress responses include an irreversible electrophile attack for CaMKI, inflammation for CaMKII, and endoplasmic reticulum stress for CaMKIV. Critical Issues: Development of various human diseases is associated with increased ROS, RNS, and RSS generation. Therefore, depending on specific pathophysiology, RSS could have very particular effects on CaMK functions. Future Directions: How multiple sources and mutual reactions of ROS, RNS, and RSS are coordinated is obscure. Elucidating the mechanisms through applications of enzymology, chemical biology, and mass spectrometry enables to uncover the complexities of redox regulation of CaMK cascades.
Collapse
Affiliation(s)
- Tsuyoshi Takata
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan.,Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoma Araki
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| | - Yukihiro Tsuchiya
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| | - Yasuo Watanabe
- Department of Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
18
|
Shahrbaf MA, Akbarzadeh MA, Tabary M, Khaheshi I. Air Pollution and Cardiac Arrhythmias: A Comprehensive Review. Curr Probl Cardiol 2020; 46:100649. [PMID: 32839041 DOI: 10.1016/j.cpcardiol.2020.100649] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/26/2022]
Abstract
Air pollution is the mixture of some chemical and environmental agents including dust, fumes, gases, particulate matters, and biological materials which can be harmful for the environment and the human body. The increasing trend of the air pollution, especially in developing countries, may exert its detrimental effects on human health. The potentially harmful effects of air pollution on the human health have been recognized and many epidemiological studies have clearly suggested the strong association between air pollution exposure and increased morbidities and mortalities. Air pollutants are classified into gaseous pollutants including carbon mono oxide, nitrogen oxides, ozone and sulfur dioxide, and particulate matters (PMs). All air pollutants have destructive effects on the health systems including cardiovascular system. Many studies have demonstrated the effect of air pollutant on the occurrence of ST elevation myocardial infarction, sudden cardiac death, cardiac arrythmias, and peripheral arterial disease. Recently, some studies suggested that air pollution may be associated with cardiac arrhythmias. In this study, we aimed to comprehensively review the last evidences related to the association of air pollutant and cardiac arrythmias. We found that particulate matters (PM10, PM2.5, and UFP) and gaseous air pollutants can exert undesirable effects on cardiac rhythms. Short-term and long-term exposure to the air pollutants can interact with the cardiac rhythms through oxidative stress, autonomic dysfunction, coagulation dysfunction, and inflammation. It seems that particulate matters, especially PM2.5 have stronger association with cardiac arrhythmias among all air pollutants. However, future studies are needed to confirm these results.
Collapse
|
19
|
Mustroph J, Drzymalski M, Baier M, Pabel S, Biedermann A, Memmel B, Durczok M, Neef S, Sag CM, Floerchinger B, Rupprecht L, Schmid C, Zausig Y, Bégis G, Briand V, Ozoux ML, Tamarelle D, Ballet V, Janiak P, Beauverger P, Maier LS, Wagner S. The oral Ca/calmodulin-dependent kinase II inhibitor RA608 improves contractile function and prevents arrhythmias in heart failure. ESC Heart Fail 2020; 7:2871-2883. [PMID: 32691522 PMCID: PMC7524064 DOI: 10.1002/ehf2.12895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/29/2020] [Accepted: 06/24/2020] [Indexed: 01/15/2023] Open
Abstract
Aims Excessive activation of Ca/calmodulin‐dependent kinase II (CaMKII) is of critical importance in heart failure (HF) and atrial fibrillation. Unfortunately, lack of selectivity, specificity, and bioavailability have slowed down development of inhibitors for clinical use. We investigated a novel CaMKIIδ/CaMKIIɣ‐selective, ATP‐competitive, orally available CaMKII inhibitor (RA608) on right atrial biopsies of 119 patients undergoing heart surgery. Furthermore, we evaluated its oral efficacy to prevent deterioration of HF in mice after transverse aortic constriction (TAC). Methods and results In human atrial cardiomyocytes and trabeculae, respectively, RA608 significantly reduced sarcoplasmic reticulum Ca leak, reduced diastolic tension, and increased sarcoplasmic reticulum Ca content. Patch‐clamp recordings confirmed the safety of RA608 in human cardiomyocytes. C57BL6/J mice were subjected to TAC, and left ventricular function was monitored by echocardiography. Two weeks after TAC, RA608 was administered by oral gavage for 7 days. Oral RA608 treatment prevented deterioration of ejection fraction. At 3 weeks after TAC, ejection fraction was 46.1 ± 3.7% (RA608) vs. 34.9 ± 2.6% (vehicle), n = 9 vs. n = 12, P < 0.05, ANOVA, which correlated with significantly less CaMKII autophosphorylation at threonine 287. Moreover, a single oral dose significantly reduced inducibility of atrial and ventricular arrhythmias in CaMKIIδ transgenic mice 4 h after administration. Atrial fibrillation was induced in 6/6 mice for vehicle vs. 1/7 for RA608, P < 0.05, 'n − 1' χ2 test. Ventricular tachycardia was induced in 6/7 for vehicle vs. 2/7 for RA608, P < 0.05, 'n − 1' χ2 test. Conclusions RA608 is the first orally administrable CaMKII inhibitor with potent efficacy in human myocytes. Moreover, oral administration potently inhibits arrhythmogenesis and attenuates HF development in mice in vivo.
Collapse
Affiliation(s)
- Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Marzena Drzymalski
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Maria Baier
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Alexander Biedermann
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Bernadette Memmel
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Melanie Durczok
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Stefan Neef
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Can Martin Sag
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Bernhard Floerchinger
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Leopold Rupprecht
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - York Zausig
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | | | | | | | | | | - Philip Janiak
- Sanofi Research & Development (R&D), Chilly-Mazarin, France
| | | | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| |
Collapse
|
20
|
Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:54-75. [PMID: 32188566 DOI: 10.1016/j.pbiomolbio.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) plays a central role in cardiomyocyte excitation-contraction coupling. To ensure an optimal electrical impulse propagation and cardiac contraction, Ca2+ levels are regulated by a variety of Ca2+-handling proteins. In turn, Ca2+ modulates numerous electrophysiological processes. Accordingly, Ca2+-handling abnormalities can promote cardiac arrhythmias via various mechanisms, including the promotion of afterdepolarizations, ion-channel modulation and structural remodeling. In the last 30 years, significant improvements have been made in the computational modeling of cardiomyocyte Ca2+ handling under physiological and pathological conditions. However, numerous questions involving the Ca2+-dependent regulation of different macromolecular complexes, cross-talk between Ca2+-dependent regulatory pathways operating over a wide range of time scales, and bidirectional interactions between electrophysiology and mechanics remain to be addressed by in vitro and in silico studies. A better understanding of disease-specific Ca2+-dependent proarrhythmic mechanisms may facilitate the development of improved therapeutic strategies. In this review, we describe the fundamental mechanisms of cardiomyocyte Ca2+ handling in health and disease, and provide an overview of currently available computational models for cardiomyocyte Ca2+ handling. Finally, we discuss important uncertainties and open questions about cardiomyocyte Ca2+ handling and highlight how synergy between in vitro and in silico studies may help to answer several of these issues.
Collapse
|
21
|
Li Q, Zhai Z, Li J. Fibroblast growth factor homologous factors are potential ion channel modifiers associated with cardiac arrhythmias. Eur J Pharmacol 2020; 871:172920. [PMID: 31935396 DOI: 10.1016/j.ejphar.2020.172920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
Abstract
Stable electrical activity in cardiac myocytes is the basis of maintaining normal myocardial systolic and diastolic function. Cardiac ionic currents and their associated regulatory proteins are crucial to myocyte excitability and heart function. Fibroblast growth factor homologous factors (FHFs) are intracellular noncanonical fibroblast growth factors (FGFs) that are incapable of activating FGF receptors. The main functions of FHFs are to regulate ion channels and influence excitability, which are processes involved in sustaining normal cardiac function. In addition to their regulatory effect on ion channels, FHFs can be regulators of cardiac hypertrophic signaling and alter signaling pathways, including the protein kinase, NF<kappa>B, and p53 pathways, which are related to the pathological processes of heart diseases. This review emphasizes FHF-mediated regulation of cardiac excitability and the association of FHFs with cardiac arrhythmias and explores the idea that abnormal FHFs may be an unrecognized cause of cardiac disorders.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhenyu Zhai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
22
|
Liu T, Wang Q, Yao K. Huoxue Wentong Formula ameliorates myocardial infarction in rats through inhibiting CaMKII oxidation and phosphorylation. Chin Med 2020; 15:3. [PMID: 31938036 PMCID: PMC6954496 DOI: 10.1186/s13020-020-0285-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background The Chinese medicine Huoxue Wentong Formula (HXWTF) was used to treat thoracic obstruction and angina pectoris in clinic, which has not been investigated in myocardial ischemia-induced apoptosis and angiogenic function. Here we aimed to investigate the roles of HXWTF in rats with myocardial ischemia-induced apoptosis and angiogenesis disorders, as well as to reveal the potential mechanisms. Methods Male SD rats were subjected to coronary artery ligation followed by HXWTF (420, 840 and 1680 mg/kg/day, p.o.) or isosorbide mononitrate (6.3 mg/kg/day, p.o.) treatment for 4 weeks. Electrocardiogram (ECG) and Echocardiography (ECHO) were used to measure cardiac function. Hematoxylin and eosin (H&E) staining and CD34/α-SMA immunohistochemical staining were performed to observe the ischemic heart sections pathological changes and angiogenesis. Then, the effects on cardiomyocyte apoptosis of H9c2 and tube formation of HCMECs were observed, as well as the changes in the levels of total calmodulin dependent protein kinase II (t-CaMKII), phosphorylated CaMKII (p-CaMKII), oxidized CaMKII (ox-CaMKII), CD34, and Bcl-2/Bax ratio were detected. Results Rats with coronary artery ligation exhibited abnormal cardiac function, enlarged myocardial space, disorderly arranged myocardial fibers, inflammatory cells infiltrated, and aggravated myocardial cell apoptosis, along with angiogenesis dysfunction. The expressions of CD34, p-CaMKII, and ox-CaMKII were elevated and Bcl-2/Bax ratio was diminished in ischemic hearts and H/SD-treated H9c2 or HCMECs, while HXWTF treatment completely rescued angiogenic dysfunction, inhibited cardiomyocyte apoptosis, and down-regulated cardiac CaMKII oxidation and phosphorylation activities. Conclusion Our study demonstrates that HXWTF improves myocardial infarction possibly through inhibiting CaMKII oxidation and phosphorylation levels, facilitating angiogenic function and alleviating cardiomyocyte apoptosis. Thus, therapeutics targeting CaMKII activities may be a promising strategy for rescuing ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian'ge, District of Xi Cheng, Beijing, 100053 China
| | - Qingqing Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian'ge, District of Xi Cheng, Beijing, 100053 China
| | - Kuiwu Yao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixian'ge, District of Xi Cheng, Beijing, 100053 China
| |
Collapse
|
23
|
Zhai X, Qiao X, Zhang L, Wang D, Zhang L, Feng Q, Wu B, Cao J, Liu Q. I K1 channel agonist zacopride suppresses ventricular arrhythmias in conscious rats with healing myocardial infarction. Life Sci 2019; 239:117075. [PMID: 31751587 DOI: 10.1016/j.lfs.2019.117075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 01/28/2023]
Abstract
AIMS Arrhythmogenesis of chronic myocardial infarction (MI) is associated with the prolongation of action potential, reduction of inward rectifier potassium (IK1, Kir) channels and hyper-activity of Calcium/calmodulin-dependent kinase II (CaMKII) in cardiomyocytes. Zacopride, a selective IK1 agonist, was applied to clarify the cardioprotection of IK1 agonism via a CaMKII signaling on arrhythmias post-MI. METHODS Male SD rats were implanted wireless transmitter in the abdominal cavity and subjected to left main coronary artery ligation or sham operation. The telemetric ECGs were monitored per day throughout 4 weeks. At the endpoint, isoproterenol (1.28 mg/kg, i.v.) was administered for provocation test. The expressions of Kir2.1 (dominant subunit of IK1 in ventricle) and CaMKII were detected by Western-blotting. KEY FINDINGS In the telemetric rats post-MI, zacopride significantly reduced the episodes of atrioventricular conduction block (AVB), premature ventricular contraction (PVC), ventricular tachycardia (VT) and ventricular fibrillation (VF), without significant effect on superventricular premature contraction (SPVC). In provocation test, zacopride suppressed the onset of ventricular arrhythmias in conscious PMI or sham rats. The expression of Kir2.1 was significantly downregulated and p-CaMKII was upregulated post-MI, whereas both were restored by zacopride treatment. SIGNIFICANCE IK1/Kir2.1 might be an attractive target for pharmacological controlling of lethal arrhythmias post MI.
Collapse
Affiliation(s)
- Xuwen Zhai
- Clinical Skills Teaching Simulation Hospital, Shanxi Medical University, Taiyuan, China
| | - Xi Qiao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- Clinical Laboratory, Children's Hospital of Shanxi, Taiyuan, China
| | - Dongming Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lijun Zhang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Qilong Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Bowei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China; Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Qinghua Liu
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
24
|
Abstract
The aim of this chapter is to discuss evidence concerning the many roles of calcium ions, Ca2+, in cell signaling pathways that control heart function. Before considering details of these signaling pathways, the control of contraction in ventricular muscle by Ca2+ transients accompanying cardiac action potentials is first summarized, together with a discussion of how myocytes from the atrial and pacemaker regions of the heart diverge from this basic scheme. Cell signaling pathways regulate the size and timing of the Ca2+ transients in the different heart regions to influence function. The simplest Ca2+ signaling elements involve enzymes that are regulated by cytosolic Ca2+. Particularly important examples to be discussed are those that are stimulated by Ca2+, including Ca2+-calmodulin-dependent kinase (CaMKII), Ca2+ stimulated adenylyl cyclases, Ca2+ stimulated phosphatase and NO synthases. Another major aspect of Ca2+ signaling in the heart concerns actions of the Ca2+ mobilizing agents, inositol trisphosphate (IP3), cADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, (NAADP). Evidence concerning roles of these Ca2+ mobilizing agents in different regions of the heart is discussed in detail. The focus of the review will be on short term regulation of Ca2+ transients and contractile function, although it is recognized that Ca2+ regulation of gene expression has important long term functional consequences which will also be briefly discussed.
Collapse
|
25
|
Gao X, Wu X, Yan J, Zhang J, Zhao W, DeMarco D, Zhang Y, Bakhos M, Mignery G, Sun J, Li Z, Fill M, Ai X. Transcriptional regulation of stress kinase JNK2 in pro-arrhythmic CaMKIIδ expression in the aged atrium. Cardiovasc Res 2019; 114:737-746. [PMID: 29360953 DOI: 10.1093/cvr/cvy011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/18/2018] [Indexed: 01/02/2023] Open
Abstract
Aims c-jun N-terminal kinase (JNK) is a critical stress response kinase that activates in a wide range of physiological and pathological cellular processes. We recently discovered a pivotal role of JNK in the development of atrial arrhythmias in the aged heart, while cardiac CaMKIIδ, another pro-arrhythmic molecule, was also known to enhance atrial arrhythmogenicity. Here, we aimed to reveal a regulatory role of the stress kinase JNK2 isoform on CaMKIIδ expression. Methods and results Activated JNK2 leads to increased CaMKIIδ protein expression in aged human and mouse atria, evidenced from the reversal of CaMKIIδ up-regulation in JNK2 inhibitor treated wild-type aged mice. This JNK2 action in CaMKIIδ expression was further confirmed in HL-1 myocytes co-infected with AdMKK7D-JNK2, but not when co-infected with AdMKK7D-JNK1. JNK2-specific inhibition (either by a JNK2 inhibitor or overexpression of inactivated dominant-negative JNK2 (JNK2dn) completely attenuated JNK activator anisomycin-induced CaMKIIδ up-regulation in HL-1 myocytes, whereas overexpression of JNK1dn did not. Moreover, up-regulated CaMKIIδ mRNA along with substantially increased phosphorylation of JNK downstream transcription factor c-jun [but not activating transcription factor2 (ATF2)] were exhibited in both aged atria (humans and mice) and transiently JNK activated HL-1 myocytes. Cross-linked chromatin-immunoprecipitation assays (XChIP) revealed that both c-jun and ATF2 were bound to the CaMKIIδ promoter, but significantly increased binding of c-jun only occurred in the presence of anisomycin and JNK inhibition alleviated this anisomycin-elevated c-jun binding. Mutated CaMKII consensus c-jun binding sites impaired its promoter activity. Enhanced transcriptional activity of CaMKIIδ by anisomycin was also completely reversed to the baseline by either JNK2 siRNA or c-jun siRNA knockdown. Conclusion JNK2 activation up-regulates CaMKIIδ expression in the aged atrium. This JNK2 regulation in CaMKIIδ expression occurs at the transcription level through the JNK downstream transcription factor c-jun. The discovery of this novel molecular mechanism of JNK2-regulated CaMKII expression sheds new light on possible anti-arrhythmia drug development.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Xiaomin Wu
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Jiajie Yan
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA.,Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Jingqun Zhang
- Department of Cardiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Weiwei Zhao
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA.,Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Dominic DeMarco
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA.,Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Yongguo Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mamdouh Bakhos
- Department of Thoracic & Cardiovascular Surgery, Loyola University Chicago, Maywood, IL, USA
| | - Gregory Mignery
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhenyu Li
- Division of Cardiovascular Medicine, University of Kentucky, KY, USA
| | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Xun Ai
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA.,Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
26
|
Bezzerides VJ, Caballero A, Wang S, Ai Y, Hylind RJ, Lu F, Heims-Waldron DA, Chambers KD, Zhang D, Abrams DJ, Pu WT. Gene Therapy for Catecholaminergic Polymorphic Ventricular Tachycardia by Inhibition of Ca 2+/Calmodulin-Dependent Kinase II. Circulation 2019; 140:405-419. [PMID: 31155924 PMCID: PMC7274838 DOI: 10.1161/circulationaha.118.038514] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited cardiac arrhythmia characterized by adrenergically triggered arrhythmias, is inadequately treated by current standard of care. Ca2+/calmodulin-dependent protein kinase II (CaMKII), an adrenergically activated kinase that contributes to arrhythmogenesis in heart disease models, is a candidate therapeutic target in CPVT. However, translation of CaMKII inhibition has been limited by the need for selective CaMKII inhibition in cardiomyocytes. Here, we tested the hypothesis that CaMKII inhibition with a cardiomyocyte-targeted gene therapy strategy would suppress arrhythmia in CPVT mouse models. METHODS We developed AAV9-GFP-AIP, an adeno-associated viral vector in which a potent CaMKII inhibitory peptide, autocamtide-2-related inhibitory peptide [AIP], is fused to green fluorescent protein (GFP) and expressed from a cardiomyocyte selective promoter. The vector was delivered systemically. Arrhythmia burden was evaluated with invasive electrophysiology testing in adult mice. AIP was also tested on induced pluripotent stem cells derived from patients with CPVT with different disease-causing mutations to determine the effectiveness of our proposed therapy on human induced pluripotent stem cell-derived cardiomyocytes and different pathogenic genotypes. RESULTS AAV9-GFP-AIP was robustly expressed in the heart without significant expression in extracardiac tissues, including the brain. Administration of AAV9-GFP-AIP to neonatal mice with a known CPVT mutation (RYR2R176Q/+) effectively suppressed ventricular arrhythmias induced by either β-adrenergic stimulation or programmed ventricular pacing, without significant proarrhythmic effect. Intravascular delivery of AAV9-GFP-AIP to adolescent mice transduced ≈50% of cardiomyocytes and was effective in suppressing arrhythmia in CPVT mice. Induced pluripotent stem cell-derived cardiomyocytes derived from 2 different patients with CPVT with different pathogenic mutations demonstrated increased frequency of abnormal calcium release events, which was suppressed by a cell-permeable form of AIP. CONCLUSIONS This proof-of-concept study showed that AAV-mediated delivery of a CaMKII peptide inhibitor to the heart was effective in suppressing arrhythmias in a murine model of CPVT. CaMKII inhibition also reversed the arrhythmia phenotype in human CPVT induced pluripotent stem cell-derived cardiomyocyte models with different pathogenic mutations.
Collapse
Affiliation(s)
- Vassilios J Bezzerides
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Ana Caballero
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Suya Wang
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Yulan Ai
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Robyn J Hylind
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Fujian Lu
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Danielle A Heims-Waldron
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Kristina D Chambers
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Donghui Zhang
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - Dominic J Abrams
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.)
| | - William T Pu
- Basic and Translational Cardiovascular Research and Inherited Cardiac Arrhythmias Programs, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, MA (V.J.B., A.C., S.W., Y.A., R.J.H., F.L., D.A.H.-W., K.D.C., D.Z., D.J.A., W.T.P.).,Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| |
Collapse
|
27
|
Zhao H, Li T, Liu G, Zhang L, Li G, Yu J, Lou Q, He R, Zhan C, Li L, Yang W, Zang Y, Cheng C, Li W. Chronic B-Type Natriuretic Peptide Therapy Prevents Atrial Electrical Remodeling in a Rabbit Model of Atrial Fibrillation. J Cardiovasc Pharmacol Ther 2019; 24:575-585. [PMID: 31159577 DOI: 10.1177/1074248419854749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is an important and growing clinical problem. Current pharmacological treatments are unsatisfactory. Electrical remodeling has been identified as one of the principal pathophysiological mechanisms that promote AF, but there are no effective therapies to prevent or correct electrical remodeling in patients with AF. In AF, cardiac production and circulating levels of B-type natriuretic peptide (BNP) are increased. However, its functional significance in AF remains to be determined. We assessed the hypotheses that chronic BNP treatment may prevent the altered electrophysiology in AF, and preventing AF-induced activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) may play a role. METHODS AND RESULTS Forty-four rabbits were randomly divided into sham, rapid atrial pacing (RAP at 600 beats/min for 3 weeks), RAP/BNP, and sham/BNP groups. Rabbits in the RAP/BNP and sham/BNP groups received subcutaneous BNP (20 μg/kg twice daily) during the 3-week study period. HL-1 cells were subjected to rapid field stimulation for 24 hours in the presence or absence of BNP, KN-93 (a CaMKII inhibitor), or KN-92 (a nonactive analog of KN-93). We compared atrial electrical remodeling-related alterations in the ion channel/function/expression of these animals. We found that only in the RAP group, AF inducibility was significantly increased, atrial effective refractory periods and action potential duration were reduced, and the density of I Ca, L and I to decreased, while I K1 increased. The changes in the expressions of Cav1.2, Kv4.3, and Kir2.1 and currents showed a similar trend. In addition, in the RAP group, the activation of CaMKIIδ and phosphorylation of ryanodine receptor 2 and phospholamban significantly increased. Importantly, these changes were prevented in the RAP/BNP group, which were further validated by in vitro studies. CONCLUSIONS Chronic BNP therapy prevents atrial electrical remodeling in AF. Inhibition of CaMKII activation plays an important role to its anti-AF efficacy in this model.
Collapse
Affiliation(s)
- Hongyan Zhao
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,2 Department of Cardiology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Tiankai Li
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangzhong Liu
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Zhang
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangnan Li
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Yu
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Lou
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui He
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengchuang Zhan
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luyifei Li
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen Yang
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanxiang Zang
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cheping Cheng
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,3 Department of Internal Medicine, Section on Cardiovascular Medicine, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Weimin Li
- 1 Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Ma Y, Gong Z, Nan K, Qi S, Chen Y, Ding C, Wang D, Ru L. Apolipoprotein-J blocks increased cell injury elicited by ox-LDL via inhibiting ROS-CaMKII pathway. Lipids Health Dis 2019; 18:117. [PMID: 31113434 PMCID: PMC6530009 DOI: 10.1186/s12944-019-1066-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Background Oxidized low-density lipoprotein (ox-LDL) is crucial in cardiac injury. Apolipoprotein-J (ApoJ) contributes to antiapoptotic effects in the heart. We aimed to evaluate the protective effects of ApoJ against ox-LDL cytotoxicity in Neonatal rat ventricular cells (NRVCs). Methods and results NRVCs were damaged by exposure to ox-LDL, as shown by increased caspase-3/7 activity, enhanced caspase-3 expression, and decreased cell viability. ApoJ overexpression, using an adenovirus vector, significantly reduced ox-LDL-induced cell injury. ApoJ also prevented ox-LDL from augmenting reactive oxygen species (ROS) production, as demonstrated by elevated Nox2/gp91phox and P47 expression. Furthermore, ApoJ overexpression reduced CaMKIIδ expression elicited by ox-LDL in cultured NRVCs. Upregulating CaMKIIδ activity, mediated by ox-LDL, was significantly inhibited by ApoJ overexpression. A CaMKIIδ inhibitor, KN93, prevented ApoJ’s protective effect against ox-LDL cytotoxicity. A ROS scavenger, Mn (III)meso-tetrakis (4-benzoic acid) porphyrin (Mn (III)TBAP), also attenuated CaMKIIδ’s increased expression and activity, induced by ox-LDL, and showed similar results to ApoJ by attenuating ox-LDL-induced cell damage, as ApoJ did. Conclusions ApoJ confers cytoprotection to NRVCs against ox-LDL cytotoxicity through the ROS-CaMKII pathways.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Zhi Gong
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Kai Nan
- Health and Medical Development Research Center of Hebei Province, Shijiazhuang, Hebei, China
| | - Shuying Qi
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Yu Chen
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Chao Ding
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Dongmei Wang
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China
| | - Leisheng Ru
- Department of Cardiology, Bethune International Peace Hospital, 398, Zhongshan Road, Shijiazhuang, 050082, Hebei, China.
| |
Collapse
|
29
|
Identification of 22 novel loci associated with urinary biomarkers of albumin, sodium, and potassium excretion. Kidney Int 2019; 95:1197-1208. [PMID: 30910378 DOI: 10.1016/j.kint.2018.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/01/2023]
Abstract
Urine biomarkers reflecting kidney function and handling of dietary sodium and potassium are strongly associated with several common diseases including chronic kidney disease, cardiovascular disease, and diabetes mellitus. Knowledge about the genetic determinants of these biomarkers may shed light on pathophysiological mechanisms underlying the development of these diseases. We performed genome-wide association studies of urinary albumin: creatinine ratio (UACR), urinary potassium: creatinine ratio (UK/UCr), urinary sodium: creatinine ratio (UNa/UCr) and urinary sodium: potassium ratio (UNa/UK) in up to 218,450 (discovery) and 109,166 (replication) unrelated individuals of European ancestry from the UK Biobank. Further, we explored genetic correlations, tissue-specific gene expression, and possible genes implicated in the regulation of these biomarkers. After replication, we identified 19 genome-wide significant independent loci associated with UACR, 6 each with UK/UCr and UNa/UCr, and 4 with UNa/UK. In addition to 22 novel associations, we confirmed several established associations, including between the CUBN locus and microalbuminuria. We detected high pairwise genetic correlation across the urinary biomarkers, and between their levels and several physiological measurements. We highlight GIPR, a potential diabetes drug target, as possibly implicated in the genetic control of urinary potassium excretion, and NRBP1, a locus associated with gout, as plausibly involved in sodium and albumin excretion. Overall, we identified 22 novel genome-wide significant associations with urinary biomarkers and confirmed several previously established associations, providing new insights into the genetic basis of these traits and their connection to chronic diseases.
Collapse
|
30
|
Shirpoor A, Heshmatian B, Tofighi A, Eliasabad SN, Kheradmand F, Zerehpoosh M. Nandrolone administration with or without strenuous exercise increases cardiac fatal genes overexpression, calcium/calmodulin-dependent protein kinaseiiδ, and monoamine oxidase activities and enhances blood pressure in adult wistar rats. Gene 2019; 697:131-137. [PMID: 30802539 DOI: 10.1016/j.gene.2019.02.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023]
Abstract
Misuse of anabolic androgenic steroids (AAS) increases prevalence of cardiovascular abnormalities in athletes, and the underlying molecular mechanism involved in those abnormalities continues to be investigated. The aim of this study was to investigate the effect of chronic nandrolone exposure on alpha and beta-myosin heavy chain (MHC) isoforms gene expression transition, blood pressure related parameters, calcium/calmodulin-dependent protein kinaseIIδ (CaMKIIδ), and monoamine oxidase (MAO) activities in rats' hearts. It was also planned to evaluate the effect of strenuous exercise on cardiac abnormalities induced by nandrolone. Thirty-two male wistar rats were assigned into four groups, namely control, nandrolone, nandrolone with strenuous exercise, and strenuous exercise groups. Nandrolone consumption significantly increased systolic, diastolic, pulse and dicrotic pressure, mean arterial pressure, as well as the amplitude of first peak (H1). Moreover, exercise combined with nandrolone completely masked this effect. The mRNA expression of β-MHC and the ratio of β -MHC/α -MHC showed a significant increase in the nandrolone and nandrolone with strenuous exercise groups compared to those in the control group. The values of heart tissue calcium/calmoldulin-dependent protein kinase IIδ (CaMKIIδ), and monoamine oxidase (MAO) in the nandrolone, nandrolone with strenuous exercise and exercise groups were significantly higher than those values in the control group. These findings indicate that nandrolone-induced heart and hemodynamic abnormalities may in part be associated with MHC isoform changes and Ca2+ homeostasis changes mediated by increased CaMKIIδ and MAO activities and that these effects can be provoked via strenuous exercise.
Collapse
Affiliation(s)
- Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Nephrology and Kidney, Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Behnam Heshmatian
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Asghar Tofighi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Urmia University, Urmia, Iran.
| | - Soheila Najafi Eliasabad
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Urmia University, Urmia, Iran
| | - Fatemeh Kheradmand
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mitra Zerehpoosh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
31
|
Joviano-Santos JV, Santos-Miranda A, Botelho AFM, de Jesus ICG, Andrade JN, de Oliveira Barreto T, Magalhães-Gomes MPS, Valadão PAC, Cruz JDS, Melo MM, Guatimosim S, Guatimosim C. Increased oxidative stress and CaMKII activity contribute to electro-mechanical defects in cardiomyocytes from a murine model of Huntington's disease. FEBS J 2018; 286:110-123. [PMID: 30451379 DOI: 10.1111/febs.14706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder. Although described as a brain pathology, there is evidence suggesting that defects in other systems can contribute to disease progression. In line with this, cardiovascular defects are a major cause of death in HD. To date, relatively little is known about the peripheral abnormalities associated with the disease. Here, we applied a range of assays to evaluate cardiac electro-mechanical properties in vivo, using a previously characterized mouse model of HD (BACHD), and in vitro, using cardiomyocytes isolated from the same mice. We observed conduction disturbances including QT interval prolongation in BACHD mice, indicative of cardiac dysfunction. Cardiomyocytes from these mice demonstrated cellular electro-mechanical abnormalities, including a prolonged action potential, arrhythmic contractions, and relaxation disturbances. Cellular arrhythmia was accompanied by an increase in calcium waves and increased Ca2+ /calmodulin-dependent protein kinase II activity, suggesting that disruption of calcium homeostasis plays a key part. We also described structural abnormalities in the mitochondria of BACHD-derived cardiomyocytes, indicative of oxidative stress. Consistent with this, imbalances in superoxide dismutase and glutathione peroxidase activities were detected. Our data provide an in vivo demonstration of cardiac abnormalities in HD together with new insights into the cellular mechanistic basis, providing a possible explanation for the higher cardiovascular risk in HD.
Collapse
Affiliation(s)
| | - Artur Santos-Miranda
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Flávia Machado Botelho
- Department of Veterinary Clinic and Surgery, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Itamar Couto Guedes de Jesus
- Department of Physiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jéssica Neves Andrade
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane de Oliveira Barreto
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Jader Dos Santos Cruz
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marília Martins Melo
- Department of Veterinary Clinic and Surgery, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
32
|
Abstract
BACKGROUND Among his major cardiac electrophysiological contributions, Miles Vaughan Williams (1918-2016) provided a classification of antiarrhythmic drugs that remains central to their clinical use. METHODS We survey implications of subsequent discoveries concerning sarcolemmal, sarcoplasmic reticular, and cytosolic biomolecules, developing an expanded but pragmatic classification that encompasses approved and potential antiarrhythmic drugs on this centenary of his birth. RESULTS We first consider the range of pharmacological targets, tracking these through to cellular electrophysiological effects. We retain the original Vaughan Williams Classes I through IV but subcategorize these divisions in light of more recent developments, including the existence of Na+ current components (for Class I), advances in autonomic (often G protein-mediated) signaling (for Class II), K+ channel subspecies (for Class III), and novel molecular targets related to Ca2+ homeostasis (for Class IV). We introduce new classes based on additional targets, including channels involved in automaticity, mechanically sensitive ion channels, connexins controlling electrotonic cell coupling, and molecules underlying longer-term signaling processes affecting structural remodeling. Inclusion of this widened range of targets and their physiological sequelae provides a framework for a modernized classification of established antiarrhythmic drugs based on their pharmacological targets. The revised classification allows for the existence of multiple drug targets/actions and for adverse, sometimes actually proarrhythmic, effects. The new scheme also aids classification of novel drugs under investigation. CONCLUSIONS We emerge with a modernized classification preserving the simplicity of the original Vaughan Williams framework while aiding our understanding and clinical management of cardiac arrhythmic events and facilitating future developments in this area.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, United Kingdom (M.L., D.A.T.)
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (M.L., L.W.)
| | - Lin Wu
- Department of Cardiology, Peking University First Hospital, Beijing, China (L.W.)
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (M.L., L.W.)
| | - Derek A Terrar
- Department of Pharmacology, University of Oxford, United Kingdom (M.L., D.A.T.)
| | - Christopher L-H Huang
- Physiological Laboratory (C.L.-H.H.), University of Cambridge, United Kingdom
- Department of Biochemistry (C.L.-H.H.). University of Cambridge, United Kingdom
| |
Collapse
|
33
|
Karagueuzian HS, Klein U. Wanted: Class VI Antiarrhythmic Drug Action; New Start for a Rational Drug Therapy. ACTA ACUST UNITED AC 2018; 5. [PMID: 31080887 PMCID: PMC6508654 DOI: 10.16966/2379-769x.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hrayr S Karagueuzian
- Department of Medicine, David Geffen School of Medicine, Los Angeles, California, USA.,Cardiovascular Research Laboratories UCLA, Los Angeles, California, USA
| | - Uwe Klein
- Numerate Inc., San Francisco, California, USA
| |
Collapse
|
34
|
van Opbergen CJ, van der Voorn SM, Vos MA, de Boer TP, van Veen TA. Cardiac Ca2+ signalling in zebrafish: Translation of findings to man. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:45-58. [DOI: 10.1016/j.pbiomolbio.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|
35
|
Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol Aspects Med 2018; 63:59-69. [PMID: 30098327 DOI: 10.1016/j.mam.2018.08.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
Abstract
The lung is a delicate organ with a large surface area that is continuously exposed to the external environment, and is therefore highly vulnerable to exogenous sources of oxidative stress. In addition, each of its approximately 40 cell types can also generate reactive oxygen species (ROS), as byproducts of cellular metabolism and in a more regulated manner by NOX enzymes with functions in host defense, immune regulation, and cell proliferation or differentiation. To effectively regulate the biological actions of exogenous and endogenous ROS, various enzymatic and non-enzymatic antioxidant defense systems are present in all lung cell types to provide adequate protection against their injurious effects and to allow for appropriate ROS-mediated biological signaling. Acute and chronic lung diseases are commonly thought to be associated with increased oxidative stress, evidenced by altered cellular or extracellular redox status, increased irreversible oxidative modifications in proteins or DNA, mitochondrial dysfunction, and altered expression or activity of NOX enzymes and antioxidant enzyme systems. However, supplementation strategies with generic antioxidants have been minimally successful in prevention or treatment of lung disease, most likely due to their inability to distinguish between harmful and beneficial actions of ROS. Recent studies have attempted to identify specific redox-based mechanisms that may mediate chronic lung disease, such as allergic asthma or pulmonary fibrosis, which provide opportunities for selective redox-based therapeutic strategies that may be useful in treatment of these diseases.
Collapse
|
36
|
|
37
|
Yan J, Zhao W, Thomson JK, Gao X, DeMarco DM, Carrillo E, Chen B, Wu X, Ginsburg KS, Bakhos M, Bers DM, Anderson ME, Song LS, Fill M, Ai X. Stress Signaling JNK2 Crosstalk With CaMKII Underlies Enhanced Atrial Arrhythmogenesis. Circ Res 2018; 122:821-835. [PMID: 29352041 DOI: 10.1161/circresaha.117.312536] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RATIONALE Atrial fibrillation (AF) is the most common arrhythmia, and advanced age is an inevitable and predominant AF risk factor. However, the mechanisms that couple aging and AF propensity remain unclear, making targeted therapeutic interventions unattainable. OBJECTIVE To explore the functional role of an important stress response JNK (c-Jun N-terminal kinase) in sarcoplasmic reticulum Ca2+ handling and consequently Ca2+-mediated atrial arrhythmias. METHODS AND RESULTS We used a series of cutting-edge electrophysiological and molecular techniques, exploited the power of transgenic mouse models to detail the molecular mechanism, and verified its clinical applicability in parallel studies on donor human hearts. We discovered that significantly increased activity of the stress response kinase JNK2 (JNK isoform 2) in the aged atria is involved in arrhythmic remodeling. The JNK-driven atrial proarrhythmic mechanism is supported by a pathway linking JNK, CaMKII (Ca2+/calmodulin-dependent kinase II), and sarcoplasmic reticulum Ca2+ release RyR2 (ryanodine receptor) channels. JNK2 activates CaMKII, a critical proarrhythmic molecule in cardiac muscle. In turn, activated CaMKII upregulates diastolic sarcoplasmic reticulum Ca2+ leak mediated by RyR2 channels. This leads to aberrant intracellular Ca2+ waves and enhanced AF propensity. In contrast, this mechanism is absent in young atria. In JNK challenged animal models, this is eliminated by JNK2 ablation or CaMKII inhibition. CONCLUSIONS We have identified JNK2-driven CaMKII activation as a novel mode of kinase crosstalk and a causal factor in atrial arrhythmic remodeling, making JNK2 a compelling new therapeutic target for AF prevention and treatment.
Collapse
Affiliation(s)
- Jiajie Yan
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Weiwei Zhao
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Justin K Thomson
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Xianlong Gao
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Dominic M DeMarco
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Elena Carrillo
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Biyi Chen
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Xiaomin Wu
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Kenneth S Ginsburg
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Mamdouh Bakhos
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Donald M Bers
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Mark E Anderson
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Long-Sheng Song
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Michael Fill
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Xun Ai
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.).
| |
Collapse
|
38
|
Heshmati E, Shirpoor A, Kheradmand F, Alizadeh M, Gharalari FH. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract. Anatol J Cardiol 2018; 19:19-26. [PMID: 29339696 PMCID: PMC5864785 DOI: 10.14744/anatoljcardiol.2017.8079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. METHODS Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. RESULTS After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. CONCLUSION These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.
Collapse
Affiliation(s)
| | - Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia-Iran. ,
| | | | | | | |
Collapse
|
39
|
Cheng J, Cao J, Jiang X, Xu L, Wang Y. Kv4.3 expression reverses I Ca remodeling in ventricular myocytes of heart failure. Oncotarget 2017; 8:104037-104045. [PMID: 29262619 PMCID: PMC5732785 DOI: 10.18632/oncotarget.21956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022] Open
Abstract
Background Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent L-type calcium channel (LTCC) current (ICa) remodeling is an important contributor to the disruption of calcium homeostasis in heart failure (HF). We have reported that Kv4.3 proteins play an important role in delicate regulation of the membrane-associated CaMKII activity in ventricular myocytes. Here, we investigated the effect of in vivo Kv4.3 expression on ICa in HF left ventricular (LV) myocytes. Results Kv4.3 expression reduced overall CaMKII autophosphorylation with much greater reduction in the membrane compartmentalized CaMKII activity. ICa density in subepicardial (SEP) and subendocardial (SEN) myocytes was proportionately reduced, without changing the transmural gradient. While the time course of ICa decay was hastened, the voltage-dependence of ICa activation and inactivation, however, remained unchanged. ICa recovery from inactivation was significantly accelerated. In line with the partial inhibition of CaMKII, the frequency-dependent Ca2+-induced ICa facilitation was recovered in the HF myocytes transfected with Kv4.3. Materials and Methods Pressure-overload HF was induced by thoracic aortic banding. Kv4.3 expression was achieved by Ad-Kv4.3 injection in the LV myocardium. ICa was recorded in dissociated SEP and SEN myocytes using whole-cell patch clamp method. Conclusions Kv4.3 expression in HF ventricle can effectively reverse ICa remodeling via inhibition of the membrane-associated CaMKII, pointing to Kv4.3 restoration as a potential therapeutic approach for the disordered calcium regulation in HF.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xingchen Jiang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan 430071, China
| |
Collapse
|
40
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Luo F, Tian YK, Ye DW. Cellular and Molecular Mechanisms of Calcium/Calmodulin-Dependent Protein Kinase II in Chronic Pain. J Pharmacol Exp Ther 2017; 363:176-183. [PMID: 28855373 DOI: 10.1124/jpet.117.243048] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 03/08/2025] Open
Abstract
Chronic pain, often defined as any pain lasting more than 3 months, is poorly managed because of its multifaceted and complex mechanisms. Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinase that plays a fundamental role in synaptic plasticity, learning, and memory. Recent emerging evidence demonstrates increased expression and activity of CaMKII in the spinal cord and dorsal root ganglia of various chronic pain models. Moreover, our previous studies also find that inhibiting CaMKII could attenuate inflammatory pain and neuropathic pain. In this review, we provide evidence for the involvement of CaMKII in the initiation and development of chronic pain, including neuropathic pain, bone cancer pain, and inflammatory pain. Novel CaMKII inhibitors with potent inhibitory effect and high specificity may be alternative therapeutic strategies for the management of chronic pain in the future.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Xue-Rong Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Fang Luo
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| | - Da-Wei Ye
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.-Q.Z., D.-Q.L., S.-P.C., J.S., F.L., Y.-K.T.) and Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.-R.Z., D.-W.Y.)
| |
Collapse
|
41
|
Rajtik T, Goncalvesova E, Varga ZV, Leszek P, Kusmierczyk M, Hulman M, Kyselovic J, Ferdinandy P, Adameova A. Posttranslational modifications of calcium/calmodulin-dependent protein kinase IIδ and its downstream signaling in human failing hearts. Am J Transl Res 2017; 9:3573-3585. [PMID: 28861149 PMCID: PMC5575172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In human failing hearts (HF) of different origin (coronary artery disease-CAD, dilated-DCM, restrictive and hypertrophic cardiomyopathy-OTHER), we investigated the active forms of Ca2+/calmodulin-dependent protein kinase IIδ (p-Thr287-CaMKIIδ, oxMet281/282-CaMKIIδ) and their role in phenotypes of the disease. METHODS AND RESULTS Although basic diagnostic and clinical markers indicating the attenuated cardiac contractility and remodeling were comparable in HF groups, CaMKIIδ-mediated axis was different. P-Thr287-CaMKIIδ was unaltered in CAD group, whereas it was upregulated in non-ischemic cardiomyopathic groups. No correlation between the upregulated p-Thr287-CaMKIIδ and QT interval prolongation was detected. Unlike in DCM, oxMet281/282-CaMKIIδ did not differ among HF groups. Independently of CaMKIIδ phosphorylation/oxidation, activation of its downstreams-phospholamban and cardiac myosin binding protein-C was significantly downregulated supporting both diminished cardiac lusitropy and inotropy in all hearts. Content of sarcoplasmic reticulum Ca2+-ATPase 2a in all HF was unchanged. Protein phosphatase1β was upregulated in CAD and DCM only, while 2A did not differ among groups. CONCLUSION This is the first demonstration that the posttranslational activation of CaMKIIδ differs in HF depending on etiology. Lower levels of downstream molecular targets of CaMKIIδ do not correlate with either activation of CaMKIIδ or the expression of major protein phosphatases in the HF. Thus, it is unlikely that these mechanisms exclusively underlie failing of the heart.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Comenius UniversityBratislava, Slovak Republic
| | - Eva Goncalvesova
- Department of Heart Failure & Transplantation, The National Institute of Cardiovascular DiseasesBratislava, Slovak Republic
| | - Zoltan V Varga
- Department of Pharmacology & Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | | | | | - Michal Hulman
- Clinic of Heart Surgery, The National Institute of Cardiovascular DiseasesBratislava, Slovak Republic
| | - Jan Kyselovic
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Comenius UniversityBratislava, Slovak Republic
| | - Peter Ferdinandy
- Department of Pharmacology & Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - Adriana Adameova
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Comenius UniversityBratislava, Slovak Republic
| |
Collapse
|
42
|
Karagueuzian HS, Pezhouman A, Angelini M, Olcese R. Enhanced Late Na and Ca Currents as Effective Antiarrhythmic Drug Targets. Front Pharmacol 2017; 8:36. [PMID: 28220073 PMCID: PMC5292429 DOI: 10.3389/fphar.2017.00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/18/2017] [Indexed: 11/30/2022] Open
Abstract
While recent advances clarified the molecular and cellular modes of action of antiarrhythmic drugs (AADs), their link to suppression of dynamical arrhythmia mechanisms remains only partially understood. The current classifications of AADs (Classes I, III, and IV) rely on blocking peak Na, K and L-type calcium currents (ICa,L), with Class II with dominant beta receptor blocking activity and Class V including drugs with diverse classes of actions. The discovery that the calcium and redox sensor, cardiac Ca/calmodulin-dependent protein kinase II (CaMKII) enhances both the late Na (INa-L) and the late ICa,L in patients at high risk of VT/VF provided a new and a rational AAD target. Pathological rise of either or both of INa-L and late ICa,L are demonstrated to promote cellular early afterdepolarizations (EADs) and EAD-mediated triggered activity that can initiate VT/VF in remodeled hearts. Selective inhibition of the INa-L without affecting their peak transients with the highly specific prototype drug, GS-967 suppresses these EAD-mediated VT/VFs. As in the case of INa-L, selective inhibition of the late ICa,L without affecting its peak with the prototype drug, roscovitine suppressed oxidative EAD-mediated VT/VF. These findings indicate that specific blockers of the late inward currents without affecting their peaks (gating modifiers), offer a new and effective AAD class action i.e., “Class VI.” The development of safe drugs with selective Class VI actions provides a rational and effective approach to treat VT/VF particularly in cardiac conditions associated with enhanced CaMKII activity such as heart failure.
Collapse
Affiliation(s)
- Hrayr S Karagueuzian
- Translational Arrhythmia Section, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Arash Pezhouman
- Translational Arrhythmia Section, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Riccardo Olcese
- Cardiovascular Research Laboratory, Departments of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA; Department of Physiology, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
43
|
Lipoxin A 4 activates ALX/FPR2 receptor to regulate conjunctival goblet cell secretion. Mucosal Immunol 2017; 10:46-57. [PMID: 27072607 PMCID: PMC5063650 DOI: 10.1038/mi.2016.33] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/22/2016] [Indexed: 02/04/2023]
Abstract
Conjunctival goblet cells play a major role in maintaining the mucus layer of the tear film under physiological conditions as well as in inflammatory diseases like dry eye and allergic conjunctivitis. Resolution of inflammation is mediated by proresolution agonists such as lipoxin A4 (LXA4) that can also function under physiological conditions. The purpose of this study was to determine the actions of LXA4 on cultured rat conjunctival goblet cell mucin secretion, intracellular [Ca2+] ([Ca2+]i), and identify signaling pathways activated by LXA4. ALX/FPR2 (formyl peptide receptor2) was localized to goblet cells in rat conjunctiva and in cultured goblet cells. LXA4 significantly increased mucin secretion, [Ca2+]i, and extracellular regulated kinase 1/2 (ERK 1/2) activation. These functions were inhibited by ALX/FPR2 inhibitors. Stable analogs of LXA4 increased [Ca2+]i to the same extent as LXA4. Sequential addition of either LXA4 or resolvin D1 followed by the second compound decreased [Ca2+]i of the second compound compared with its initial response. LXA4 activated phospholipases C, D, and A2 and downstream molecules protein kinase C, ERK 1/2, and Ca2+/calmodulin-dependent kinase to increase mucin secretion and [Ca2+]i. We conclude that conjunctival goblet cells respond to LXA4 to maintain the homeostasis of the ocular surface and could be a novel treatment for dry eye diseases.
Collapse
|
44
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Berchtold MW, Zacharias T, Kulej K, Wang K, Torggler R, Jespersen T, Chen JN, Larsen MR, la Cour JM. The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish. J Biol Chem 2016; 291:26636-26646. [PMID: 27815504 DOI: 10.1074/jbc.m116.758680] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) is a Ca2+ binding protein modulating multiple targets, several of which are associated with cardiac pathophysiology. Recently, CaM mutations were linked to heart arrhythmia. CaM is crucial for cell growth and viability, yet the effect of the arrhythmogenic CaM mutations on cell viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT syndrome mutant CaM D129G. Of the six CaM mutants tested (N53I, F89L, D95V, N97S, D129G, and F141L), three showed a decreased activation of Ca2+/CaM-dependent kinase II, most prominently the D129G CaM mutation, which was incapable of stimulating Thr286 autophosphorylation. Furthermore, the CaM D129G mutation led to bradycardia in zebrafish and an arrhythmic phenotype in a subset of the analyzed zebrafish.
Collapse
Affiliation(s)
| | | | - Katarzyna Kulej
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark, and
| | - Kevin Wang
- the Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095
| | | | - Thomas Jespersen
- the Danish Arrhythmia Research Centre, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jau-Nian Chen
- the Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095
| | - Martin R Larsen
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark, and
| | | |
Collapse
|
46
|
Inhibition of cardiac CaMKII to cure heart failure: step by step towards translation? Basic Res Cardiol 2016; 111:66. [PMID: 27683175 PMCID: PMC5040741 DOI: 10.1007/s00395-016-0582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022]
|
47
|
Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention. Ann Biomed Eng 2016; 44:2642-60. [PMID: 27138523 DOI: 10.1007/s10439-016-1628-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.
Collapse
|
48
|
Zhu W, Varga Z, Silva JR. Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:3-17. [PMID: 26724572 DOI: 10.1016/j.pbiomolbio.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/11/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
Very recently, voltage-clamp fluorometry (VCF) protocols have been developed to observe the membrane proteins responsible for carrying the ventricular ionic currents that form the action potential (AP), including those carried by the cardiac Na(+) channel, NaV1.5, the L-type Ca(2+) channel, CaV1.2, the Na(+)/K(+) ATPase, and the rapid and slow components of the delayed rectifier, KV11.1 and KV7.1. This development is significant, because VCF enables simultaneous observation of ionic current kinetics with conformational changes occurring within specific channel domains. The ability gained from VCF, to connect nanoscale molecular movement to ion channel function has revealed how the voltage-sensing domains (VSDs) control ion flux through channel pores, mechanisms of post-translational regulation and the molecular pathology of inherited mutations. In the future, we expect that this data will be of great use for the creation of multi-scale computational AP models that explicitly represent ion channel conformations, connecting molecular, cell and tissue electrophysiology. Here, we review the VCF protocol, recent results, and discuss potential future developments, including potential use of these experimental findings to create novel computational models.
Collapse
Affiliation(s)
- Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zoltan Varga
- MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Hungary
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
49
|
Duan DD. Calm down when the heart is stressed: Inhibiting calmodulin-dependent protein kinase II for antiarrhythmias. Trends Cardiovasc Med 2015; 25:398-400. [PMID: 25910598 DOI: 10.1016/j.tcm.2015.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 01/31/2015] [Indexed: 12/27/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a pivotal role in many regulatory processes of cellular functions ranging from membrane potentials and electric-contraction (E-C) coupling to mitochondrial integrity and survival of cardiomyocytes. The review article by Hund and Mohler in this issue of Trends in Cardiovascular Medicine highlights the importance of the elevated CaMKII signaling pathways under stressed conditions such as myocardial hypertrophy and ischemia in the detrimental remodeling of ion channels and in the genesis of cardiac arrhythmias. Down-regulation of the elevated CaMKII is now emerging as a powerful therapeutic strategy for the treatment of cardiac arrhythmias and other forms of heart disease such as hypertrophic and ischemic heart failure. The development of new specific and effective CaMKII inhibitors as therapeutic agents for cardiac arrhythmias is challenged by the tremendous complexity of CaMKII expression and distribution of multi isoforms, as well as the multitude of downstream targets in the CaMKII signaling pathways and regulatory processes. A systematic understanding of the structure and regulation of the CaMKII signaling and functional network under the scope of genome and phenome may improve and extend our knowledge about the role of CaMKII in cardiac health and disease and accelerate the discovery of new CaMKII inhibitors that target not only the ATP-binding site but also the regulation sites in the CaMKII signaling and functional network.
Collapse
Affiliation(s)
- Dayue Darrel Duan
- The Laboratory of Cardiovascular Phenomics, Center for Molecular Medicine, School of Medicine University of Nevada, Reno, NV; Department of Pharmacology, School of Medicine University of Nevada, Reno, NV.
| |
Collapse
|