1
|
Guo R, Wang X, Liu Y, Huang M, Ma M, He Y, Yang R, Gao S, Luo M, Zhao G, Li L, Yu C. The Association Between Hemoglobin Glycation Index and Carotid Artery Plaque in Patients With Coronary Heart Disease. Angiology 2025; 76:183-192. [PMID: 37641559 DOI: 10.1177/00033197231198688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
This study aimed to examine the association between the hemoglobin glycation index (HGI) and carotid artery plaque (CAP) in patients with coronary heart disease (CHD). We conducted a cross-sectional analysis of 10,778 patients with CHD. The participants were divided into three groups by HGI tertiles (T1 HGI<-0.44, T2 -0.44 ≤ HGI ≤ 0.15, T3 HGI>0.15). The presence of CAP was used to diagnose by carotid ultrasonography. Logistic regression analysis was used to analyze the association between the HGI and CAP. The association between HGI and CAP was also assessed according to sex, age, smoking status, and drinking status. We further assessed the association between HGI and the ultrasound characteristics of CAP. The baseline analysis showed substantial differences in relevant parameters between the three groups of patients with CHD according to the tertiles of the HGI. Multivariate logistic regression analysis showed that HGI was significantly associated with CAP (odds ratio [OR] 1.32; 95% confidence interval [CI] 1.26-1.39). The association between HGI and CAP exists among different sex, age, smoking, and drinking status. Furthermore, there was a significant and positive association between HGI and all four different echogenicities of the CAP.
Collapse
Affiliation(s)
- Ruiying Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijia Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengnan Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mei Ma
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan He
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rongrong Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingchi Luo
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guoyuan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Zhang X, Zhang L, Li T, Zhang Z, Shang X, Bai H, Liu Y, Zong X, Shang C, Song D, Zhang X, Fan L, Liu Z. Investigating bacteria-induced inflammatory responses using novel endometrial epithelial gland organoid models. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1490520. [PMID: 39600797 PMCID: PMC11588683 DOI: 10.3389/frph.2024.1490520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction The endometrium plays a crucial role in early human pregnancy, particularly in embryo implantation, survival, and growth. However, invasion and infection by pathogens can lead to endometritis, infertility, and poor reproductive outcomes. Understanding the mechanisms of endometritis and its impact on fertility remains limited. An infection model using patient-derived endometrial epithelial gland organoids (EEGOs) was established to advance in vitro studies on endometritis and related infertility. Methods An EEGOs infection model was constructed and characterized from human endometrium, treating the organoids with estrogen and progesterone to observe changes in the proliferative and secretory phases. The organoids were infected with E. coli, and the release of inflammatory cytokines in the supernatant was detected using ELISA. RNA-seq was employed to analyze the differences before and after E. coli treatment, and differential gene mRNA expression was validated using real-time quantitative PCR. Additionally, the effect of E2 in alleviating inflammation was assessed through markers of receptivity (PAEP, LIF, ITGβ), proliferation (Ki67), and barrier repair (ZO-1). Results The constructed human EEGOs exhibited long-term expansion capability, genetic stability, and characteristic hormonal responses, strongly expressing epithelial markers (MUC1, E-Cadherin). After E. coli infection, the expression levels of inflammatory cytokines TNF-α, IL-8, and IFN-γ increased significantly (P < 0.05). RNA-seq indicated that the MAPK signaling pathway was activated post-infection, with increased expression levels of heat shock proteins and transcription factor mRNA. E2 treatment post-infection significantly decreased the mRNA expression of inflammatory genes IL-1β, IL8, IL6 and TNF-α compared to the E. coli infected group (P < 0.05). Additionally, the expression of genes related to receptivity, proliferation, and barrier repair was enhanced in the E2-treated organoids. Conclusions Our findings demonstrate that patient-derived EEGOs are responsive to bacterial infection and are effective models for studying host-pathogen interactions in bacterial infections. These organoids revealed the anti-inflammatory potential of E2 in alleviating E. coli-induced inflammation, providing insights into the mechanisms of endometritis and its impact on infertility. The study supports the use of EEGOs as valuable tools for understanding endometrial health and developing targeted treatments.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Li Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ting Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhan Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiang Shang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Huihui Bai
- Department of Clinical Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yong Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaonan Zong
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenguang Shang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Dan Song
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China
| | - Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
3
|
Guo Z, Zeng Q, Li Q, Shan B, Huo Y, Shi X, Li Q, Du X. LncRNA NORFA promotes the synthesis of estradiol and inhibits the apoptosis of sow ovarian granulosa cells through SF-1/CYP11A1 axis. Biol Direct 2024; 19:107. [PMID: 39523350 PMCID: PMC11552157 DOI: 10.1186/s13062-024-00563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Biosynthesis of 17β-estradiol (E2) is a crucial ovarian function in mammals, which is essential for follicular development and pregnancy outcome. Exploring the epigenetic regulation of E2 synthesis is beneficial for maintaining ovary health and the optimal reproductive traits. NORFA is the first validated sow fertility-associated long non-coding RNA (lncRNA). However, its role on steroidogenesis is elusive. The aim of this study is to investigate the regulation and underlying mechanism of NORFA to E2 synthesis in sow granulosa cells (GCs). RESULTS Through Pearson correlation analysis and comparative detection, we found that NORFA expression was positively correlated with the levels of pregnenolone (PREG) and E2 in follicles, which also exhibited similar alteration patterns during follicular atresia. ELISA was conducted and indicated for the first time that NORFA induced the synthesis of PREG and E2 in sow GCs in a dose- and time-dependent manner. RNA-seq, GSEA and quantitative analyses results validated that CYP11A1, the coding gene of P450SCC which is the first step rate-limiting enzyme of E2 synthesis, was a positive functional target of NORFA. Mechanistically, NORFA promotes SF-1 expression by stabilizing NR5A1 mRNA through directly interacting with its 3'-UTR, and also tethers SF-1 to shuttle into nucleus. Additionally, SF-1 in the nucleus activates CYP11A1 transcription by directly binding to its promoter, which ultimately induces E2 synthesis and inhibits GC apoptosis. CONCLUSION Our findings highlight that NORFA, a multifunctional lncRNA, induces E2 synthesis and inhibits GC apoptosis through the SF-1/CYP11A1 axis in a ceRNA-independent manner, which provide valuable clues and potential targets for follicular atresia inhibition and female fertility improvement.
Collapse
Affiliation(s)
- Zhennan Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qiang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qiqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, Jiangsu, 212400, China
| | - Baosen Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yangan Huo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoli Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- National Experimental Teaching Demonstration Center for Animal Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
4
|
Xia L, Zhou S, Han L, Sun W, Sun H. Joint association of air pollutants on cardiometabolic multimorbidity. Sci Rep 2024; 14:26987. [PMID: 39506041 PMCID: PMC11542023 DOI: 10.1038/s41598-024-77886-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
We estimated the association between combined exposure to air pollutants and the development of cardiometabolic multimorbidity (CM) and all-cause mortality. An air pollution score was calculated to determine the combined exposure to five air pollutants. CM was defined as the instance of at least two types of diseases. A genetic risk score (GRS) was calculated for each individual. A multistate regression model was used to investigate the effect of the combined associations of air pollutants on each stage of CM progression. After multivariable adjustment, the air pollution score was related with greater susceptibility of CM and all-cause mortality, and those with a high GRS for cardiovascular disease (CVD) or coronary heart disease (CHD) and a high air pollution score had a greater susceptibility of incident CM and all-cause mortality. The multistate model revealed that the greater air pollution score was connected with the susceptibility of progressing from disease-free baseline to having one cardiometabolic disease, and next to CM, and eventually to death. Combined exposure to five air pollutants were related with greater susceptibility of CM and all-cause mortality in a dose-dependent style and is related with the progression of CM and with all-cause mortality.
Collapse
Affiliation(s)
- Liang Xia
- Department of Gynecology, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Shan Zhou
- Department of Endocrinology, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Liyuan Han
- Department of Gynecology, Ningbo No.2 Hospital, Ningbo, 315010, Zhejiang, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University, Ningbo, 315000, Zhejiang, China
| | - Weifeng Sun
- Department of Cardiology, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China.
| | - Hongpeng Sun
- School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Cui P, Li D, Shi L, Yan H, Li T, Liu C, Wang W, Zheng H, Ding N, Li X, Li R, Shi Y, Wang X, Fu H, Qiu Y, Li R, Shi D. Cardiovascular comorbidities among patients with psoriasis: a national register-based study in China. Sci Rep 2024; 14:19683. [PMID: 39181937 PMCID: PMC11344856 DOI: 10.1038/s41598-024-70707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
This study aims to illustrate epidemiology of comorbid CVD in the real-world clinical setting of patients with psoriasis in China. We used data of adult patients with psoriasis who were registered in the register of China National Clinical Center for Skin and Immune Diseases between August 2020 and September 2021. Psoriasis was clinically diagnosed following the national guidelines. Univariate and multivariate logistic regression models were used to examine the factors associated with comorbid CVD in patients with psoriasis. Of the 11,560 psoriasis patients (age ≥ 18 years, mean age 41.87 years, 64.88% males), 236 were ascertained with CVD, with the overall prevalence being 2.62%. Multivariate logistic regression analysis suggested that the odds ratio (95% confidence interval) of CVD in psoriasis patients was 2.27 (2.03-2.54) for older age (per 10-year increment), 0.65 (0.48-0.90) for female, 2.07 (1.39-3.06) for obesity (BMI ≥ 28 vs. < 24 kg/m2), 2.55 (1.85-2.52) for smoking, 7.63 (5.86-9.94) for hypertension, 4.27 (3.76-4.85) for diabetes, 1.14 (1.00-1.30) for having a history of drug allergy, 2.27 (1.61-3.20) for having family history of psoriasis, and 1.76 (1.16-2.67) for severe disease (severe vs. mild) with a dose-response relationship (Ptrend < 0.001). In patients with psoriasis, comorbid CVD was associated with smoking, obesity, hypertension, diabetes, history of drug allergy, family history of psoriasis, and the psoriasis severity.
Collapse
Affiliation(s)
- Ping Cui
- School of Public Health, Jining Medical University, Jining, 272067, Shandong, China
| | - Dengli Li
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Leyao Shi
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
- The Laboratory of Medical Mycology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Hongxia Yan
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Tianhang Li
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Wei Wang
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Haiyan Zheng
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Na Ding
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Xiaohui Li
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Ran Li
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Yunrong Shi
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Xiaoqing Wang
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Hongjun Fu
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Ying Qiu
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China
| | - Ruoyu Li
- The National Clinical Research Register Center for Skin and Immune Diseases, Beijing, China
| | - Dongmei Shi
- Department of Dermatology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China.
- The Laboratory of Medical Mycology, Jining No.1 People's Hospital, Jining, 272067, Shandong, China.
- The National Clinical Research Register Center for Skin and Immune Diseases, Beijing, China.
- Jining No.1 People's Hospital, Jining, 272011, Shandong, China.
| |
Collapse
|
6
|
Sun W, Han Y, Gu S. Effects of five types of exercise on vascular function in postmenopausal women: a network meta-analysis and systematic review of 32 randomized controlled trials. PeerJ 2024; 12:e17621. [PMID: 39026541 PMCID: PMC11257064 DOI: 10.7717/peerj.17621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
Background As women age, especially after menopause, cardiovascular disease (CVD) prevalence rises, posing a significant global health concern. Regular exercise can mitigate CVD risks by improving blood pressure and lipid levels in postmenopausal women. Yet, the optimal exercise modality for enhancing vascular structure and function in this demographic remains uncertain. This study aims to compare five exercise forms to discern the most effective interventions for reducing cardiovascular risk in postmenopausal women. Methods The study searched PubMed, Web of Science, Cochrane, EBSCO, and Embase databases. It conducted a network meta-analysis (NMA) of randomized controlled trials (RCTs) on five exercise interventions: continuous endurance training (CET), interval training (INT), resistance training (RT), aerobic combined with resistance training (CT), and hybrid-type training (HYB). Outcome measures included carotid artery intima-media thickness (IMT), nitric oxide (NO), augmentation index (AIx), pulse wave velocity (PWV), and flow-mediated dilatation (FMD) of the brachial artery. Eligible studies were assessed for bias using the Cochrane tool. A frequentist random-effects NMA was employed to rank exercise effects, calculating standardized mean differences (SMDs) with 95% confidence intervals (CIs). Results The analysis of 32 studies (n = 1,427) indicates significant increases in FMD with CET, INT, RT, and HYB in postmenopausal women. Reductions in PWV were significant with CET, INT, RT, CT, and HYB. AIx decreased significantly with INT and HYB. CET, INT, and CT significantly increased NO levels. However, no significant reduction in IMT was observed. SUCRA probabilities show INT as most effective for increasing FMD, CT for reducing PWV, INT for decreasing AIx, CT for lowering IMT, and INT for increasing NO in postmenopausal women. Conclusion The study demonstrates that CET, INT, RT, and HYB have a significant positive impact on FMD in postmenopausal women. Furthermore, all five forms of exercise significantly enhance PWV in this population. INT and HYB were found to have a significant positive effect on AIx in postmenopausal women, while CET, INT, and CT were found to significantly improve NO levels. For improving vascular function in postmenopausal women, it is recommended to prioritize INT and CT exercise modalities. On the other hand, as CET and RT were not ranked at the top of the Sucra value ranking in this study and were less effective than INT and CT as exercise interventions to improve vascular function in postmenopausal women, it is not recommended that CET and RT be considered the preferred exercise modality.
Collapse
Affiliation(s)
- Weihao Sun
- Beijing Sport University, Beijing, China
| | - Yanli Han
- Beijing Sport University, Beijing, China
| | - Song Gu
- Beijing Sport University, Beijing, China
| |
Collapse
|
7
|
Li X, Yang H, Zhang P, Cheng Q, Tong S, Lu X, Wu H. Dietary anthocyanin is associated with a lower prevalence of hyperuricemia independently of metabolic syndrome among females: Results from NHANES 2007-2010 and 2017-2018. Int J Rheum Dis 2024; 27:e15193. [PMID: 38742430 DOI: 10.1111/1756-185x.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Known for anti-inflammatory and antioxidant properties, flavonoid has phytoestrogenic effects, but it is unclear whether its role in hyperuricemia and metabolic syndrome (MetS) differs by gender. Moreover, given the strong association between hyperuricemia and MetS, we aimed to explore whether flavonoid is a protective factor for hyperuricemia, independently of MetS, in different genders. METHODS Data for 2007-2010 and 2017-2018 were obtained from the National Health and Nutrition Examination Survey (NHANES) and the Food and Nutrient Database for Dietary Studies (FNDDS). To assess the association among flavonoid, hyperuricemia, and MetS, multivariate logistic regression and subgroup analyses were conducted. Besides, to investigate whether the association between flavonoid and hyperuricemia was independent of MetS, multivariate logistic regression models were further conducted to explore the association between flavonoid and MetS among females with hyperuricemia and to investigate the association between flavonoid and hyperuricemia among females after excluding MetS. RESULT Among 5356 females, anthocyanin intake was inversely associated with the prevalence of hyperuricemia (Q4 vs. Q1: OR 0.49, 95% CI 0.31 to 0.76), and MetS (Q4 vs. Q1: OR 0.68, 95% CI 0.50 to 0.93). Furthermore, subgroup analyses showed the beneficial association between anthocyanin and hyperuricemia among females aged 40 to 59 years and menopausal. However, among 5104 males, no significant association was observed after adjustment for covariates (Q4 vs. Q1: OR 0.81, 95% CI 0.56 to 1.18). While in 372 females with hyperuricemia, no significant association was found between MetS and anthocyanin (Q4 vs. Q1: OR 0.88, 95% CI 0.31 to 2.49). Meanwhile, among 3335 females after excluding MetS, there was still a significant association between anthocyanin and a lower prevalence of hyperuricemia (Q4 vs. Q1: OR 0.38, 95% CI 0.17 to 0.85). CONCLUSION Dietary anthocyanin is associated with a lower prevalence of hyperuricemia independently of MetS among females. Foods rich in anthocyanin should be emphasized for females, especially those aged 40 to 59 years and menopausal, which may be of potential significance in the prevention of hyperuricemia.
Collapse
Affiliation(s)
- Xin Li
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Yang
- Department of Internal Medicine, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Peiyu Zhang
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuting Tong
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Lu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Wang S, Shi H, Luo L, He H. Characteristics and correlation of body fat distribution and brachial-ankle pulse wave velocity in adults aged 20-59 years: a cross-sectional study. BMC Cardiovasc Disord 2024; 24:5. [PMID: 38166618 PMCID: PMC10763480 DOI: 10.1186/s12872-023-03597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Fat distribution is closely related to vascular stiffness. This study aimed to investigate age and sex differences in fat distribution and brachial-ankle pulse wave velocity (baPWV), and the association between fat parameters and baPWV. METHODS A total of 10,811 participants aged 20-59 years were recruited. Measures included waist and hip circumference, waist-to-hip ratio (WHR), body mass index (BMI), percentage body fat (PBF), subcutaneous fat area (SFA), visceral fat area (VFA), and baPWV. RESULTS The results confirm that fat accumulates with age and that men tend to carry more abdominal fat than women in the same age group. The findings also indicate that baPWV increases with age and is significantly higher in men than in women in the same age group. In addition, WHR, VFA, and baPWV were more strongly correlated than baPWV and BMI, SFA, and PBF. Finally, the effects of age, PBF, WHR, and VFA on baPWV were greater for the higher quantiles. CONCLUSIONS There are age and sex differences in fat distribution and baPWV. Abdominal obesity is more closely linked to arterial stiffness than overall obesity, and people with higher baPWV are more affected by obesity parameters.
Collapse
Affiliation(s)
- Shengya Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Haiyan Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Laiyuan Luo
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, 100084, China
| | - Hui He
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
9
|
Youngblood H, Schoenlein PV, Pasquale LR, Stamer WD, Liu Y. Estrogen dysregulation, intraocular pressure, and glaucoma risk. Exp Eye Res 2023; 237:109725. [PMID: 37956940 PMCID: PMC10842791 DOI: 10.1016/j.exer.2023.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Characterized by optic nerve atrophy due to retinal ganglion cell (RGC) death, glaucoma is the leading cause of irreversible blindness worldwide. Of the major risk factors for glaucoma (age, ocular hypertension, and genetics), only elevated intraocular pressure (IOP) is modifiable, which is largely regulated by aqueous humor outflow through the trabecular meshwork. Glucocorticoids such as dexamethasone have long been known to elevate IOP and lead to glaucoma. However, several recent studies have reported that steroid hormone estrogen levels inversely correlate with glaucoma risk, and that variants in estrogen signaling genes have been associated with glaucoma. As a result, estrogen dysregulation may contribute to glaucoma pathogenesis, and estrogen signaling may protect against glaucoma. The mechanism for estrogen-related protection against glaucoma is not completely understood but likely involves both regulation of IOP homeostasis and neuroprotection of RGCs. Based upon its known activities, estrogen signaling may promote IOP homeostasis by affecting extracellular matrix turnover, focal adhesion assembly, actin stress fiber formation, mechanosensation, and nitric oxide production. In addition, estrogen receptors in the RGCs may mediate neuroprotective functions. As a result, the estrogen signaling pathway may offer a therapeutic target for both IOP control and neuroprotection. This review examines the evidence for a relationship between estrogen and IOP and explores the possible mechanisms by which estrogen maintains IOP homeostasis.
Collapse
Affiliation(s)
- Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Patricia V Schoenlein
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; Department of Radiology and Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Surgery, Augusta University, Augusta, GA, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Daniel Stamer
- Department of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.
| |
Collapse
|
10
|
Wang Z, Xue Y, Qian S, Liu Y, Zhu J, Sun L, Zhang H, Li H. Differences between sexes in patients who underwent total arch replacement and frozen elephant trunk procedures for acute dissection. Perfusion 2023; 38:1478-1491. [PMID: 35941723 DOI: 10.1177/02676591221118322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To analyze the effect of sex on the short-time prognosis in two different age subgroups (≤55 years old and >55 years old). METHODS From January 2009 to 2019, 1522 patients with DeBakey I acute aortic dissection (AAD) underwent frozen elephant trunk and total arch replacement at a Tertiary Center in China were divided into female group (n = 324) and male group (n = 1198). The demographic characteristics, clinical presentation, management, short-term outcomes were described in the different sex groups. The risk factors of 30-days mortality for females and males were identified by univariate and multivariable logistic regression analysis. Then, random Forest regression was used to analyze the association between age and 30-days mortality in the different sexes groups. The cut-off age for 30-days mortality in females was then identified as 55 years. The patients were divided into two subgroups: young patients (≤55 years old) and elderly patients (>55 years old). Clinical prognosis between different sex groups was further compared in the age subgroups. RESULTS Approximately four-fifths of the patients were males. Males with DeBakey I AAD were younger than females (47 vs 52 years; p < 0.01). The proportion of males gradually declined with age. The cut-off age for 30-days mortality in females and males was identified as 55 years old and 63 years old, respectively. In young patients (≤55 years old), the 30-days mortality rate for females was lower than males (hazard ratio [HR, 2.02, p < 0.05). Following adjustment using the multivariable Cox regression analysis, females were identified as an independent protective factor for 30-days mortality (HR, 2.24, p = 0.03). CONCLUSIONS Our study showed that females present with DeBakey I AAD less frequently than males and they tend to present with DeBakey AAD later in life. In young patients, females had better early outcomes despite similar time for symptom onset to diagnosis and surgical technique than males.
Collapse
Affiliation(s)
- Zeling Wang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuan Xue
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Xu T, Cai J, Wang L, Xu L, Zhao H, Wang F, Meyron-Holtz EG, Missirlis F, Qiao T, Li K. Hormone replacement therapy for postmenopausal atherosclerosis is offset by late age iron deposition. eLife 2023; 12:e80494. [PMID: 37561022 PMCID: PMC10414966 DOI: 10.7554/elife.80494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
Postmenopausal atherosclerosis (AS) has been attributed to estrogen deficiency. However, the beneficial effect of hormone replacement therapy (HRT) is lost in late postmenopausal women with atherogenesis. We asked whether aging-related iron accumulation affects estrogen receptor α (ERα) expression, thus explaining HRT inefficacy. A negative correlation has been observed between aging-related systemic iron deposition and ERα expression in postmenopausal AS patients. In an ovariectomized Apoe-/- mouse model, estradiol treatment had contrasting effects on ERα expression in early versus late postmenopausal mice. ERα expression was inhibited by iron treatment in cell culture and iron-overloaded mice. Combined treatment with estradiol and iron further decreased ERα expression, and the latter effect was mediated by iron-regulated E3 ligase Mdm2. In line with these observations, cellular cholesterol efflux was reduced, and endothelial homeostasis was disrupted. Consequently, AS was aggravated. Accordingly, systemic iron chelation attenuated estradiol-triggered progressive AS in late postmenopausal mice. Thus, iron and estradiol together downregulate ERα through Mdm2-mediated proteolysis, providing a potential explanation for failures of HRT in late postmenopausal subjects with aging-related iron accumulation. This study suggests that immediate HRT after menopause, along with appropriate iron chelation, might provide benefits from AS.
Collapse
Affiliation(s)
- Tianze Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jing Cai
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Li Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing UniversityNanjingChina
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing UniversityNanjingChina
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
| | - Esther G Meyron-Holtz
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of TechnologyHaifaIsrael
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, CinvestavMexicoMexico
| | - Tong Qiao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Kuanyu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing UniversityNanjingChina
| |
Collapse
|
12
|
Folahan JT, Olorundare OE, Ajayi AM, Oyewopo AO, Soyemi SS, Adeneye AA, Okoye II, Afolabi SO, Njan AA. Oxidized dietary lipids induce vascular inflammation and atherogenesis in post-menopausal rats: estradiol and selected antihyperlipidemic drugs restore vascular health in vivo. Lipids Health Dis 2023; 22:107. [PMID: 37495992 PMCID: PMC10369757 DOI: 10.1186/s12944-023-01818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Thermoxidation of edible oil through deep fat frying results in the generation of several oxidized products that promote lipid peroxidation and ROS production when eaten. Consumption of thermoxidized oil in post-menopausal conditions where the estrogen level is low contributes to cardiovascular disease. This study evaluates the role of estradiol and antihyperlipidemic agents (AHD) in restoring the vascular health of ovariectomized (OVX) rats fed with thermoxidized palm oil (TPO) and thermoxidized soya oil (TSO) diets. METHOD A total of 10 groups of rats (n = 6) were set up for the experiment. Group I (normal control) rats were sham handled while other groups were OVX to bring about estrogen deficient post-menopausal state. Group II (OVX only) was not treated and received normal rat chow. Groups III-X were fed with either TPO or TSO diet for 12 weeks and treated with estradiol (ETD) 0.2 mg/kg/day, atorvastatin (ATV) 10 mg/kg/day, and a fixed-dose combination of ezetimibe and ATV (EZE 3 mg/kg/day + ATV 10 mg/kg/day). RESULTS Pro-atherogenic lipids levels were significantly elevated in untreated TSO and TPO groups compared to OVX and sham, resulting in increased atherogenic and Coronary-risk indices. Treatment with Estradiol and AHDs significantly reduced the total cholesterol, triglycerides, low-density lipoprotein cholesterol as well as AI and CRI compared to untreated TSO and TPO groups, whereas TSO and TPO groups showed significant elevation in these parameters compared to Group I values. Moreover, aortic TNF-α levels were extremely elevated in the untreated TSO and TPO compared to Group I. TNF-α levels were significantly reduced in rats treated with AHDs and ETD. Localized oxidative stress was indicated in the aortic tissues of TSO and TPO-fed OVX rats by increased malondialdehyde and decreased glutathione, catalase, and superoxide dismutase levels. This contributed to a depletion in aortic nitric oxide. AHDs and ETD replenished the nitric oxide levels significantly. Histological evaluation of the aorta of TSO and TPO rats revealed increased peri-adventitia fat, aortic medial hypertrophy, and aortic recanalization. These pathologic changes were less seen in AHDs and ETD rats. CONCLUSION This study suggests that ETD and AHDs profoundly attenuate oxidized lipid-induced vascular inflammation and atherogenesis through oxidative-stress reduction and inhibition of TNF-α signaling.
Collapse
Affiliation(s)
- Joy Temiloluwa Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71209, USA
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| | - Olufunke Esan Olorundare
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria.
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Adeoye Oyetunji Oyewopo
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara- State, Nigeria
| | - Sunday Sokunle Soyemi
- Department of Pathology and Forensic Medicine, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Adejuwon Adewale Adeneye
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Ikechukwu Innocent Okoye
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Lagos State University College of Medicine, Ikeja, Nigeria
| | - Saheed Olanrewaju Afolabi
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| | - Anoka Ayembe Njan
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara-State, Nigeria
| |
Collapse
|
13
|
Ma W, Zhu H, Yu X, Zhai X, Li S, Huang N, Liu K, Shirai K, Sheerah HA, Cao J. Association between android fat mass, gynoid fat mass and cardiovascular and all-cause mortality in adults: NHANES 2003-2007. Front Cardiovasc Med 2023; 10:1055223. [PMID: 37273879 PMCID: PMC10233278 DOI: 10.3389/fcvm.2023.1055223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Objectives Evidence of the relationship between android fat mass and gynoid fat mass with the mortality prediction is still limited. Current study analyzed the NHANES database to investigate the relationship between android fat mass, gynoid fat mass and CVD, with all-cause mortality. Method The study subjects were NHANES participants over 20 years old, two indicators of regional body composition, android fat and gynoid fat were measured by Dual Energy x-ray Absorptiometry (DEXA). The other various covariates data obtained from the NHANES questionnaire and laboratory measurements, including age, gender, education, race/ethnicity, uric acid, total serum cholesterol, albumin, Vitamin C, folate, alcohol drinking, smoking status, history of diabetes, and hypertension. Mortality status was ascertained from a linked mortality file prepared by the National Center for Health Statistics. The study population was divided quartiles based on the distribution of android fat mass and gynoid fat mass. The relationship between these two indicators with cardiovascular and all-cause mortality was investigated by using Cox regression. The covariates age, gender, smoking status, drinking status, history of diabetes, and history of hypertension were stratified. Results In the fully adjusted model, Q3 had the lowest HR in android fat mass and gynoid fat mass. When examining the relationship between android fat mass and CVD mortality, current smokers and drinkers had the lowest CVD risk in Q2 [smoking: 0.21 (0.08, 0.52), drinking: 0.14 (0.04, 0.50)]. In diabetic patients, compared with Q1, other groups with increased android fat mass can significantly reduce the risk of CVD [Q4: 0.17 (0.04, 0.75), Q3: 0.18 (0.03, 1.09), Q2: 0.27 (0.09, 0.83)]. In ≥60 years old and female, the greater the gynoid fat mass, the smaller the HR of all-cause mortality [Q4 for ≥60 years old: 0.57 (0.33, 0.96), Q4 for female: 0.37 (0.23, 0.58)]. People <60 years old had a lower risk of all-cause mortality with gynoid fat mass in Q3 than those ≥60 years old [<60 years: 0.50 (0.27, 0.91), ≥60 years: 0.65 (0.45, 0.95)]. Among subjects without hypertension, the group with the largest android fat mass had the lowest risk of CVD mortality, and the group with the largest gynoid fat mass had the lowest risk of all-cause mortality [Android fat mass: 0.36 (0.16, 0.81), gynoid fat mass: 0.57 (0.39, 0.85)]. Conclusion Moderate android fat mass and gynoid fat mass (Q3) had the most protective effect. Smokers and drinkers need to control their body fat. Being too thin is harmful to people with diabetes. Increased gynoid fat mass is a protective factor for all-cause mortality in older adults and females. Young people's gynoid fat mass is more protective in the moderate range than older people's. If no high blood pressure exists, people with more android and gynoid fat mass have a lower risk of CVD or all-cause mortality.
Collapse
Affiliation(s)
- Wenzhi Ma
- School of Public Health, Wuhan University, Wuhan, China
| | - Huiping Zhu
- School of Public Health, Capital Medical University, Beijing, China
| | - Xinyi Yu
- School of Public Health, Capital Medical University, Beijing, China
| | - Xiaobing Zhai
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Shiyang Li
- School of Public Health, Wuhan University, Wuhan, China
| | - Nian Huang
- School of Public Health, Wuhan University, Wuhan, China
| | - Keyang Liu
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita-shi, Japan
| | - Kokoro Shirai
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita-shi, Japan
| | - Haytham A. Sheerah
- Assistant Deputyship for International Collaborations, Ministry of Health, Riyadh, Saudi Arabia
| | - Jinhong Cao
- School of Management, Hubei University of Chinese Medicine, Wuhan, China
- Research Center for the Development of Chinese Medicine, Hubei Province Project of Key Research Institute of Humanities and Social Sciences at Universities, Wuhan, China
| |
Collapse
|
14
|
Chen S, Tao Y, Wang P, Li D, Shen R, Fu G, Wei T, Zhang W. Association of urinary bisphenol A with cardiovascular and all-cause mortality: National Health and Nutrition Examination Survey (NHANES) 2003-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51217-51227. [PMID: 36807039 DOI: 10.1007/s11356-023-25924-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023]
Abstract
Bisphenol A (BPA), one of the most widely consumed endocrine disrupting chemicals, has been found to be associated with a variety of diseases, especially cardiovascular diseases. However, few studies have investigated the association of BPA with long-term health outcomes. This study analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2003-2016. The NHANES data were linked to mortality data (with a follow-up point of December 31, 2019). The urinary BPA concentration was estimated by adjusting for urinary creatinine (BPA/Cr, ng/mg). Complex sampling-weighted multivariate Cox proportional hazards models were used to compare the hazard ratios (HRs) of cardiovascular and all-cause mortality among participants with different urinary BPA concentrations. This study included 9243 adult participants. The median follow-up duration was 9.1 years. During this period, 1200 all-cause deaths occurred, of which 374 were cardiovascular deaths. Compared to the lowest BPA/Cr quartile group, the adjusted HRs of the highest BPA/Cr quartile group were 1.76 (95% CI, 1.23-2.52) for cardiovascular mortality and 1.21 (95% CI, 0.98-1.49) for all-cause mortality. In addition, there was a significant interaction between sex and BPA/Cr (P for interaction = 0.044) for the risk of cardiovascular mortality. The adjusted HR for cardiovascular mortality in female participants was 2.80 (95% CI, 1.56-5.02), while that in male participants was only 1.34 (95% CI, 0.79-2.24). Higher urinary BPA is associated with an increased risk of cardiovascular mortality among US adults. The effect of BPA on cardiovascular mortality may be more pronounced in women than in men.
Collapse
Affiliation(s)
- Shuaijie Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Yecheng Tao
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Duanbin Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Ruming Shen
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Tiemin Wei
- Department of Cardiology, Lishui Hospital, College of Medicine, Zhejiang University, Lishui, China
| | - Wenbin Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Meng Q, Bi Y, Feng H, Ding X, Zhang S, Chen Q, Wang L, Zhang Q, Li Y, Tong H, Wu L, Bian H. Activation of estrogen receptor α inhibits TLR4 signaling in macrophages and alleviates the instability of atherosclerotic plaques in the postmenopausal stage. Int Immunopharmacol 2023; 116:109825. [PMID: 36764277 DOI: 10.1016/j.intimp.2023.109825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Acute cardiovascular events increase significantly in postmenopausal women. The relationship between estrogen receptor (ER) and plaque stability in the postmenopausal stage remains to be elucidated. We aimed to explore whether ERα activation improves plaque instability in the postmenopausal stage. Here, we report that postmenopausal women showed increased macrophage activation and plaque instability with increased MCP-1, MMP9, TLR4, MYD88 and NF-κB p65 and decreased ERα and TIMP1 expression in the vascular endothelium. Moreover, ovariectomy in LDLR-/- mice resulted in a significant increase in plaque area and necrotic core area, as well as a significant decrease in collagen content and an increase in macrophage accumulation in the artery. Ovariectomy also reduced serum estrogen levels and ERα expression and upregulated TLR4 and MMP9 expression in arteries in LDLR-/- mice. Estrogen or phytoestrogen therapy upregulated the expression level of ERα in ovariectomized mice and increased plaque stability by inhibiting macrophage accumulation and TLR4 signaling. In vitro, LPS incubation of RAW264.7 cells resulted in a significant decrease in ERα and TIMP1 expression and an increase in TLR4 activation, and estrogen or phytoestrogen treatment increased ERα and TIMP1 expression and inhibited TLR4 activation and MMP9 expression in LPS-treated RAW264.7 cells. Compared to control siRNA transfected RAW264.7 cells, TLR4 siRNA promoted TIMP1 expression in RAW264.7 cells with LPS incubation, but did not affect ERα expression in RAW264.7 cells with or without LPS treatment. The ERα inhibitor MPP abolished the regulatory effect of estrogen or phytoestrogen on LPS-induced RAW264.7 cells. In conclusion, the present study demonstrates that decreased ERα expression promotes macrophage infiltration and plaque instability in the postmenopausal stage, and activation of ERα in the postmenopausal stage alleviates atherosclerotic plaque instability by inhibiting TLR4 signaling and macrophage-related inflammation.
Collapse
Affiliation(s)
- Qinghai Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunhui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Han Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shurui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huangjin Tong
- Department of Pharmacy, Jiangsu Province Hospital of Integrated of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Lixing Wu
- Department of Cardiovascular, Jiangsu Province Hospital of Integrated of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
16
|
Wetzel C, Pfeffer T, Bulkescher R, Zemva J, Modafferi S, Polimeni A, Salinaro AT, Calabrese V, Schmitt CP, Peters V. Anserine and Carnosine Induce HSP70-Dependent H 2S Formation in Endothelial Cells and Murine Kidney. Antioxidants (Basel) 2022; 12:antiox12010066. [PMID: 36670928 PMCID: PMC9855136 DOI: 10.3390/antiox12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Anserine and carnosine have nephroprotective actions; hydrogen sulfide (H2S) protects from ischemic tissue damage, and the underlying mechanisms are debated. In view of their common interaction with HSP70, we studied possible interactions of both dipeptides with H2S. H2S formation was measured in human proximal tubular epithelial cells (HK-2); three endothelial cell lines (HUVEC, HUAEC, MCEC); and in renal murine tissue of wild-type (WT), carnosinase-1 knockout (Cndp1-KO) and Hsp70-KO mice. Diabetes was induced by streptozocin. Incubation with carnosine increased H2S synthesis capacity in tubular cells, as well as with anserine in all three endothelial cell lines. H2S dose-dependently reduced anserine/carnosine degradation rate by serum and recombinant carnosinase-1 (CN1). Endothelial Hsp70-KO reduced H2S formation and abolished the stimulation by anserine and could be restored by Hsp70 transfection. In female Hsp70-KO mice, kidney H2S formation was halved. In Cndp1-KO mice, kidney anserine concentrations were several-fold and sex-specifically increased. Kidney H2S formation capacity was increased 2-3-fold in female mice and correlated with anserine and carnosine concentrations. In diabetic Cndp1-KO mice, renal anserine and carnosine concentrations as well as H2S formation capacity were markedly reduced compared to non-diabetic Cndp1-KO littermates. Anserine and carnosine induce H2S formation in a cell-type and Hsp70-specific manner within a positive feedback loop with CN1.
Collapse
Affiliation(s)
- Charlotte Wetzel
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tilman Pfeffer
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ruben Bulkescher
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Johanna Zemva
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Alessandra Polimeni
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
17
|
Kim K, Tsai AC, Sumner JA, Jung SJ. Posttraumatic stress disorder, cardiovascular disease outcomes and the modifying role of socioeconomic status. J Affect Disord 2022; 319:555-561. [PMID: 36174781 DOI: 10.1016/j.jad.2022.09.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Substantial evidence indicates that post-traumatic stress disorder (PTSD) is associated with an increased incidence of cardiovascular disease (CVD), and differential PTSD-CVD association by socioeconomic status had been suggested. However, there are inadequate evidence on differential association. This study investigated sociodemographic heterogeneity in the association between PTSD and CVD. METHODS A total of 53,749 patients diagnosed with PTSD in 2004-2018 were recruited from Korean National Health Insurance Database. Date of first diagnosis of PTSD was set as an index date. We recruited 3 controls per each patient, matched by age and sex (N = 161,247). Monthly insurance premiums were used as a surrogate variable for socioeconomic status. Cox proportional hazard model was used to estimate the hazard of incident coronary artery disease, incident stroke, and cardiovascular mortality. We stratified participants by age, sex, and insurance premium to test heterogeneities in the association. RESULTS PTSD was associated with increased risk for coronary artery disease, hemorrhagic stroke, and cardiovascular mortality. Elevation in risk of cardiovascular disease was more prominent in younger individuals. PTSD increased the risk of coronary artery disease and ischemic stroke more in individuals with lower SES, especially in men. LIMITATIONS Insurance premium might not fully represent socioeconomic status of individual. Misclassification or misdiagnosis of PTSD by might have introduced biases. CONCLUSIONS PTSD was associated with increased incidence of CVD, particularly in male patients with low SES. For PTSD patients with lower SES, preventive measures against cardiovascular disease would be able to decrease the disease burden of cardiovascular comorbidity in PTSD.
Collapse
Affiliation(s)
- Kwanghyun Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Alexander C Tsai
- Center for Global Health, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard Center for Population and Development Studies, Cambridge, MA, USA
| | - Jennifer A Sumner
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sun Jae Jung
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea; Center for Global Health, Massachusetts General Hospital, Boston, MA, USA; Harvard Center for Population and Development Studies, Cambridge, MA, USA.
| |
Collapse
|
18
|
Targeted activation of GPER enhances the efficacy of venetoclax by boosting leukemic pyroptosis and CD8+ T cell immune function in acute myeloid leukemia. Cell Death Dis 2022; 13:915. [PMID: 36316313 PMCID: PMC9622865 DOI: 10.1038/s41419-022-05357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Acute myeloid leukemia (AML) is a rapidly progressing and often fatal hematopoietic malignancy. Venetoclax (VEN), a recent FDA-approved BCL-2 selective inhibitor, has high initial response rates in elderly AML patients, but the majority of patients eventually acquire resistance. Multiple studies have demonstrated that the female sex is associated with better outcomes in patients with AML, which are predominantly attributed to estrogen signaling. As a novel membrane estrogen receptor, G protein-coupled estrogen receptor (GPER)-mediated-rapid estrogen effects have attracted considerable attention. However, whether targeting GPER enhances the antileukemic activity of VEN is unknown. In this study, we first demonstrated that GPER expression was dramatically reduced in AML cells owing to promoter hypermethylation. Furthermore, pharmacological activation of GPER by G-1 combined with VEN resulted in synergistic antileukemic activity in vitro and in vivo. Mechanistically, G-1/VEN combination synergistically triggered concurrent mitochondria-related apoptosis and gasdermin E (GSDME)-dependent pyroptosis by activating p38-MAPK/myeloid cell leukemia 1 (MCL-1) axis. Importantly, leukemic pyroptosis heightened CD8+ T cell immune function by releasing interleukin (IL)-1β/18 into the tumor microenvironment. Our study corroborates that GPER activation shows a synergistic antileukemic effect with VEN, making it a promising therapeutic regimen for AML.
Collapse
|
19
|
Shuaishuai D, Jingyi L, Zhiqiang Z, Guanwei F. Sex differences and related estrogenic effects in heart failure with preserved ejection fraction. Heart Fail Rev 2022:10.1007/s10741-022-10274-2. [PMID: 36190606 DOI: 10.1007/s10741-022-10274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an essential subtype of heart failure accounting for 40% of the total. However, the related pathological mechanism and drug therapy research have been stagnant for a long time. The direct cause of this dilemma is the heterogeneity of HFpEF. And some researchers believe that there is no common pathway to reach the origin of HFpEF; others argue that there is an unidentified unified pathophysiological process hidden beneath the ice surface. Aside from the debate, a series of clinical studies have shown that hypertension and obesity play a fundamental role in the pathogenesis of HFpEF. These results imply that there may be two parallel pathological processes interweaved in one disease, manifested as multiple coexistent pathological phenomena, like a shadow. Meanwhile, the prevalence of HFpEF in women is higher than in men in any given age group, especially prominent in elderly patients. These pathological processes and epidemiological data reflect gender differences, reminding us to shift our attention to estrogen. This article will review the parallel pathogenesis of HFpEF, and also introduce sex differences and the potential effect of estrogen in this condition below.
Collapse
Affiliation(s)
- Deng Shuaishuai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Lin Jingyi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Zhao Zhiqiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Fan Guanwei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China. .,National Clinical Research Center for Chinese Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
20
|
Xu Q, Liu M, Gu J, Ling S, Liu X, Luo Z, Jin Y, Chai R, Ou W, Liu S, Liu N. Ubiquitin-specific protease 7 regulates myocardial ischemia/reperfusion injury by stabilizing Keap1. Cell Death Dis 2022; 8:291. [PMID: 35710902 PMCID: PMC9203583 DOI: 10.1038/s41420-022-01086-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/03/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a complex pathological process that is still not fully understood. The oxidative stress response has a critical role in the occurrence and progression of myocardial ischemia/reperfusion injury. This study investigated the specific mechanism of ubiquitin-specific protease 7 (USP7) regulation of myocardial ischemia/reperfusion injury from the perspective of proteasome degradation and its relation with the Keap1 pathway, a vital regulator of cytoprotective responses to endogenous and exogenous stress induced by reactive oxygen species (ROS) and electrophiles. Our data indicated that USP7 expression is increased during myocardial ischemia/reperfusion injury in mice, while its inhibiting suppressed the generation of oxygen free radicals and myocardial cell apoptosis, reduced myocardial tissue damage, and improved heart function. Mechanistically, USP7 stabilizes Keap1 by regulating its ubiquitination. Taken together, these findings demonstrate the potential therapeutic effect of USP7 on myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Mingke Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jielei Gu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Sisi Ling
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaolin Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhenyu Luo
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yangshuo Jin
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Renjie Chai
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenchao Ou
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
21
|
Sun HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: from physiology and pharmacology. Biochem Pharmacol 2022; 199:115008. [PMID: 35318039 DOI: 10.1016/j.bcp.2022.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023]
Abstract
As a chronic and progressive disorder, hypertension remains to be a serious public health problem around the world. Among the different types of hypertension, pulmonary arterial hypertension (PAH) is a devastating disease associated with pulmonary arteriole remodeling, right ventricular failure and death. The contemporary management of systemic hypertension and PAH has substantially grown since more therapeutic targets and/or agents have been developed. Evolving treatment strategies targeting the vascular remodeling lead to improving outcomes in patients with hypertension, nevertheless, significant advancement opportunities for developing better antihypertensive drugs remain. Carbon monoxide (CO), an active endogenous gasotransmitter along with hydrogen sulfide (H2S) and nitric oxide (NO), is primarily generated by heme oxygenase (HO). Cumulative evidence suggests that CO is considered as an important signaling molecule under both physiological and pathological conditions. Studies have shown that CO confers a number of biological and pharmacological properties, especially its involvement in the pathological process and treatment of hypertension-related vascular remodeling. This review will critically outline the roles of CO in hypertension-associated vascular remodeling and discuss the underlying mechanisms for the protective effects of CO against hypertension and vascular remodeling. In addition, we will propose the challenges and perspectives of CO in hypertensive vascular remodeling. It is expected that a comprehensive understanding of CO in the vasculature might be essential to translate CO to be a novel pharmacological agent for hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
22
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
23
|
Feng LA, Shi J, Guo J, Wang S. Recent strategies for improving hemocompatibility and endothelialization of cardiovascular devices and inhibition of intimal hyperplasia. J Mater Chem B 2022; 10:3781-3792. [DOI: 10.1039/d2tb00478j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular diseases have become one of the leading causes of mortality worldwide. Stents and artificial grafts have been used to treat cardiovascular diseases. Thrombosis and restenosis seriously impact clinical outcome...
Collapse
|
24
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. An Updated Insight Into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury Under Diabetes. Front Pharmacol 2021; 12:651884. [PMID: 34764865 PMCID: PMC8576408 DOI: 10.3389/fphar.2021.651884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the most common complications of diabetes, and diabetic cardiomyopathy is a major cause of people death in diabetes. Molecular, transcriptional, animal, and clinical studies have discovered numerous therapeutic targets or drugs for diabetic cardiomyopathy. Within this, hydrogen sulfide (H2S), an endogenous gasotransmitter alongside with nitric oxide (NO) and carbon monoxide (CO), is found to play a critical role in diabetic cardiomyopathy. Recently, the protective roles of H2S in diabetic cardiomyopathy have attracted enormous attention. In addition, H2S donors confer favorable effects in myocardial infarction, ischaemia-reperfusion injury, and heart failure under diabetic conditions. Further studies have disclosed that multiplex molecular mechanisms are responsible for the protective effects of H2S against diabetes-elicited cardiac injury, such as anti-oxidative, anti-apoptotic, anti-inflammatory, and anti-necrotic properties. In this review, we will summarize the current findings on H2S biology and pharmacology, especially focusing on the novel mechanisms of H2S-based protection against diabetic cardiomyopathy. Also, the potential roles of H2S in diabetes-aggravated ischaemia-reperfusion injury are discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
25
|
Kumar A, Boovarahan SR, Prem PN, Ramanathan M, Chellappan DR, Kurian GA. Evaluating the effects of carbon monoxide releasing molecule-2 against myocardial ischemia-reperfusion injury in ovariectomized female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2103-2115. [PMID: 34338837 DOI: 10.1007/s00210-021-02129-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Cardioprotective effect of carbon monoxide, a gasotransmitter against myocardial ischemia-reperfusion injury (I/R), is well established in preclinical studies with male rats. However, its ischemic tolerance in post-menopausal animals has not been examined due to functional perturbations at the cellular level. METHODS The protective role of carbon monoxide releasing molecule-2 (CORM-2) on myocardial I/R was studied in female Wistar rats using the Langendorff apparatus. The animals were randomly divided into normal and ovariectomized (Ovx) female rats and were maintained 2 months post-surgery. Each group was further divided into 4 subgroups (n = 6/subgroup): normal, I/R, CORM-2-control (20 μmol/L), and CORM-2-I/R. The cardiac injury was estimated via myocardial infarct size, lactate dehydrogenase, and creatine kinase levels in coronary effluent and cardiac hemodynamic indices. Mitochondrial functional activity was assessed by measuring mitochondrial electron transport chain enzyme activities, swelling behavior, mitochondrial membrane potential, and oxidative stress. RESULTS Hemodynamic indices were significantly lower in ovariectomized rat hearts than in normal rat hearts. Sixty minutes of reperfusion of ischemic heart exhibited deteriorated cardiac physiological recovery in both ovariectomized and normal groups, where prominent decline was observed in ovariectomized rat. However, preconditioning the isolated heart with CORM-2 improved hemodynamics parameters significantly in both ovariectomized and normal rat hearts challenged with I/R, but with a limited degree of protection in ovariectomized rat hearts. The protective effect of CORM-2 was further confirmed via a reduction in cardiac injury, preservation of mitochondrial enzymes, and reduction in oxidative stress in all groups. CONCLUSION CORM-2 administration significantly attenuated myocardial I/R injury in ovariectomized rat hearts by attenuating I/R-associated mitochondrial perturbations and reducing oxidative stress.
Collapse
Affiliation(s)
- Arthi Kumar
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Sri Rahavi Boovarahan
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Priyanka N Prem
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Meenakshi Ramanathan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - David Raj Chellappan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
26
|
Lv S, Li X, Zhao S, Liu H, Wang H. The Role of the Signaling Pathways Involved in the Protective Effect of Exogenous Hydrogen Sulfide on Myocardial Ischemia-Reperfusion Injury. Front Cell Dev Biol 2021; 9:723569. [PMID: 34527675 PMCID: PMC8435706 DOI: 10.3389/fcell.2021.723569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/11/2021] [Indexed: 01/19/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury refers to the functional and structural changes in the process of blood flow recovery after ischemia. In addition to ischemia, the blood flow recovery can also lead to very harmful damage, such as the obvious cell swelling and the irreversible cell necrosis. I/R injury is related with many diseases, including myocardial I/R injury. Myocardial I/R injury refers to the aggravation of ischemic myocardial tissue injury due to sudden disorder of blood circulation. Although there are many studies on myocardial I/R injury, the exact mechanism is not fully understood. Hydrogen sulfide (H2S), like carbon monoxide and nitric oxide, is an important gas signal molecule. It plays an important role in many physiological and pathological processes. Recent studies indicate that H2S can improve myocardial I/R injury, however, its mechanism is not fully understood, especially the involved signal pathways. In this review, we summarize the related researches about the role of the signaling pathways involved in the protective effects of exogenous H2S on myocardial I/R injury, so as to provide theoretical reference for the future in-depth researches.
Collapse
Affiliation(s)
- Shuangyu Lv
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shizhen Zhao
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Huiyang Liu
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Yan Q, Mao Z, Hong J, Gao K, Niimi M, Mitsui T, Yao J. Tanshinone IIA Stimulates Cystathionine γ-Lyase Expression and Protects Endothelial Cells from Oxidative Injury. Antioxidants (Basel) 2021; 10:1007. [PMID: 34201701 PMCID: PMC8300834 DOI: 10.3390/antiox10071007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tanshinone IIA (Tan IIA), an active ingredient of Danshen, is a well-used drug to treat cardiovascular diseases. Currently, the mechanisms involved remain poorly understood. Given that many actions of Tan IIA could be similarly achieved by hydrogen sulfide (H2S), we speculated that Tan IIA might work through the induction of endogenous H2S. This study was to test this hypothesis. Exposure to endothelial cells to Tan IIA elevated H2S-synthesizing enzyme cystathionine γ-Lyase (CSE), associated with an increased level of endogenous H2S and free thiol activity. Further analysis revealed that this effect of Tan IIA was mediated by an estrogen receptor (ER) and cAMP signaling pathway. It stimulated VASP and CREB phosphorylation. Inhibition of ER or PKA abolished the CSE-elevating effect, whereas activation of ER or PKA mimicked the effect of Tan IIA. In an oxidative endothelial cell injury model, Tan IIA potently attenuated oxidative stress and inhibited cell death. In support of a role of endogenous H2S, inhibition of CSE aggerated oxidative cell injury. On the contrary, supplement of H2S attenuated cell injury. Collectively, our study characterized endogenous H2S as a novel mediator underlying the pharmacological actions of Tan IIA. Given the multifaceted functions of H2S, the H2S-stimulating property of Tan IIA could be exploited for treating many diseases.
Collapse
Affiliation(s)
- Qiaojing Yan
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Q.Y.); (Z.M.); (J.H.); (K.G.)
| | - Zhimin Mao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Q.Y.); (Z.M.); (J.H.); (K.G.)
| | - Jingru Hong
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Q.Y.); (Z.M.); (J.H.); (K.G.)
| | - Kun Gao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Q.Y.); (Z.M.); (J.H.); (K.G.)
| | - Manabu Niimi
- Division of Molecular Pathology, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan;
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo 409-3898, Japan;
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Q.Y.); (Z.M.); (J.H.); (K.G.)
| |
Collapse
|
28
|
Woodward HJ, Zhu D, Hadoke PWF, MacRae VE. Regulatory Role of Sex Hormones in Cardiovascular Calcification. Int J Mol Sci 2021; 22:4620. [PMID: 33924852 PMCID: PMC8125640 DOI: 10.3390/ijms22094620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis and cardiovascular calcification, are well documented. High levels of testosterone, the primary male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen, the primary female sex hormone, is considered cardioprotective. Current understanding of sexual dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence that the actions of sex hormones influence the development of cardiovascular calcification. We address the current question of whether sex hormones could play a role in the sexual dimorphism seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones and evidence in pre-clinical research. More advanced investigations and understanding of sex hormones in calcification could provide a better translational outcome for those suffering with cardiovascular calcification.
Collapse
Affiliation(s)
- Holly J. Woodward
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Patrick W. F. Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;
| | - Victoria E. MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| |
Collapse
|
29
|
Hu HJ, Qiu J, Zhang C, Tang ZH, Qu SL, Jiang ZS. Hydrogen sulfide improves ox‑LDL‑induced expression levels of Lp‑PLA 2 in THP‑1 monocytes via the p38MAPK pathway. Mol Med Rep 2021; 23:358. [PMID: 33760156 PMCID: PMC7974332 DOI: 10.3892/mmr.2021.11997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrogen sulfide (H2S) exerts an anti‑atherosclerotic effect and decreases foam cell formation. Lipoprotein‑associated phospholipase A2 (Lp‑PLA2) is a key factor involved in foam cell formation. However, the association between H2S and Lp‑PLA2 expression levels with respect to foam cell formation has not yet been elucidated. The present study investigated whether H2S can affect foam cell formation and potential signalling pathways via regulation of the expression and activity of Lp‑PLA2. Using human monocytic THP‑1 cells as a model system, it was observed that oxidized low‑density lipoprotein (ox‑LDL) not only upregulates the expression level and activity of Lp‑PLA2, it also downregulates the expression level and activity of Cystathionine γ lyase. Exogenous supplementation of H2S decreased the expression and activity of Lp‑PLA2 induced by ox‑LDL. Moreover, ox‑LDL induced the expression level and activity of Lp‑PLA2 via activation of the p38MAPK signalling pathway. H2S blocked the expression levels and activity of Lp‑PLA2 induced by ox‑LDL via inhibition of the p38MAPK signalling pathway. Furthermore, H2S inhibited Lp‑PLA2 activity by blocking the p38MAPK signaling pathway and significantly decreased lipid accumulation in ox‑LDL‑induced macrophages, as detected by Oil Red O staining. The results of the present study indicated that H2S inhibited ox‑LDL‑induced Lp‑PLA2 expression levels and activity by blocking the p38MAPK signalling pathway, thereby improving foam cell formation. These findings may provide novel insights into the role of H2S intervention in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Heng-Jing Hu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jie Qiu
- Department of Cardiology Laboratory, Huazhong University of Science and Technology Tongji Medical College First Clinical College, Wuhan, Hubei 430000, P.R. China
| | - Chi Zhang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Sheng Jiang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
30
|
17β-estradiol and ureteral contractility: A role for the G protein-coupled estrogen receptor. Eur J Pharmacol 2021; 899:174024. [PMID: 33741380 DOI: 10.1016/j.ejphar.2021.174024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate the unknown effects of 17β-estradiol (E2) on ureteral contractility and the receptor and mechanisms involved. By utilising isolated porcine distal ureteral strips, we observed that E2 (30-300 μM) and a G protein-coupled estrogen receptor specific agonist G-1 (30 μM) both increased the frequency of phasic contractions of the ureter (P<0.05). E2 also decreased the maximum amplitude of these contractions (P<0.05). The G protein-coupled estrogen receptor specific antagonist G-36 (10 μM) reversed E2 enhancement effects on frequency, but did not alter its effects on maximum amplitude of contractile responses. Additionally, it was observed that the effects of E2 were unaltered by removing the urothelium, inhibiting nitric oxide and prostaglandin production or preventing neuronal conduction. In the presence of a potassium channel blocker, 4-aminopyridine (10 μM), the effects of E2 on frequency were prevented. This finding suggests that G protein-coupled estrogen receptor mediates the increase in frequency of ureteral phasic contractions induced by E2 via activation of potassium channels, while E2 alters the amplitude of these contractions through an unknown mechanism.
Collapse
|
31
|
Sun X, Song H, Wen J, Hu Y, Zhang M, Li W, Ding Z. Research on serum metabolomics of ovariectomized rats and intervention effect of Cuscuta chinensis on metabolic pattern. J Pharm Biomed Anal 2020; 195:113847. [PMID: 33358618 DOI: 10.1016/j.jpba.2020.113847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/23/2023]
Abstract
As a traditional Chinese medicine of invigorating the kidney, Cuscuta chinensis (CC) can be applied in improving the deficiency of kidney qi in menopausal women and regulating the level of estrogen. Previously, it was found that the ethanol extract of CC had an estrogen-like effect. In this study, the metabolic profile and metabolic pathways of rats in sham, ovariectomized model and CC groups were analyzed using UPLC-TOFMS-based metabolomics and the pattern recognition technology. The serum endogenouse metabolites could be well differentiated in different group, indicating significant differences of metabolic profiles. CC had an reverse adjustment effect on 14 differential metabolites of ovariectomized rats, including sinapyl alcohol, deoxycholic acid, prostaglandin B2, prostaglandin I2, dihydrosphingosine, choline, pentadecanoic acid, arachidonic acid, 1-stearoyl-Sn-Glycerol-3-Phosphocholine, palmitoleic acid, palmitic acid, vaccenic acid, oleic acid and stearic acid. Furthermore, these differential metabolites were categorized into several major pathways, such as biosynthesis of unsaturated fatty acids, lycerophospholipid metabolism and arachidonic acid metabolism. Therefore, it could be concluded that the estrogen-like effect of CC was related to the lipid metabolism to some extent. The research results provide useful help for the in-depth research and development of CC.
Collapse
Affiliation(s)
| | - Hui Song
- Harbin University of Commerce, Harbin, China
| | - Jing Wen
- Harbin University of Commerce, Harbin, China
| | - Yang Hu
- Harbin University of Commerce, Harbin, China
| | | | - Wenlan Li
- Harbin University of Commerce, Harbin, China
| | | |
Collapse
|
32
|
Raloxifene as Treatment for Various Types of Brain Injuries and Neurodegenerative Diseases: A Good Start. Int J Mol Sci 2020; 21:ijms21207586. [PMID: 33066585 PMCID: PMC7589740 DOI: 10.3390/ijms21207586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies have shown that the selective estrogen receptor modulator (SERM) raloxifene had pronounced protective effects against progressing brain damage after traumatic brain injury (TBI) in mice. These studies, indicating beneficial effects of raloxifene for brain health, prompted the study of the history and present state of knowledge of this topic. It appears that, apart from raloxifene, to date, four nonrelated compounds have shown comparable beneficial effects—fucoidan, pifithrin, SMM-189 (5-dihydroxy-phenyl]-phenyl-methanone), and translocator protein (TSPO) ligands. Raloxifene, however, is ahead of the field, as for more than two decades it has been used in medical practice for various chronic ailments in humans. Thus, apart from different types of animal and cell culture studies, it has also been assessed in various human clinical trials, including assaying its effects on mild cognitive impairments. Regarding cell types, raloxifene protects neurons from cell death, prevents glial activation, ameliorates myelin damage, and maintains health of endothelial cells. At whole central nervous system (CNS) levels, raloxifene ameliorated mild cognitive impairments, as seen in clinical trials, and showed beneficial effects in animal models of Parkinson’s disease. Moreover, with stroke and TBI in animal models, raloxifene showed curative effects. Furthermore, raloxifene showed healing effects regarding multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) in cell culture. The adverse biological signals typical of these conditions relate to neuronal activity, neurotransmitters and their receptors, plasticity, inflammation, oxidative stress, nitric oxide, calcium homeostasis, cell death, behavioral impairments, etc. Raloxifene favorably modulates these signals toward cell health—on the one hand, by modulating gene expression of the relevant proteins, for example by way of its binding to the cell nuclear estrogen receptors ERα and ERβ (genomic effects) and, on the other hand (nongenomic effects) by modulation of mitochondrial activity, reduction of oxidative stress and programmed cell death, maintaining metabolic balance, degradation of Abeta, and modulation of intracellular cholesterol levels. More specifically regarding Alzheimer’s disease, raloxifene may not cure diagnosed Alzheimer’s disease. However, the onset of Alzheimer’s disease may be delayed or arrested by raloxifene’s capability to attenuate mild cognitive impairment. Mild cognitive impairment is a condition that may precede diagnosis of Alzheimer’s disease. In this review, relatively new insights are addressed regarding the notion that Alzheimer’s disease can be caused by bacterial (as well as viral) infections, together with the most recent findings that raloxifene can counteract infections of at least some bacterial and viral strains. Thus, here, an overview of potential treatments of neurodegenerative disease by raloxifene is presented, and attention is paid to subcellular molecular biological pathways that may be involved.
Collapse
|