1
|
Su H, Chen L, Wu J, Cheng Z, Li J, Ren Y, Xu J, Dang Y, Zheng M, Cao Y, Gao J, Dai C, Hu X, Xie H, Chen J, Luo T, Zhu J, Wu C, Sha W, Chen C, Liu H. Proteogenomic characterization reveals tumorigenesis and progression of lung cancer manifested as subsolid nodules. Nat Commun 2025; 16:2414. [PMID: 40069142 PMCID: PMC11897189 DOI: 10.1038/s41467-025-57364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025] Open
Abstract
Lung adenocarcinoma (LUAD) radiologically displayed as subsolid nodules (SSNs) is prevalent. Nevertheless, the precise clinical management of SSNs necessitates a profound understanding of their tumorigenesis and progression. Here, we analyze 66 LUAD displayed as SSNs covering 3 histological stages including adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC) by incorporating genomics, proteomics, phosphoproteomics and glycoproteomics. Intriguingly, cholesterol metabolism is aberrantly regulated in the preneoplastic AIS stage. Importantly, target ablation of proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the initiation of LUAD. Furthermore, sustained endoplasmic reticulum stress is demonstrated to be a hallmark and a reliable biomarker of AIS progression to IAC. Consistently, target promotion of ER stress profoundly retards LUAD progression. Our study provides comprehensive proteogenomic landscape of SSNs, sheds lights on the tumorigenesis and progression of SSNs and suggests preventive and therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab (Hangzhou). Co. Inc, Hangzhou, 310000, China
| | - Jing Li
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Junfang Xu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yifang Dang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Mengge Zheng
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yajuan Cao
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jiani Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Xuefei Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Huikang Xie
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Tao Luo
- Jingjie PTM BioLab (Hangzhou). Co. Inc, Hangzhou, 310000, China
| | - Jun Zhu
- Jingjie PTM BioLab (Hangzhou). Co. Inc, Hangzhou, 310000, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Wei Sha
- Department of tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
2
|
Milewski TM, Lee W, Young RL, Hofmann HA, Curley JP. Rapid changes in plasma corticosterone and medial amygdala transcriptome profiles during social status change reveal molecular pathways associated with a major life history transition in mouse dominance hierarchies. PLoS Genet 2025; 21:e1011548. [PMID: 39804961 PMCID: PMC11761145 DOI: 10.1371/journal.pgen.1011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/24/2025] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Social hierarchies are a common form of social organization across species. Although hierarchies are largely stable across time, animals may socially ascend or descend within hierarchies depending on environmental and social challenges. Here, we develop a novel paradigm to study social ascent and descent within male CD-1 mouse social hierarchies. We show that mice of all social ranks rapidly establish new stable social hierarchies when placed in novel social groups with animals of equivalent social status. Seventy minutes following social hierarchy formation, males that were socially dominant prior to being placed into new social hierarchies exhibit higher increases in plasma corticosterone and vastly greater transcriptional changes in the medial amygdala (MeA), which is central to the regulation of social behavior, compared to males who were socially subordinate prior to being placed into a new hierarchy. Specifically, the loss of social status in a new hierarchy (social descent) is associated with reductions in MeA expression of myelination and oligodendrocyte differentiation genes. Maintaining high social status is associated with high expression of genes related to cholinergic signaling in the MeA. Conversely, gaining social status in a new hierarchy (social ascent) is related to relatively few unique rapid changes in the MeA. We also identify novel genes associated with social transition that show common changes in expression when animals undergo either social descent or social ascent compared to maintaining their status. Two genes, Myosin binding protein C1 (Mybpc1) and μ-Crystallin (Crym), associated with vasoactive intestinal polypeptide (VIP) and thyroid hormone pathways respectively, are highly upregulated in socially transitioning individuals. Further, increases in genes associated with synaptic plasticity, excitatory glutamatergic signaling and learning and memory pathways were observed in transitioning animals suggesting that these processes may support rapid social status changes.
Collapse
Affiliation(s)
- Tyler M. Milewski
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Won Lee
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, California, United States of America
| | - Rebecca L. Young
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Hans A. Hofmann
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
3
|
Hantusch B, Kenner L, Stanulović VS, Hoogenkamp M, Brown G. Targeting Androgen, Thyroid Hormone, and Vitamin A and D Receptors to Treat Prostate Cancer. Int J Mol Sci 2024; 25:9245. [PMID: 39273194 PMCID: PMC11394715 DOI: 10.3390/ijms25179245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear hormone family of receptors regulates gene expression. The androgen receptor (AR), upon ligand binding and homodimerization, shuttles from the cytosol into the nucleus to activate gene expression. Thyroid hormone receptors (TRs), retinoic acid receptors (RARs), and the vitamin D receptor (VDR) are present in the nucleus bound to chromatin as a heterodimer with the retinoid X receptors (RXRs) and repress gene expression. Ligand binding leads to transcription activation. The hormonal ligands for these receptors play crucial roles to ensure the proper conduct of very many tissues and exert effects on prostate cancer (PCa) cells. Androgens support PCa proliferation and androgen deprivation alone or with chemotherapy is the standard therapy for PCa. RARγ activation and 3,5,3'-triiodo-L-thyronine (T3) stimulation of TRβ support the growth of PCa cells. Ligand stimulation of VDR drives growth arrest, differentiation, and apoptosis of PCa cells. Often these receptors are explored as separate avenues to find treatments for PCa and other cancers. However, there is accumulating evidence to support receptor interactions and crosstalk of regulatory events whereby a better understanding might lead to new combinatorial treatments.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Christian Doppler Laboratory for Applied Metabolomics, Medical University Vienna, 1090 Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Vesna S. Stanulović
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Zhang X, Liu X, Li L, Zhang Y, Li Q, Geng H, Shi L, Wang B, Qiu Q, Yu T, Sang Y, Wang L, Xu W, Liang J. Serum klotho associated with thyroid hormone in adults: A population-based cross-sectional research. PLoS One 2024; 19:e0301484. [PMID: 38696398 PMCID: PMC11065232 DOI: 10.1371/journal.pone.0301484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/16/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND AND STUDY AIM The klotho protein, a multifunctional protein, has been shown to be associated with a wide range of endocrine diseases and has been linked to thyroid tumourigenesis. However, the relationship between serum klotho levels and thyroid hormones remains poorly understood. This study aimed to explore the correlation between serum klotho levels and thyroid hormones. METHODS Data was obtained from the NHANES cycles 2007-2008, 2009-2010, and 2011-2012. A total of 4674 participants were recruited for this study. Statistical analysis was using multiple linear regression analyses, and restricted cubic spline plots (RCS) to investigate the association between serum klotho levels and serum levels of thyroid hormones. RESULTS In the unadjusted covariate model, ln(klotho) significantly positively correlated with tT3, tT4, fT3, tT4/fT4, and tT3/fT3 (all P<0.01) and negatively correlated with TSH, tT4/tT3, and fT4/fT3 (all P<0.05). Furthermore, tT3, tT4, fT3and tT3/fT3 (P < 0.05) were still significant in the adjusted model. And it is worth noting that there is an approximately L-shaped nonlinear relationship between ln(klotho) and fT3,tT3 with a cut-off point of 6.697 (P-non-linear < 0.05). The stratification analysis showed gender and iodine level differences in the relationship between serum Klotho levels and thyroid hormones. CONCLUSION There is an L-shaped nonlinear relationship between ln(klotho) and fT3, tT3, suggesting that klotho could be involved in the physiological regulation of thyroid function.
Collapse
Affiliation(s)
- Xia Zhang
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuekui Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Lin Li
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Zhang
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Li
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Houfa Geng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Li Shi
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Ben Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Qinqin Qiu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Tianpei Yu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Yiquan Sang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Liying Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Wei Xu
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| | - Jun Liang
- The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Jiangsu, China
| |
Collapse
|
5
|
Ollivier M, Soto JS, Linker KE, Moye SL, Jami-Alahmadi Y, Jones AE, Divakaruni AS, Kawaguchi R, Wohlschlegel JA, Khakh BS. Crym-positive striatal astrocytes gate perseverative behaviour. Nature 2024; 627:358-366. [PMID: 38418885 PMCID: PMC10937394 DOI: 10.1038/s41586-024-07138-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Astrocytes are heterogeneous glial cells of the central nervous system1-3. However, the physiological relevance of astrocyte diversity for neural circuits and behaviour remains unclear. Here we show that a specific population of astrocytes in the central striatum expresses μ-crystallin (encoded by Crym in mice and CRYM in humans) that is associated with several human diseases, including neuropsychiatric disorders4-7. In adult mice, reducing the levels of μ-crystallin in striatal astrocytes through CRISPR-Cas9-mediated knockout of Crym resulted in perseverative behaviours, increased fast synaptic excitation in medium spiny neurons and dysfunctional excitatory-inhibitory synaptic balance. Increased perseveration stemmed from the loss of astrocyte-gated control of neurotransmitter release from presynaptic terminals of orbitofrontal cortex-striatum projections. We found that perseveration could be remedied using presynaptic inhibitory chemogenetics8, and that this treatment also corrected the synaptic deficits. Together, our findings reveal converging molecular, synaptic, circuit and behavioural mechanisms by which a molecularly defined and allocated population of striatal astrocytes gates perseveration phenotypes that accompany neuropsychiatric disorders9-12. Our data show that Crym-positive striatal astrocytes have key biological functions within the central nervous system, and uncover astrocyte-neuron interaction mechanisms that could be targeted in treatments for perseveration.
Collapse
Affiliation(s)
- Matthias Ollivier
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joselyn S Soto
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kay E Linker
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stefanie L Moye
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Tu T, Fang Z, Cheng Z, Spasic S, Palepu A, Stankovic KM, Natarajan V, Peltz G. Genetic Discovery Enabled by A Large Language Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566468. [PMID: 37986848 PMCID: PMC10659415 DOI: 10.1101/2023.11.09.566468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Artificial intelligence (AI) has been used in many areas of medicine, and recently large language models (LLMs) have shown potential utility for clinical applications. However, since we do not know if the use of LLMs can accelerate the pace of genetic discovery, we used data generated from mouse genetic models to investigate this possibility. We examined whether a recently developed specialized LLM (Med-PaLM 2) could analyze sets of candidate genes generated from analysis of murine models of biomedical traits. In response to free-text input, Med-PaLM 2 correctly identified the murine genes that contained experimentally verified causative genetic factors for six biomedical traits, which included susceptibility to diabetes and cataracts. Med-PaLM 2 was also able to analyze a list of genes with high impact alleles, which were identified by comparative analysis of murine genomic sequence data, and it identified a causative murine genetic factor for spontaneous hearing loss. Based upon this Med-PaLM 2 finding, a novel bigenic model for susceptibility to spontaneous hearing loss was developed. These results demonstrate Med-PaLM 2 can analyze gene-phenotype relationships and generate novel hypotheses, which can facilitate genetic discovery.
Collapse
Affiliation(s)
- Tao Tu
- Google Research, Mountain View, CA, USA
| | - Zhouqing Fang
- Department of Anesthesiology, Pain and Perioperative Medicine
| | - Zhuanfen Cheng
- Department of Anesthesiology, Pain and Perioperative Medicine
| | - Svetolik Spasic
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Gary Peltz
- Department of Anesthesiology, Pain and Perioperative Medicine
| |
Collapse
|
7
|
Ren J, Flamant F. Thyroid hormone as a temporal switch in mouse development. Eur Thyroid J 2023; 12:e220225. [PMID: 36715693 PMCID: PMC10083660 DOI: 10.1530/etj-22-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023] Open
Abstract
Thyroid hormones are known to trigger metamorphosis in an amphibian. This review discusses the hypothesis according to which they act in a similar manner to synchronize the post-natal development of mice, using brain, brown adipose tissue, and heart as examples.
Collapse
Affiliation(s)
- Juan Ren
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Frédéric Flamant
- ENS de Lyon, INRAE, CNRS, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| |
Collapse
|