1
|
Danti G, Popella L, Vogel J, Maric HM. High-Throughput Tiling of Essential mRNAs Increases Potency of Antisense Antibiotics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504284. [PMID: 40304263 DOI: 10.1002/advs.202504284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Indexed: 05/02/2025]
Abstract
Antimicrobial resistance is outpacing drug discovery, creating an urgent need for precision-based strategies to counteract resistant pathogens. Peptide nucleic acid (PNA)-based antisense molecules offer a promising approach by selectively inhibiting essential bacterial mRNAs, but their design rules for optimal efficacy remain incompletely understood. Here, a scalable high-throughput platform is developed for the nanomolar-scale one-shot synthesis of PNAs as carrier peptide conjugates (PPNAs). Parallel synthesis of up to 1,536 PPNAs composed of up to 21 PNA or peptide building blocks enabled systematic, base-by-base analysis of RNA hybridization, mRNA inhibition, and antimicrobial activity across nine essential genes in uropathogenic Escherichia coli. The accuracy and robustness of this high-throughput tiling platform are demonstrated through in-depth analysis of the acpP mRNA and identify potent antisense inhibitors of rpsH, ftsZ, and murA. This approach provides an efficient and scalable route to design and optimize PNA-based antimicrobials, facilitating empirical testing across diverse bacterial targets. By enabling large-scale exploration of the relevant mRNA sequence space, the sequence tiling platform accelerates the discovery of antisense-based antimicrobials, offering a scalable strategy to develop precision therapies against various pathogens and combat resistance.
Collapse
Affiliation(s)
- Giorgia Danti
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Linda Popella
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, 97080, Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), 80802, Munich, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, 97080, Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), 80802, Munich, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Hans M Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
2
|
Aguilar CJ, Sarwar M, Brimble MA, Kavianinia I. N-Substituted Iminothiolane (NIT): A Promising Strategy for Protecting Lysine Side Chains for Solid-Phase Peptide Chemistry. Org Lett 2024; 26:8922-8927. [PMID: 39383113 DOI: 10.1021/acs.orglett.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
In this study, we introduce N-substituted iminothiolane (NIT) as a robust protecting group for lysine side chains. NIT is compatible with Fmoc-SPPS and can be efficiently removed under mild nucleophilic conditions. Notably, NIT offers enhanced hydrophilicity compared to traditional orthogonal lysine-protecting groups and does not undergo intramolecular migration. Additionally, the synthesis of NIT in aqueous media highlights its eco-friendly nature, positioning it as a promising alternative to protect lysine side chains.
Collapse
Affiliation(s)
- Clouie Justin Aguilar
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Makhdoom Sarwar
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch 8011, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Iman Kavianinia
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Nandhini KP, Noki S, Brasil E, Albericio F, de la Torre BG. A safety-catch protecting group strategy compatible with Boc-chemistry for the synthesis of peptide nucleic acids (PNAs). Org Biomol Chem 2023; 21:8125-8135. [PMID: 37772422 DOI: 10.1039/d3ob01348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Peptide Nucleic Acids (PNAs) are an intriguing class of synthetic biomolecules with great potential in medicine. Although PNAs could be considered analogs of oligonucleotides, their synthesis is more like that of peptides. In both cases, a Solid-Phase Synthesis (SPS) approach is used. Herein, the advantage using Boc as a temporal protecting group has been demonstrated to be more favored than Fmoc. In this context, a new PNA SPS strategy has been developed based on a safety-catch protecting group scheme for the exocyclic nitrogen of the side-chain bases and the linker. Sulfinyl (sulfoxide)-containing moieties are fully stable to the trifluoroacetic acid (TFA) used to remove the Boc group, but they can be reduced to the corresponding sulfide derivatives, which are labile in the presence of TFA. The efficiency of this novel synthetic strategy has been demonstrated in the synthesis of the PNA pentamer H-PNA(TATCT)-βAla-OH.
Collapse
Affiliation(s)
- K P Nandhini
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.
| | - Sikabwe Noki
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.
| | - Edikarlos Brasil
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa.
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
4
|
Del Bene A, D'Aniello A, Tomassi S, Merlino F, Mazzarella V, Russo R, Chambery A, Cosconati S, Di Maro S, Messere A. Ultrasound-assisted Peptide Nucleic Acids synthesis (US-PNAS). ULTRASONICS SONOCHEMISTRY 2023; 95:106360. [PMID: 36913782 PMCID: PMC10024050 DOI: 10.1016/j.ultsonch.2023.106360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Herein, we developed an innovative and easily accessible solid-phase synthetic protocol for Peptide Nucleic Acid (PNA) oligomers by systematically investigating the ultrasonication effects in all steps of the PNA synthesis (US-PNAS). When compared with standard protocols, the application of the so-obtained US-PNAS approach succeeded in improving the crude product purities and the isolated yields of different PNA, including small or medium-sized oligomers (5-mer and 9-mer), complex purine-rich sequences (like a 5-mer Guanine homoligomer and the telomeric sequence TEL-13) and longer oligomers (such as the 18-mer anti-IVS2-654 PNA and the 23-mer anti-mRNA 155 PNA). Noteworthy, our ultrasound-assisted strategy is compatible with the commercially available PNA monomers and well-established coupling reagents and only requires the use of an ultrasonic bath, which is a simple equipment generally available in most synthetic laboratories.
Collapse
Affiliation(s)
- Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| |
Collapse
|
5
|
Jacobsen MT, Spaltenstein P, Giesler RJ, Chou DHC, Kay MS. Improved Handling of Peptide Segments Using Side Chain-Based "Helping Hand" Solubilizing Tools. Methods Mol Biol 2022; 2530:81-107. [PMID: 35761044 DOI: 10.1007/978-1-0716-2489-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maintaining high, or even sufficient, solubility of every peptide segment in chemical protein synthesis (CPS) remains a critical challenge; insolubility of just a single peptide segment can thwart a total synthesis venture. Multiple approaches have been used to address this challenge, most commonly by employing a chemical tool to temporarily improve peptide solubility. In this chapter, we discuss chemical tools for introducing semipermanent solubilizing sequences (termed helping hands) at the side chains of Lys and Glu residues. We describe the synthesis, incorporation by Fmoc-SPPS, and cleavage conditions for utilizing these two tools. For Lys sites, we discuss the Fmoc-Ddap-OH dimedone-based linker, which is achiral, synthesized in one step, can be introduced directly at primary amines, and is removed using hydroxylamine (or hydrazine). For Glu sites, we detail the new Fmoc-SPPS building block, Fmoc-Glu(AlHx)-OH, which can be prepared in an efficient process over two purifications. Solubilizing sequences are introduced directly on-resin and later cleaved with palladium-catalyzed transfer under aqueous conditions to restore a native Glu side chain. These two chemical tools are straightforward to prepare and implement, and we anticipate continued usage in "difficult" peptide segments following the protocols described herein.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Division of Diabetes and Endocrinology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Riley J Giesler
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Danny Hung-Chieh Chou
- Division of Diabetes and Endocrinology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Michael S Kay
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Shaikh AY, Björkling F, Nielsen PE, Franzyk H. Optimized Synthesis of Fmoc/Boc‐Protected PNA Monomers and their Assembly into PNA Oligomers. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ashif Y. Shaikh
- Center for Peptide-based Antibiotics, Department of Drug Design and Pharmacology Faculty of Heath and Medical Sciences University of Copenhagen Jagtvej 162 2100 Copenhagen Denmark
| | - Fredrik Björkling
- Center for Peptide-based Antibiotics, Department of Drug Design and Pharmacology Faculty of Heath and Medical Sciences University of Copenhagen Jagtvej 162 2100 Copenhagen Denmark
| | - Peter E. Nielsen
- Center for Peptide-based Antibiotics, Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Heath and Medical Sciences University of Copenhagen Blegdamsvej 3 2200 Copenhagen Denmark
| | - Henrik Franzyk
- Center for Peptide-based Antibiotics, Department of Drug Design and Pharmacology Faculty of Heath and Medical Sciences University of Copenhagen Jagtvej 162 2100 Copenhagen Denmark
| |
Collapse
|
7
|
Fmoc-Based Assembly of PNA Oligomers: Manual and Microwave-Assisted Automated Synthesis. Methods Mol Biol 2021; 2105:1-16. [PMID: 32088861 DOI: 10.1007/978-1-0716-0243-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Exploration of PNA-peptide conjugates as potential antisense antibiotics necessitates a fast and efficient synthesis protocols for amounts that facilitate determination of structure-activity relationships and in vivo studies in animal infection models. Fmoc/Boc-protected PNA monomers are here used for assembly of oligomers by optimized protocols involving either a manual synthesis method at room temperature or automated microwave-assisted coupling of monomers on a peptide synthesizer.
Collapse
|
8
|
Hansen AM, Bonke G, Hogendorf WFJ, Björkling F, Nielsen J, Kongstad KT, Zabicka D, Tomczak M, Urbas M, Nielsen PE, Franzyk H. Microwave-assisted solid-phase synthesis of antisense acpP peptide nucleic acid-peptide conjugates active against colistin- and tigecycline-resistant E. coli and K. pneumoniae. Eur J Med Chem 2019; 168:134-145. [PMID: 30807888 DOI: 10.1016/j.ejmech.2019.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 11/26/2022]
Abstract
Recent discovery of potent antibacterial antisense PNA-peptide conjugates encouraged development of a fast and efficient synthesis protocol that facilitates structure-activity studies. The use of an Fmoc/Boc protection scheme for both PNA monomers and amino acid building blocks in combination with microwave-assisted solid-phase synthesis proved to be a convenient procedure for continuous assembly of antisense PNA-peptide conjugates. A validated antisense PNA oligomer (CTCATACTCT; targeting mRNA of the acpP gene) was linked to N-terminally modified drosocin (i.e., RXR-PRPYSPRPTSHPRPIRV; X = aminohexanoic acid) or to a truncated Pip1 peptide (i.e., RXRRXR-IKILFQNRRMKWKK; X = aminohexanoic acid), and determination of the antibacterial effects of the resulting conjugates allowed assessment of the influence of different linkers as well as differences between the L- and D-forms of the peptides. The drosocin-derived compound without a linker moiety exhibited highest antibacterial activity against both wild-type Escherichia coli and Klebsiella pneumoniae (MICs in the range 2-4 μg/mL ∼ 0.3-0.7 μM), while analogues displaying an ethylene glycol (eg1) moiety or a polar maleimide linker also possessed activity toward wild-type K. pneumoniae (MICs of 4-8 μg/mL ∼ 0.6-1.3 μM). Against two colistin-resistant E. coli strains the linker-deficient compound proved most potent (with MICs in the range 2-4 μg/mL ∼ 0.3-0.7 μM). The truncated all-L Pip1 peptide had moderate inherent activity against E. coli, and this was unaltered or reduced upon conjugation to the antisense PNA oligomer. By contrast, this peptide was 8-fold less potent against K. pneumoniae, but in this case some PNA-peptide conjugates exhibited potent antisense activity (MICs of 2-8 μg/mL ∼ 0.3-1.2 μM). Most interestingly, the antibacterial activity of the D-form peptide itself was 2- to 16-fold higher than that of the L-form, even for the colistin- and tigecycline-resistant E. coli strains (MIC of 1-2 μg/mL ∼ 0.25-0.5 μM). Low activity was found for conjugates with a two-mismatch PNA sequence corroborating an antisense mode of action. Conjugates containing a D-form peptide were also significantly less active. In conclusion, we have designed and synthesized antisense PNA-drosocin conjugates with potent antibacterial activity against colistin- and tigecycline-resistant E. coli and K. pneumonia without concomitant hemolytic properties. In addition, a truncated D-form of Pip1 was identified as a peptide exhibiting potent activity against both wild-type and multidrug-resistant E. coli, P. aeruginosa, and A. baumannii (MICs within the range 1-4 μg/mL ∼ 0.25-1 μM) as well as toward wild-type Staphylococcus aureus (MIC of 2-4 μg/mL ∼ 0.5-1.0 μM).
Collapse
Affiliation(s)
- Anna Mette Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Gitte Bonke
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Wouter Frederik Johan Hogendorf
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - John Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark
| | - Dorota Zabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Magdalena Tomczak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Malgorzata Urbas
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Denmark.
| |
Collapse
|
9
|
Affiliation(s)
- Keith P. Reber
- Department of Chemistry, Towson University, Towson, MD 21252, USA
| | - Hannah E. Burdge
- Department of Chemistry, Towson University, Towson, MD 21252, USA
| |
Collapse
|
10
|
Al-Saad D, Memeo MG, Quadrelli P. Pericyclic Reactions for Anti-HPV Antivirals: Unconventional Nucleoside Analogue Synthesis via Nitrosocarbonyl Chemistry. ChemistrySelect 2017. [DOI: 10.1002/slct.201702059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dalya Al-Saad
- orcid.org/0000-0001-5369; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 - Pavia Italy
| | - Misal Giuseppe Memeo
- orcid.org/0000-0001-5369; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 - Pavia Italy
| | - Paolo Quadrelli
- orcid.org/0000-0001-5369; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 - Pavia Italy
| |
Collapse
|
11
|
Samad MB, Chhonker YS, Contreras JI, McCarthy A, McClanahan MM, Murry DJ, Conda-Sheridan M. Developing Polyamine-Based Peptide Amphiphiles with Tunable Morphology and Physicochemical Properties. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/05/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mehdi Bin Samad
- College of Pharmacy; Department of Pharmaceutical Sciences; University of Nebraska Medical Center; Omaha NE 68198-6125 USA
| | - Yashpal Singh Chhonker
- College of Pharmacy; Department of Pharmacy Practice; University of Nebraska Medical Center; Omaha NE 68198-6145 USA
| | - Jacob I. Contreras
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha NE 68022 USA
| | - Alec McCarthy
- Department of Biological Systems Engineering; University of Nebraska-Lincoln; Lincoln NE 68588 USA
| | - Megan M. McClanahan
- Division of Natural Science and Mathematics; Chaminade University of Honolulu; Honolulu HI 96816 USA
| | - Daryl J. Murry
- College of Pharmacy; Department of Pharmacy Practice; University of Nebraska Medical Center; Omaha NE 68198-6145 USA
| | - Martin Conda-Sheridan
- College of Pharmacy; Department of Pharmaceutical Sciences; University of Nebraska Medical Center; Omaha NE 68198-6125 USA
| |
Collapse
|
12
|
Sharma C, Awasthi SK. Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life. Chem Biol Drug Des 2016; 89:16-37. [PMID: 27490868 DOI: 10.1111/cbdd.12833] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/03/2016] [Accepted: 07/28/2016] [Indexed: 12/16/2022]
Abstract
This review briefly discussed nomenclature, synthesis, chemistry, and biophysical properties of a plethora of PNA derivatives reported since the discovery of aegPNA. Different synthetic methods and structural analogs of PNA synthesized till date were also discussed. An insight was gained into various chemical, physical, and biological properties of PNA which make it preferable over all other classes of modified nucleic acid analogs. Thereafter, various approaches with special attention to the practical constraints, characteristics, and inherent drawbacks leading to the delay in the development of PNA as gene therapeutic drug were outlined. An explicit account of the successful application of PNA in different areas of research such as antisense and antigene strategies, diagnostics, molecular probes, and so forth was described along with the current status of PNA as gene therapeutic drug. Further, the plausibility of the existence of PNA and its role in primordial chemistry, that is, origin of life was explored in an endeavor to comprehend the mystery and open up its deepest secrets ever engaging and challenging the human intellect. We finally concluded it with a discussion on the future prospects of PNA technology in the field of therapeutics, diagnostics, and origin of life.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
13
|
Shimada H, Sakurai T, Kitamura Y, Matsuura H, Ihara T. Metallo-regulation of the bimolecular triplex formation of a peptide nucleic acid. Dalton Trans 2013; 42:16006-13. [PMID: 23897510 DOI: 10.1039/c3dt51386f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Peptide nucleic acid (PNA) conjugates incorporating a bipyridine unit were prepared. The bipyridine was built into the loop moiety of PNAs that were designed to specifically form a hairpin and a PNA/DNA bimolecular triplex. While the thermal stability of the hairpin structure was only minimally affected by Cu(2+) addition, the PNA/DNA bimolecular triplex structure was significantly destabilized by complexation with Cu(2+). The melting temperature of the bimolecular triplex decreased by 17.4 °C in the presence of Cu(2+). This corresponds to more than a 1000 fold decrease in the binding constant for bimolecular triplex formation. Upon complexation, the bipyridine unit underwent a drastic conformational change which accounts for the observed differences in the thermal stabilities of the triplex upon binding. The bipyridine-PNA conjugate may be useful as an allosteric DNA carrier that releases the DNA in response to a certain metal ion concentration.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | | | | | | | | |
Collapse
|
14
|
Wernisch S, Bisi F, Cazzato AS, Kohout M, Lindner W. 2-Acyl-dimedones as UV-active protective agents for chiral amino acids: enantiomer separations of the derivatives on chiral anion exchangers. Anal Bioanal Chem 2013; 405:8011-26. [DOI: 10.1007/s00216-013-6932-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/29/2022]
|
15
|
Browne EC, Langford SJ, Abbott BM. Peptide Nucleic Acid Monomers: A Convenient and Efficient Synthetic Approach to Fmoc/Boc Monomers. Aust J Chem 2012. [DOI: 10.1071/ch11471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A convenient and cost-effective method for the synthesis of Fmoc/Boc-protected peptide nucleic acid monomers is described. The Fmoc/Boc strategy was developed in order to eliminate the solubility issues during peptide nucleic acid solid-phase synthesis, in particular that of the cytosine monomer, that occurred when using the commercialized Bhoc chemistry approach.
Collapse
|
16
|
Fabani MM, Abreu-Goodger C, Williams D, Lyons PA, Torres AG, Smith KGC, Enright AJ, Gait MJ, Vigorito E. Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucleic Acids Res 2010; 38:4466-75. [PMID: 20223773 PMCID: PMC2910044 DOI: 10.1093/nar/gkq160] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in diverse physiological processes and are potential therapeutic agents. Synthetic oligonucleotides (ONs) of different chemistries have proven successful for blocking miRNA expression. However, their specificity and efficiency have not been fully evaluated. Here, we show that peptide nucleic acids (PNAs) efficiently block a key inducible miRNA expressed in the haematopoietic system, miR-155, in cultured B cells as well as in mice. Remarkably, miR-155 inhibition by PNA in primary B cells was achieved in the absence of any transfection agent. In mice, the high efficiency of the treatment was demonstrated by a strong overlap in global gene expression between B cells isolated from anti-miR-155 PNA-treated and miR-155-deficient mice. Interestingly, PNA also induced additional changes in gene expression. Our analysis provides a useful platform to aid the design of efficient and specific anti-miRNA ONs for in vivo use.
Collapse
Affiliation(s)
- Martin M. Fabani
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY and Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Cei Abreu-Goodger
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY and Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Donna Williams
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY and Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Paul A. Lyons
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY and Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Adrian G. Torres
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY and Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kenneth G. C. Smith
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY and Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Anton J. Enright
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY and Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michael J. Gait
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY and Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Elena Vigorito
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY and Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
17
|
Avitabile C, Moggio L, D’Andrea LD, Pedone C, Romanelli A. Development of an efficient and low-cost protocol for the manual PNA synthesis by Fmoc chemistry. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ilangovan A, Kumar R. 2,2-Bis(ethoxycarbonyl)vinyl (BECV) as a Versatile Amine Protecting Group for Selective Functional-Group Transformations. Chemistry 2010; 16:2938-43. [DOI: 10.1002/chem.200902054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Valeur E, Bradley M. Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 2009; 38:606-31. [DOI: 10.1039/b701677h] [Citation(s) in RCA: 1529] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Diaz-Mochon JJ, Planonth S, Bradley M. From 10,000 to 1: Selective synthesis and enzymatic evaluation of fluorescence resonance energy transfer peptides as specific substrates for chymopapain. Anal Biochem 2009; 384:101-5. [PMID: 18814838 DOI: 10.1016/j.ab.2008.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/14/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
The synthesis and detailed enzymatic analysis of fluorescence resonance energy transfer (FRET)-based peptides as substrates for chymopapain are reported. The design of these substrates arose from a massively parallel high-throughput microarray screening process using peptide nucleic acid (PNA) encoding technology, allowing the identification of detailed substrate specificities of any protease. Two peptides so identified with chymopapain were observed to be excellent substrates with low micromolar K(m) values and turnover numbers on the order of hundreds per second. Mass spectroscopy studies showed unequivocally the specificity of chymopapain toward Ala, Pro, Val, and Lys for positions P(4) to P(1) while not presenting high specificity for residues in position P(1)'.
Collapse
|
21
|
Svensen N, Díaz-Mochón JJ, Bradley M. Microwave-assisted orthogonal synthesis of PNA–peptide conjugates. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.08.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Fabani MM, Ivanova GD, Gait MJ. Peptide–Peptide Nucleic Acid Conjugates for Modulation of Gene Expression. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Martin M. Fabani
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| | - Gabriela D. Ivanova
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| | - Michael J. Gait
- Medical Research Council Laboratory of Molecular Biology Hills Road Cambridge CB2 0QH UK
| |
Collapse
|
23
|
Wojciechowski F, Hudson RHE. A convenient route to N-[2-(Fmoc)aminoethyl]glycine esters and PNA oligomerization using a Bis-N-Boc nucleobase protecting group strategy. J Org Chem 2008; 73:3807-16. [PMID: 18412392 DOI: 10.1021/jo800195j] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple and practical synthesis of the benzyl, allyl, and 4-nitrobenzyl esters of N-[2-(Fmoc)aminoethyl]glycine is described starting from the known N-(2-aminoethyl)glycine. These esters are stored as stable hydrochloride salts and were used in the synthesis of peptide nucleic acid monomers possessing bis-N-Boc-protected nucleobase moieties on the exocyclic amino groups of ethyl cytosin-1-ylacetate, ethyl adenin-9-ylacetate and ethyl (O(6)-benzylguanin-9-yl)acetate. Upon ester hydrolysis, the corresponding nucleobase acetic acids were coupled to N-[2-(Fmoc)aminoethyl]glycine benzyl ester or to N-[2-(Fmoc)aminoethyl]glycine allyl ester in order to retain the O(6) benzyl ether protecting group of guanine. The Fmoc/bis-N-Boc-protected monomers were successfully used in the Fmoc-mediated solid-phase peptide synthesis of mixed sequence 10-mer PNA oligomers and are shown to be a viable alternative to the currently most widely used Fmoc/Bhoc-protected peptide nucleic acid monomers.
Collapse
Affiliation(s)
- Filip Wojciechowski
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
24
|
Pouchain D, Díaz-Mochón JJ, Bialy L, Bradley M. A 10,000 member PNA-encoded peptide library for profiling tyrosine kinases. ACS Chem Biol 2007; 2:810-8. [PMID: 18154268 DOI: 10.1021/cb700199k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A 10,000 member peptide nucleic acid (PNA) encoded peptide library was prepared, treated with the Abelson tyrosine kinase (Abl), and decoded using a DNA microarray and a fluorescently labeled secondary antiphosphotyrosine antibody. A dual-color approach ensured internal referencing for each and every member of the library and the generation of robust data sets. Analysis identified 155 peptides (out of 10,000) that were strongly phosphorylated by Abl in full agreement with known Abl specificities. BLAST analysis identified known cellular Abl substrates such as c-Jun amino-terminal kinase as well as new potential target proteins such as the G-protein coupled receptor kinase 6 and diacylglycerol kinase gamma. To illustrate the generalization of this approach, two other tyrosine kinases, human epidermal growth factor 2 (Her2) and vascular endothelial growth factor receptor 2/kinase insert domain protein receptor (VEGFR2/KDR), were profiled allowing characterization of specific peptide sequences known to interact with these kinases; under these conditions Her2 was demonstrated to have a marked preference for D-proline perhaps offering a unique means of targeting and inhibiting this kinase.
Collapse
Affiliation(s)
- Delphine Pouchain
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | |
Collapse
|
25
|
Venkatesan N, Kim BH. Peptide conjugates of oligonucleotides: synthesis and applications. Chem Rev 2007; 106:3712-61. [PMID: 16967918 DOI: 10.1021/cr0502448] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Natarajan Venkatesan
- Laboratory for Modified Nucleic Acid Systems, Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | |
Collapse
|
26
|
Lapeyre M, Leprince J, Massonneau M, Oulyadi H, Renard PY, Romieu A, Turcatti G, Vaudry H. Aryldithioethyloxycarbonyl (Ardec): A New Family of Amine Protecting Groups Removable under Mild Reducing Conditions and Their Applications to Peptide Synthesis. Chemistry 2006; 12:3655-71. [PMID: 16514683 DOI: 10.1002/chem.200501538] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development of phenyldithioethyloxycarbonyl (Phdec) and 2-pyridyldithioethyloxycarbonyl (Pydec) protecting groups, which are thiol-labile urethanes, is described. These new disulfide-based protecting groups were introduced onto the epsilon-amino group of L-lysine; the resulting amino acid derivatives were easily converted into N alpha-Fmoc building blocks suitable for both solid- and solution-phase peptide synthesis. Model dipeptide(Ardec)s were prepared by using classical peptide couplings followed by standard deprotection protocols. They were used to optimize the conditions for complete thiolytic removal of the Ardec groups both in aqueous and organic media. Phdec and Pydec were found to be cleaved within 15 to 30 min under mild reducing conditions: i) by treatment with dithiothreitol or beta-mercaptoethanol in Tris.HCl buffer (pH 8.5-9.0) for deprotection in water and ii) by treatment with beta-mercaptoethanol and 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) in N-methylpyrrolidinone for deprotection in an organic medium. Successful solid-phase synthesis of hexapeptides Ac-Lys-Asp-Glu-Val-Asp-Lys(Ardec)-NH2 has clearly demonstrated the full orthogonality of these new amino protecting groups with Fmoc and Boc protections. The utility of the Ardec orthogonal deprotection strategy for site-specific chemical modification of peptides bearing several amino groups was illustrated firstly by the preparation of a fluorogenic substrate for caspase-3 protease containing the cyanine dyes Cy 3.0 and Cy 5.0 as FRET donor/acceptor pair, and by solid-phase synthesis of an hexapeptide bearing a single biotin reporter group.
Collapse
Affiliation(s)
- Milaine Lapeyre
- IRCOF/LHO, Equipe de Chimie Bio-Organique, UMR 6014 CNRS, INSA de Rouen et Université de Rouen, 1, rue Tesnières, 76131 Mont-Saint-Aignan Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fara MA, Díaz-Mochón JJ, Bradley M. Microwave-assisted coupling with DIC/HOBt for the synthesis of difficult peptoids and fluorescently labelled peptides—a gentle heat goes a long way. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2005.11.127] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Karskela T, Lönnberg H. Solid-phase synthesis of 7-substituted 3H-imidazo[2,1-i]purines. Org Biomol Chem 2006; 4:4506-13. [PMID: 17268647 DOI: 10.1039/b612655c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for solid-supported synthesis of N,N-disubstituted (3H-imidazo[2,1-i]purin-7-yl)methyl amines has been developed. The key features of this library synthesis are: (i) immobilization of commercially available N6-benzoyl-5'-O-(4,4'-dimethoxytrityl)-2'-deoxyadenosine 3'-(2-cyanoethyl N,N-diisopropylphosphoramidite) by phosphitylation to a hydroxyl-functionalized support, (ii) quantitative conversion of the deprotected adenine base to 3H-imidazo[2,1-i]purine-7-carbaldehyde with bromomalonaldehyde in DMF in the presence of formic acid and 2,6-lutidine, (iii) reductive amination of the formyl group followed by N-alkylation or N-acylation, and (iv) release from the support by acidolytic cleavage of the N-glycosidic bond. Steps (ii) and (iii) have been optimized in some detail by using (adenin-9-yl)acetic acid anchored to a Phe-Wang resin as a model compound.
Collapse
Affiliation(s)
- Tuomas Karskela
- Department of Chemistry, University of Turku, Turku, FIN-20014, Finland
| | | |
Collapse
|