1
|
Abstract
The discovery of cGAMP in 2012 filled an important gap in our understanding of innate immune signaling. It has been known for over a century that DNA can induce immune responses, but the underlying mechanism was not clear. With the identification of STING as a key player in interferon induction, the DNA detector that activates STING was the last missing link in TBK1-IRF3 signaling. Somewhat unexpectedly, it turns out that nature relays the DNA danger signal through a small molecule. cGAMP is a cyclic dinucleotide produced from cyclodimerization of ATP and GTP upon detection of cytosolic DNA by cGAS, a previously uncharacterized protein, to promote the assembly of the STING signalosome. This article covers a personal account of the discovery of cGAMP, a short history of the relevant nucleotide chemistry, and a summary of the latest development in this field of research in chemistry. It is the author's hope that, with a historic perspective, the readers can better appreciate the synergy between chemistry and biology in drug development.
Collapse
Affiliation(s)
- Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| |
Collapse
|
2
|
Yanase Y, Tsuji G, Nakamura M, Shibata N, Demizu Y. Control of STING Agonistic/Antagonistic Activity Using Amine-Skeleton-Based c-di-GMP Analogues. Int J Mol Sci 2022; 23:ijms23126847. [PMID: 35743289 PMCID: PMC9224868 DOI: 10.3390/ijms23126847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
Stimulator of Interferon Genes (STING) is a type of endoplasmic reticulum (ER)-membrane receptor. STING is activated by a ligand binding, which leads to an enhancement of the immune-system response. Therefore, a STING ligand can be used to regulate the immune system in therapeutic strategies. However, the natural (or native) STING ligand, cyclic-di-nucleotide (CDN), is unsuitable for pharmaceutical use because of its susceptibility to degradation by enzymes and its low cell-membrane permeability. In this study, we designed and synthesized CDN derivatives by replacing the sugar-phosphodiester moiety, which is responsible for various problems of natural CDNs, with an amine skeleton. As a result, we identified novel STING ligands that activate or inhibit STING. The cyclic ligand 7, with a cyclic amine structure containing two guanines, was found to have agonistic activity, whereas the linear ligand 12 showed antagonistic activity. In addition, these synthetic ligands were more chemically stable than the natural ligands.
Collapse
Affiliation(s)
- Yuta Yanase
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (Y.Y.); (M.N.); (N.S.)
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Genichiro Tsuji
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (Y.Y.); (M.N.); (N.S.)
- Correspondence: (G.T.); (Y.D.); Tel.: +81-44-270-6579 (G.T.); +81-44-270-6578 (Y.D.)
| | - Miki Nakamura
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (Y.Y.); (M.N.); (N.S.)
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1 Tsushimanaka, Kita 700-8530, Japan
| | - Norihito Shibata
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (Y.Y.); (M.N.); (N.S.)
| | - Yosuke Demizu
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki 210-9501, Japan; (Y.Y.); (M.N.); (N.S.)
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1 Tsushimanaka, Kita 700-8530, Japan
- Correspondence: (G.T.); (Y.D.); Tel.: +81-44-270-6579 (G.T.); +81-44-270-6578 (Y.D.)
| |
Collapse
|
3
|
Pimková Polidarová M, Břehová P, Kaiser MM, Smola M, Dračínský M, Smith J, Marek A, Dejmek M, Šála M, Gutten O, Rulíšek L, Novotná B, Brázdová A, Janeba Z, Nencka R, Boura E, Páv O, Birkuš G. Synthesis and Biological Evaluation of Phosphoester and Phosphorothioate Prodrugs of STING Agonist 3',3'-c-Di(2'F,2'dAMP). J Med Chem 2021; 64:7596-7616. [PMID: 34019405 DOI: 10.1021/acs.jmedchem.1c00301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclic dinucleotides (CDNs) are second messengers that bind to the stimulator of interferon genes (STING) and trigger the expression of type I interferons and proinflammatory cytokines. Here we evaluate the activity of 3',3'-c-di(2'F,2'dAMP) and its phosphorothioate analogues against five STING allelic forms in reporter-cell-based assays and rationalize our findings with X-ray crystallography and quantum mechanics/molecular mechanics calculations. We show that the presence of fluorine in the 2' position of 3',3'-c-di(2'F,2'dAMP) improves its activity not only against the wild type (WT) but also against REF and Q STING. Additionally, we describe the synthesis of the acyloxymethyl and isopropyloxycarbonyl phosphoester prodrugs of CDNs. Masking the negative charges of the CDNs results in an up to a 1000-fold improvement of the activities of the prodrugs relative to those of their parent CDNs. Finally, the uptake and intracellular cleavage of pivaloyloxymethyl prodrugs to the parent CDN is rapid, reaching a peak intracellular concentration within 2 h.
Collapse
Affiliation(s)
- Markéta Pimková Polidarová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic.,Faculty of Science, Charles University, Albertov 6, Prague 128 00, Czech Republic
| | - Petra Břehová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Martin Maxmilian Kaiser
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Miroslav Smola
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Joshua Smith
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Ondrej Gutten
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Barbora Novotná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic.,Faculty of Science, Charles University, Albertov 6, Prague 128 00, Czech Republic
| | - Andrea Brázdová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Ondřej Páv
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| | - Gabriel Birkuš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 2, Prague 160 00, Czech Republic
| |
Collapse
|
4
|
Wu J, Zhao L, Hu H, Li W, Li Y. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Med Res Rev 2019; 40:1117-1141. [DOI: 10.1002/med.21649] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jun‐Jun Wu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua University Beijing China
| | - Lang Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua University Beijing China
| | - Hong‐Guo Hu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua University Beijing China
| | - Wen‐Hao Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua University Beijing China
| | - Yan‐Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua University Beijing China
- Beijing Institute for Brain Disorders Beijing China
- Center for Synthetic and Systems BiologyTsinghua University Beijing China
| |
Collapse
|
5
|
Chemical synthesis, purification, and characterization of 3'-5'-linked canonical cyclic dinucleotides (CDNs). Methods Enzymol 2019; 625:41-59. [PMID: 31455536 DOI: 10.1016/bs.mie.2019.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
So far, four cyclic dinucleotides (CDNs) have been discovered as important second messengers in nature, where three canonical CDNs of c-di-GMP, c-di-AMP and c-AMP-GMP were found in bacteria containing two 3'-5' phosphodiester linkages and one non-canonical CDN 2'3'-c-GMP-AMP was identified in mammals containing mixed 2'-5' and 3'-5' phosphodiester linkages. The CDNs are produced by specific cyclases and degraded by phosphodiesterases (PDEs). All of the known CDNs could bind to the stimulator of interferon genes (STING) to induce type I interferon (IFN) responses and the three bacterial CDNs are sensed by specific riboswitches to regulate gene expression. The emerging physiological functions of bacterial CDNs lead the motivation to investigate other possible canonical CDNs. In recent years, many endeavors have been devoted to develop fast, convenient and cheap strategies for chemically synthesizing CDNs and their analogues. The phosphoramidite approach using commercial starting materials has attracted much attention. Herein, we describe an adapted one-pot strategy that enables fast synthesis of crude 3'-5'-linked canonical CDNs followed by purification of the obtained CDNs using reversed phase high-performance of liquid chromatography (HPLC). Furthermore, we report the full characterization of CDNs by mass spectrometry (MS) and nuclear magnetic resonance (NMR) techniques.
Collapse
|
6
|
Tsukamoto M, Oyama KI. Recent application of acidic 1,3-azolium salts as promoters in the solution-phase synthesis of nucleosides and nucleotides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Lioux T, Mauny MA, Lamoureux A, Bascoul N, Hays M, Vernejoul F, Baudru AS, Boularan C, Lopes-Vicente J, Qushair G, Tiraby G. Design, Synthesis, and Biological Evaluation of Novel Cyclic Adenosine-Inosine Monophosphate (cAIMP) Analogs That Activate Stimulator of Interferon Genes (STING). J Med Chem 2016; 59:10253-10267. [PMID: 27783523 DOI: 10.1021/acs.jmedchem.6b01300] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe novel STING-activating cyclic dinucleotides whose constituent nucleosides are adenosine and inosine and that vary by ribose substitution, internucleotide linkage position, and phosphate modification. In mammalian cells in vitro, some of these cAIMP analogs induce greater STING-dependent IRF and NF-κB pathway signaling than do the reference agonists for murine (DMXAA) or human (2',3'-cGAMP) STING. In human blood ex vivo, they induce type I interferons (IFNs) and proinflammatory cytokines: for the former, 3',3'-cAIMP (9; EC50 of 6.4 μM) and analogs 52-56 (EC50 of 0.4-4.7 μM), which contain one or two 2'-fluoro-2'-deoxyriboses and/or bis-phosphorothioate linkages, are more potent than 2',3'-cGAMP (EC50 of 19.6 μM). Interestingly, 9 induces type I IFNs more strongly than do its linkage isomers 2',3'-cAIMP (10), 3',2'-cAIMP (23), and 2',2'-cAIMP (27). Lastly, some of the cAIMP analogs are more resistant than 2',3'-cGAMP to enzymatic cleavage in vitro. We hope to exploit our findings to develop STING-targeted immunotherapies.
Collapse
Affiliation(s)
- Thierry Lioux
- InvivoGen , 5 Rue Jean Rodier, 31400 Toulouse, France
| | | | | | | | - Mathieu Hays
- InvivoGen , 5 Rue Jean Rodier, 31400 Toulouse, France
| | | | | | | | | | | | - Gérard Tiraby
- InvivoGen , 5 Rue Jean Rodier, 31400 Toulouse, France
| |
Collapse
|
8
|
Kinzie CR, Steele AD, Pasciolla SM, Wuest WM. Synthesis of cyclic dimeric methyl morpholinoside—a common synthetic precursor to cyclic dinucleotide analogs. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.07.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Dubensky TW, Kanne DB, Leong ML. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. THERAPEUTIC ADVANCES IN VACCINES 2014; 1:131-43. [PMID: 24757520 DOI: 10.1177/2051013613501988] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A principal barrier to the development of effective vaccines is the availability of adjuvants and formulations that can elicit both effector and long-lived memory CD4 and CD8 T cells. Cellular immunity is the presumptive immune correlate of protection against intracellular pathogens: a group composed of bacteria, viruses and protozoans that is responsible for a staggering level of morbidity and mortality on a global scale. T-cell immunity is also correlated with clinical benefit in cancer, and the development of therapeutic strategies to harness the immune system to treat diverse malignancies is currently undergoing a renaissance. Cyclic dinucleotides (CDNs) are ubiquitous small molecule second messengers synthesized by bacteria that regulate diverse processes and are a relatively new class of adjuvants that have been shown to increase vaccine potency. CDNs activate innate immunity by directly binding the endoplasmic reticulum-resident receptor STING (stimulator of interferon genes), activating a signaling pathway that induces the expression of interferon-β (IFN-β) and also nuclear factor-κB (NF-κB) dependent inflammatory cytokines. The STING signaling pathway has emerged as a central Toll-like receptor (TLR) independent mediator of host innate defense in response to sensing cytosolic nucleic acids, either through direct binding of CDNs secreted by bacteria, or, as shown recently, through binding of a structurally distinct CDN produced by a host cell receptor in response to binding cytosolic double-stranded (ds)DNA. Although this relatively new class of adjuvants has to date only been evaluated in mice, newly available CDN-STING cocrystal structures will likely intensify efforts in this field towards further development and evaluation in human trials both in preventive vaccine and immunotherapy settings.
Collapse
|
10
|
Fujino T, Okada K, Isobe H. Conformational restriction of cyclic dinucleotides with triazole-linked cyclophane analogues. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Gaffney BL, Jones RA. Synthesis of c-di-GMP analogs with thiourea, urea, carbodiimide, and guanidinium linkages. Org Lett 2013; 16:158-61. [PMID: 24313312 DOI: 10.1021/ol403154w] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first syntheses of neutral thiourea, urea, and carbodiimide analogs, along with two guanidinium analogs, of the bacterial signaling molecule cyclic diguanosine monophosphate (c-di-GMP) are reported. The key intermediate, obtained in nine steps, is a 3'-amino-5'-azido-3',5'-dideoxy derivative. The 5'-azide serves as a masked amine from which the amine is obtained by Staudinger reduction, while the 3'-amine is converted to an isothiocyanate that, while stable to chromatography, and Staudinger conditions, nevertheless reacts well with the 5'-amine.
Collapse
Affiliation(s)
- Barbara L Gaffney
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
12
|
Clivio P, Coantic-Castex S, Guillaume D. (3'-5')-Cyclic dinucleotides: synthetic strategies and biological potential. Chem Rev 2013; 113:7354-401. [PMID: 23767818 DOI: 10.1021/cr300011s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Pascale Clivio
- UMR 6229, Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne Ardenne , UFR Médecine-Pharmacie, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | | | | |
Collapse
|
13
|
Grajkowski A, Cieślak J, Schindler C, Beaucage SL. Biotinylation of a propargylated cyclic (3'-5') diguanylic acid and of its mono-6-thioated analog under "click" conditions. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; Chapter 14:14.9.1-14.9.20. [PMID: 23512694 DOI: 10.1002/0471142700.nc1409s52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Commercial N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-(propargyl)guanosine is converted to its 3'-O-levulinyl ester in a yield of 91%. The reaction of commercial N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethyl)-N,N-diisopropylaminophosphinyl]guanosine with N(2)-isobutyryl-2'-O-propargyl-3'-O-(levulinyl)guanosine provides, after P(III) oxidation, 3'-/5'-deprotection, and purification, the 2'-O-propargylated guanylyl(3'-5')guanosine 2-cyanoethyl phosphate triester in a yield of 88%. Phosphitylation of this dinucleoside phosphate triester with 2-cyanoethyl tetraisopropylphosphordiamidite and 1H-tetrazole, followed by an in situ intramolecular cyclization, gives the propargylated cyclic dinucleoside phosphate triester, which is isolated in a yield of 40% after P(III) oxidation and purification. Complete removal of the nucleobases, phosphates, and 2'-O-tert-butyldimethylsilyl protecting groups leads to the desired propargylated c-di-GMP diester. Cycloaddition of a biotinylated azide with the propargylated c-di-GMP diester under click conditions provides the biotinylated c-di-GMP conjugate in an isolated yield of 62%. Replacement of the 6-oxo function of N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-3'-O-levulinyl-2'-O-(propargyl)guanosine with a 2-cyanoethylthio group is effected by treatment with 2,4,6-triisopropybenzenesulfonyl chloride and triethylamine to give a 6-(2,4,6-triisopropylbenzenesulfonic acid) ester intermediate. Reaction of this key intermediate with 3-mercaptoproprionitrile and triethylamine, followed by 5'-dedimethoxytritylation, affords the 6-(2-cyanoethylthio)guanosine derivative in a yield of 70%. The 5'-hydroxy function of this derivative is reacted with commercial N(2)-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethyl)-N,N-diisopropylaminophosphinyl]guanosine. The reaction product is then converted to the mono-6-thioated c-di- GMP biotinylated conjugate under conditions highly similar to those described above for the preparation of the biotinylated c-di-GMP conjugate, and isolated in similar yields.
Collapse
Affiliation(s)
| | | | - Christian Schindler
- Department of Microbiology & Immunology and Department of Medicine, Columbia University, New York, New York
| | | |
Collapse
|
14
|
Ora M, Martikainen K, Lautkoski K. Hydrolytic reactions of cyclic bis(3′-5′)diadenylic acid (c-di-AMP). J PHYS ORG CHEM 2012. [DOI: 10.1002/poc.3070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mikko Ora
- University of Turku; Department of Chemistry; Turku Finland
| | | | | |
Collapse
|
15
|
Shanahan CA, Strobel SA. The bacterial second messenger c-di-GMP: probing interactions with protein and RNA binding partners using cyclic dinucleotide analogs. Org Biomol Chem 2012; 10:9113-29. [PMID: 23108253 DOI: 10.1039/c2ob26724a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ability of bacteria to adapt to a changing environment is essential for their survival. One mechanism used to facilitate behavioral adaptations is the second messenger signaling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). c-di-GMP is widespread throughout the bacterial domain and plays a vital role in regulating the transition between the motile planktonic lifestyle and the sessile biofilm forming state. This second messenger also controls the virulence response of pathogenic organisms and is thought to be connected to quorum sensing, the process by which bacteria communicate with each other. The intracellular concentration of c-di-GMP is tightly regulated by the opposing enzymatic activities of diguanlyate cyclases and phosphodiesterases, which synthesize and degrade the second messenger, respectively. The change in the intracellular concentration of c-di-GMP is directly sensed by downstream targets of the second messenger, both protein and RNA, which induce the appropriate phenotypic response. This review will summarize our current state of knowledge of c-di-GMP signaling in bacteria with a focus on protein and RNA binding partners of the second messenger. Efforts towards the synthesis of c-di-GMP and its analogs are discussed as well as studies aimed at targeting these macromolecular effectors with chemically synthesized cyclic dinucleotide analogs.
Collapse
Affiliation(s)
- Carly A Shanahan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
16
|
Furukawa K, Gu H, Sudarsan N, Hayakawa Y, Hyodo M, Breaker RR. Identification of ligand analogues that control c-di-GMP riboswitches. ACS Chem Biol 2012; 7:1436-43. [PMID: 22646696 PMCID: PMC4140405 DOI: 10.1021/cb300138n] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Riboswitches for the bacterial second messenger c-di-GMP control the expression of genes involved in numerous cellular processes such as virulence, competence, biofilm formation, and flagella synthesis. Therefore, the two known c-di-GMP riboswitch classes represent promising targets for developing novel modulators of bacterial physiology. Here, we examine the binding characteristics of circular and linear c-di-GMP analogues for representatives of both class I and II c-di-GMP riboswitches derived from the pathogenic bacterium Vibrio choleae (class I) and Clostridium difficile (class II). Some compounds exhibit values for apparent dissociation constant (K(D)) below 1 μM and associate with riboswitch RNAs during transcription with a speed that is sufficient to influence riboswitch function. These findings are consistent with the published structural models for these riboswitches and suggest that large modifications at various positions on the ligand can be made to create novel compounds that target c-di-GMP riboswitches. Moreover, we demonstrate the potential of an engineered allosteric ribozyme for the rapid screening of chemical libraries for compounds that bind c-di-GMP riboswitches.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Hongzhou Gu
- Howard Hughes Medical Institute, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Narasimhan Sudarsan
- Howard Hughes Medical Institute, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| | - Yoshihiro Hayakawa
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa, Toyota 470-0392, Japan
| | - Mamoru Hyodo
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060–0812, Japan
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
- Howard Hughes Medical Institute, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA
| |
Collapse
|
17
|
Gaffney BL, Jones RA. One-flask synthesis of cyclic diguanosine monophosphate (c-di-GMP). ACTA ACUST UNITED AC 2012; Chapter 14:Unit 14.8.1-7. [PMID: 22395965 DOI: 10.1002/0471142700.nc1408s48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bacterial signaling molecule, cyclic diguanosine monophosphate (c-di-GMP), plays a key role in controlling biofilm formation and pathogenic virulence, among many other functions. It has widespread consequences for human health, and current research is actively exploring its molecular mechanisms. The convenient one-flask, gram-scale synthesis of c-di-GMP described here will facilitate these efforts.
Collapse
Affiliation(s)
- Barbara L Gaffney
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | | |
Collapse
|
18
|
Veliath E, Kim S, Gaffney BL, Jones RA. Synthesis and characterization of C8 analogs of c-di-GMP. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 30:961-78. [PMID: 22060558 DOI: 10.1080/15257770.2011.624567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
We have synthesized five analogs of c-di-GMP with different substituents at the guanine C8 position, to study their effects on the metal-dependent polymorphism we had previously demonstrated for the parent compound. Of these, only the K(+) salt of c-di-Br-GMP, 2, forms higher order complexes, predominantly two different syn octamolecular ones. Its Na(+) salt, as well as both the K(+) and Na(+) salts of c-di-thio-GMP, 3, c-di-methylthio-GMP, 4, c-di-phenyl-GMP, 5, and c-di-acetylphenyl-GMP, 6, all form primarily a syn bimolecular structure.
Collapse
Affiliation(s)
- Elizabeth Veliath
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
19
|
Suzuki N, Oyama KI, Tsukamoto M. Practical Synthesis of Cyclic Bis(3′–5′)diadenylic Acid (c-di-AMP). CHEM LETT 2011. [DOI: 10.1246/cl.2011.1113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Grajkowski A, Cieślak J, Gapeev A, Schindler C, Beaucage SL. Convenient synthesis of a propargylated cyclic (3'-5') diguanylic acid and its "click" conjugation to a biotinylated azide. Bioconjug Chem 2010; 21:2147-52. [PMID: 20942415 PMCID: PMC2993019 DOI: 10.1021/bc1003857] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The ribonucleoside building block, N²-isobutyryl-2'-O-propargyl-3'-O-levulinyl guanosine, was prepared from commercial N²-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-propargyl guanosine in a yield of 91%. The propargylated guanylyl(3'-5')guanosine phosphotriester was synthesized from the reaction of N²-isobutyryl-2'-O-propargyl-3'-O-levulinyl guanosine with N²-isobutyryl-5'-O-(4,4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethyl)-N,N-diisopropylaminophosphinyl] guanosine and isolated in a yield of 88% after P(III) oxidation, 3'-/5'-deprotection, and purification. The propargylated guanylyl(3'-5')guanosine phosphotriester was phosphitylated using 2-cyanoethyl tetraisopropylphosphordiamidite and 1H-tetrazole and was followed by an in situ intramolecular cyclization to give a propargylated c-di-GMP triester, which was isolated in a yield of 40% after P(III) oxidation and purification. Complete N-deacylation of the guanine bases and removal of the 2-cyanoethyl phosphate protecting groups from the propargylated c-di-GMP triester were performed by treatment with aqueous ammonia at ambient temperature. The final 2'-desilylation reaction was effected by exposure to triethylammonium trihydrofluoride affording the desired propargylated c-di-GMP diester, the purity of which exceeded 95%. Biotinylation of the propargylated c-di-GMP diester was easily accomplished through its cycloaddition reaction with a biotinylated azide derivative under click conditions to produce the biotinylated c-di-GMP conjugate of interest in an isolated yield of 62%.
Collapse
Affiliation(s)
- Andrzej Grajkowski
- Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, United States.
| | | | | | | | | |
Collapse
|
21
|
Gaffney BL, Veliath E, Zhao J, Jones RA. One-flask syntheses of c-di-GMP and the [Rp,Rp] and [Rp,Sp] thiophosphate analogues. Org Lett 2010; 12:3269-71. [PMID: 20572672 PMCID: PMC2905038 DOI: 10.1021/ol101236b] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An integrated set of reactions and conditions that allow an eight-step one-flask synthesis of the protected derivatives of c-di-GMP and the [R(p),R(p)] and [R(p),S(p)] thiophosphate analogues is reported. Deprotection is also carried out as a one-flask procedure, with the final products isolated by crystallization from the reaction mixture. Chromatography is only used for separation of the thiophosphate diastereomers.
Collapse
Affiliation(s)
- Barbara L. Gaffney
- Department of Chemistry and Chemical Biology, 610 Taylor Road, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Elizabeth Veliath
- Department of Chemistry and Chemical Biology, 610 Taylor Road, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Jianwei Zhao
- Department of Chemistry and Chemical Biology, 610 Taylor Road, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Roger A. Jones
- Department of Chemistry and Chemical Biology, 610 Taylor Road, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
22
|
Zhao J, Veliath E, Kim S, Gaffney BL, Jones RA. Thiophosphate analogs of c-di-GMP: impact on polymorphism. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2009; 28:352-78. [PMID: 20183589 PMCID: PMC2829739 DOI: 10.1080/15257770903044523] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Seven phosphorothioate analogs of c-di-GMP (all diastereomers of mono-, di-, and trithiophosphates) were prepared to assess the impact of the thioate substitutions on c-di-GMP polymorphism using 1D (1)H and (31)P NMR, along with 2D NOESY and DOSY, for both the Na(+) and K(+) salts. The K(+) salts display more extensive higher order complex formation than the Na(+) salts, resulting primarily in octamolecular complexes with K(+), but tetramolecular complexes with Na(+). Further, the presence of one or two [S(P)] sulfurs specifically stabilizes anti complexes and/or destabilizes syn complexes, while the presence of two [S(P)] sulfurs promotes extensive aggregation.
Collapse
Affiliation(s)
- Jianwei Zhao
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854 USA
| | - Elizabeth Veliath
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854 USA
| | - Seho Kim
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854 USA
| | - Barbara L. Gaffney
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854 USA
| | - Roger A. Jones
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854 USA
| |
Collapse
|
23
|
Kline T, Jackson SR, Deng W, Verlinde CLMJ, Miller SI. Design and synthesis of bis-carbamate analogs of cyclic bis-(3'-5')-diguanylic acid (c-di-GMP) and the acyclic dimer PGPG. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2009; 27:1282-300. [PMID: 19003573 DOI: 10.1080/15257770802554150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The bacterial second messenger cyclic bis-(3'-5')-diguanylic acid (c-di-GMP) regulates diverse Gram-negative bacterial virulence functions. The pathways that control, or are controlled by, c-di-GMP suggest that c-di-GMP signaling systems may encompass potential drug targets. It is presently undetermined, however, whether up- or down-modulation of c-di-GMP signaling would be the desired therapeutic state. We addressed potential drug target validation by synthesizing nonhydrolysable carbamate analogs of both the cyclic dinucleotide and the acyclic (seco) dinucleotide. A molecular docking simulation of the carbamate isostere suggests that this analog is capable of assuming the correct conformation and pose at a c-di-GMP binding site.
Collapse
Affiliation(s)
- Toni Kline
- Department of Immunology, University of Washington, Seattle, Washington 98195,, USA.
| | | | | | | | | |
Collapse
|
24
|
Yan H, Wang X, KuoLee R, Chen W. Synthesis and immunostimulatory properties of the phosphorothioate analogues of cdiGMP. Bioorg Med Chem Lett 2008; 18:5631-4. [PMID: 18799311 DOI: 10.1016/j.bmcl.2008.08.088] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/23/2008] [Accepted: 08/26/2008] [Indexed: 12/24/2022]
Abstract
The synthesis of mono- and bisphosphorothioate analogues of 3',5'-cyclic diguanylic acid (cdiGMP) via the modified H-phosphonate chemistry is reported. The immunostimulatory properties of these analogues were compared with those of cdiGMP.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ont., Canada L2S 3A1.
| | | | | | | |
Collapse
|