1
|
Liu Y, Kajihara Y, Okamoto R. Post-translational activation of the C-terminus of polypeptides for the synthesis of peptide thioesters and peptide thioester surrogates. Front Chem 2024; 12:1424953. [PMID: 39076613 PMCID: PMC11284063 DOI: 10.3389/fchem.2024.1424953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Semisynthesis using recombinant polypeptides is a powerful approach for the synthesis of proteins having a variety of modifications. Peptide thioesters, of which the peptide C-terminus is activated by a thioester, are utilized for coupling peptide building blocks. Biological methods employing intein have been a center for the C-terminal thioesterification of recombinant polypeptides. Chemical activation has emerged as an alternative methodology for synthesizing peptide thioesters from recombinant polypeptides. Chemical reactions are compatible with various solutions containing organic solvents, chaotropic reagents, or detergents that are generally incompatible with biomolecules such as intein. Despite the potential utility of chemical activation, available methods remain limited. This article introduces the methods for the chemical activation of a peptide C-terminus applied to the chemical synthesis of proteins. By showcasing these methodologies, we aim to accelerate the advancement of new chemical reactions and methodologies and broaden the frontiers for the chemical synthesis of proteins.
Collapse
Affiliation(s)
- Yanbo Liu
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Osaka University, Osaka, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
- Forefront Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Dürvanger Z, Boros E, Nagy ZA, Hegedüs R, Megyeri M, Dobó J, Gál P, Schlosser G, Ángyán AF, Gáspári Z, Perczel A, Harmat V, Mező G, Menyhárd DK, Pál G. Directed Evolution-Driven Increase of Structural Plasticity Is a Prerequisite for Binding the Complement Lectin Pathway Blocking MASP-Inhibitor Peptides. ACS Chem Biol 2022; 17:969-986. [PMID: 35378038 PMCID: PMC9016712 DOI: 10.1021/acschembio.2c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
MASP-1 and MASP-2
are key activator proteases of the complement
lectin pathway. The first specific mannose-binding lectin-associated
serine protease (MASP) inhibitors had been developed from the 14-amino-acid
sunflower trypsin inhibitor (SFTI) peptide by phage display, yielding
SFTI-based MASP inhibitors, SFMIs. Here, we present the crystal structure
of the MASP-1/SFMI1 complex that we analyzed in comparison to other
existing MASP-1/2 structures. Rigidified backbone structure has long
been accepted as a structural prerequisite for peptide inhibitors
of proteases. We found that a hydrophobic cluster organized around
the P2 Thr residue is essential for the structural stability of wild-type
SFTI. We also found that the same P2 Thr prevents binding of the rigid
SFTI-like peptides to the substrate-binding cleft of both MASPs as
the cleft is partially blocked by large gatekeeper enzyme loops. Directed
evolution removed this obstacle by replacing the P2 Thr with a Ser,
providing the SFMIs with high-degree structural plasticity, which
proved to be essential for MASP inhibition. To gain more insight into
the structural criteria for SFMI-based MASP-2 inhibition, we systematically
modified MASP-2-specific SFMI2 by capping its two termini and by replacing
its disulfide bridge with varying length thioether linkers. By doing
so, we also aimed to generate a versatile scaffold that is resistant
to reducing environment and has increased stability in exopeptidase-containing
biological environments. We found that the reduction-resistant disulfide-substituted l-2,3-diaminopropionic acid (Dap) variant possessed near-native
potency. As MASP-2 is involved in the life-threatening thrombosis
in COVID-19 patients, our synthetic, selective MASP-2 inhibitors could
be relevant coronavirus drug candidates.
Collapse
Affiliation(s)
- Zsolt Dürvanger
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Eszter Boros
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Zoltán Attila Nagy
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Rózsa Hegedüs
- MTA-ELTE Research Group of Peptide Chemistry, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Márton Megyeri
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar tudósok krt 2, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Budapest, Hungary
| | - Annamária F. Ángyán
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, H-1083 Budapest, Hungary
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, H-1083 Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös
Loránd Research Network, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös
Loránd Research Network, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
- Department of Organic Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Dóra K. Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Protein Modelling Research Group, Eötvös
Loránd Research Network, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
3
|
Handley TNG, Jackson MA, Craik DJ. Scalable and Efficient In Planta Biosynthesis of Sunflower Trypsin Inhibitor-1 (SFTI) Peptide Therapeutics. Methods Mol Biol 2022; 2371:117-142. [PMID: 34596846 DOI: 10.1007/978-1-0716-1689-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Sunflower trypsin inhibitor-1 (SFTI-1) is a 14 amino acid cyclic peptide which has been effectively employed as a scaffold for engineering a range of peptide therapeutic candidates. Typically, synthesis of SFTI-1-based therapeutics is performed via solid-phase peptide synthesis and native chemical ligation, with significant financial and environmental costs associated. In planta synthesis of SFTI-1 based therapeutics serves as a greener approach for environmentally sustainable production. Here, we detail the methods for the transient expression, production, and purification of SFTI-1-based therapeutic peptides in Nicotiana benthamiana using a scalable and high-throughput approach. We demonstrate that a prerequisite for this is the co-expression of specialized asparaginyl endopeptidases (AEPs) that perform the backbone cyclization of SFTI-1. In our founding study, we were able to achieve in planta yields of a plasmin inhibitor SFTI-1 peptide at yields of ~60 μg/g of dried plant material.
Collapse
Affiliation(s)
- Thomas N G Handley
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - Mark A Jackson
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
González-Castro R, Gómez-Lim MA, Plisson F. Cysteine-Rich Peptides: Hyperstable Scaffolds for Protein Engineering. Chembiochem 2020; 22:961-973. [PMID: 33095969 DOI: 10.1002/cbic.202000634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Cysteine-rich peptides (CRPs) are small proteins of less than 100 amino acids in length characterized by the presence of disulfide bridges and common end-to-end macrocyclization. These properties confer hyperstability against high temperatures, salt concentration, serum presence, and protease degradation to CRPs. Moreover, their intercysteine domains (loops) are susceptible to residue hypervariability. CRPs have been successfully applied as stable scaffolds for molecular grafting, a protein engineering process in which cysteine-rich structures provide higher thermodynamic and metabolic stability to an epitope and acquire new biological function(s). This review describes the successes and limitations of seven cysteine-rich scaffolds, their bioactive epitopes, and the resulting grafted peptides.
Collapse
Affiliation(s)
- Rafael González-Castro
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, México.,Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato, Guanajuato, 36824, México
| | - Miguel A Gómez-Lim
- Centro de Investigación y de Estudios Avanzados del IPN Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato, Guanajuato, 36824, México
| | - Fabien Plisson
- CONACYT, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Irapuato, Guanajuato, 36824, México
| |
Collapse
|
5
|
Faucher F, Bennett JM, Bogyo M, Lovell S. Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases. Cell Chem Biol 2020; 27:937-952. [PMID: 32726586 PMCID: PMC7484133 DOI: 10.1016/j.chembiol.2020.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Serine hydrolases comprise a large family of enzymes that have diverse roles in key cellular processes, such as lipid metabolism, cell signaling, and regulation of post-translation modifications of proteins. They are also therapeutic targets for multiple human pathologies, including viral infection, diabetes, hypertension, and Alzheimer disease; however, few have well-defined substrates and biological functions. Activity-based probes (ABPs) have been used as effective tools to both profile activity and screen for selective inhibitors of serine hydrolases. One broad-spectrum ABP containing a fluorophosphonate electrophile has been used extensively to advance our understanding of diverse serine hydrolases. Due to the success of this single reagent, several robust chemistries have been developed to further diversify and tune the selectivity of ABPs used to target serine hydrolases. In this review, we highlight approaches to identify selective serine hydrolase ABPs and suggest new synthetic methodologies that could be applied to further advance probe development.
Collapse
Affiliation(s)
- Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Di Paolo CT, Diamandis EP, Prassas I. The role of kallikreins in inflammatory skin disorders and their potential as therapeutic targets. Crit Rev Clin Lab Sci 2020; 58:1-16. [PMID: 32568598 DOI: 10.1080/10408363.2020.1775171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin is a vital organ of the human body, serving numerous protective and functional roles that are essential for survival. Residing in the epidermis are various epidermal proteases responsible for the establishment and regulation of barrier function. The human tissue kallikrein-related peptidase family conserves homeostasis of the skin barrier through their roles in desquamation, antimicrobial defense, innate immune response, and barrier maintenance. The activity of kallikreins is tightly regulated and dysregulation of kallikrein activity is seen to contribute to the formation of several inflammatory skin disorders. This review highlights the roles of kallikreins in skin homeostasis and pathologies. Due to their part in these skin disorders, inhibitors of the skin kallikreins have become attractive therapeutics. Over the past few years, both natural and synthetic inhibitors of several kallikreins have been identified and are undergoing further development as treatments to restore compromised barrier function. This review summarizes the kallikrein inhibitors under development for this purpose. These inhibitors remain promising therapeutics in cases of severe skin inflammation not well managed by current therapies.
Collapse
Affiliation(s)
- Caitlin T Di Paolo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
7
|
Monteiro KL, Alcântara MGDS, de Aquino TM, da Silva-Júnior EF. Tau Protein Aggregation in Alzheimer's Disease: Recent Advances in the Development of Novel Therapeutic Agents. Curr Pharm Des 2020; 26:1682-1692. [DOI: 10.2174/1381612826666200414164038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
:
Major research in Alzheimer’s disease (AD) related to disease-modifying agents is concentrated on
pharmacological approaches related to diagnostic markers, neurofibrillary tangles and amyloid plaques. Although
most studies focus on anti-amyloid strategies, investigations on tau protein have produced significant advances in
the modulation of the pathophysiology of several neurodegenerative diseases. Since the discovery of phenothiazines
as tau protein aggregation inhibitors (TAGIs), many additional small molecule inhibitors have been discovered
and characterized in biological model systems, which exert their interaction effects by covalent and noncovalent
means. In this paper, we summarize the latest advances in the discovery and development of tau aggregation
inhibitors using a specialized approach in their chemical classes. The design of new TAGIs and their encouraging
use in in vivo and clinical trials support their potential therapeutic use in AD.
Collapse
Affiliation(s)
- Kadja L.C. Monteiro
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Marcone G. dos S. Alcântara
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Thiago M. de Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil
| | | |
Collapse
|
8
|
Jackson MA, Yap K, Poth AG, Gilding EK, Swedberg JE, Poon S, Qu H, Durek T, Harris K, Anderson MA, Craik DJ. Rapid and Scalable Plant-Based Production of a Potent Plasmin Inhibitor Peptide. FRONTIERS IN PLANT SCIENCE 2019; 10:602. [PMID: 31156672 PMCID: PMC6530601 DOI: 10.3389/fpls.2019.00602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/24/2019] [Indexed: 05/03/2023]
Abstract
The backbone cyclic and disulfide bridged sunflower trypsin inhibitor-1 (SFTI-1) peptide is a proven effective scaffold for a range of peptide therapeutics. For production at laboratory scale, solid phase peptide synthesis techniques are widely used, but these synthetic approaches are costly and environmentally taxing at large scale. Here, we developed a plant-based approach for the recombinant production of SFTI-1-based peptide drugs. We show that transient expression in Nicotiana benthamiana allows for rapid peptide production, provided that asparaginyl endopeptidase enzymes with peptide-ligase functionality are co-expressed with the substrate peptide gene. Without co-expression, no target cyclic peptides are detected, reflecting rapid in planta degradation of non-cyclized substrate. We test this recombinant production system by expressing a SFTI-1-based therapeutic candidate that displays potent and selective inhibition of human plasmin. By using an innovative multi-unit peptide expression cassette, we show that in planta yields reach ~60 μg/g dry weight at 6 days post leaf infiltration. Using nuclear magnetic resonance structural analysis and functional in vitro assays, we demonstrate the equivalence of plant and synthetically derived plasmin inhibitor peptide. The methods and insights gained in this study provide opportunities for the large scale, cost effective production of SFTI-1-based therapeutics.
Collapse
Affiliation(s)
- Mark A. Jackson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Aaron G. Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Edward K. Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Simon Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Haiou Qu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Karen Harris
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Li CY, de Veer SJ, White AM, Chen X, Harris JM, Swedberg JE, Craik DJ. Amino Acid Scanning at P5' within the Bowman-Birk Inhibitory Loop Reveals Specificity Trends for Diverse Serine Proteases. J Med Chem 2019; 62:3696-3706. [PMID: 30888159 DOI: 10.1021/acs.jmedchem.9b00211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sunflower trypsin inhibitor-1 (SFTI-1) is a 14-amino acid cyclic peptide that shares an inhibitory loop with a sequence and structure similar to a larger family of serine protease inhibitors, the Bowman-Birk inhibitors. Here, we focus on the P5' residue in the Bowman-Birk inhibitory loop and produce a library of SFTI variants to characterize the P5' specificity of 11 different proteases. We identify seven amino acids that are generally preferred by these enzymes and also correlate with P5' sequence diversity in naturally occurring Bowman-Birk inhibitors. Additionally, we show that several enzymes have divergent specificities that can be harnessed in engineering studies. By optimizing the P5' residue, we improve the potency or selectivity of existing inhibitors for kallikrein-related peptidase 5 and show that a variant with substitutions at 7 of the scaffold's 14 residues retains a similar structure to SFTI-1. These findings provide new insights into P5' specificity requirements for the Bowman-Birk inhibitory loop.
Collapse
Affiliation(s)
- Choi Yi Li
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Andrew M White
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Xingchen Chen
- Institute of Health and Biomedical Innovation , Queensland University of Technology , Brisbane QLD 4059 , Australia
| | - Jonathan M Harris
- Institute of Health and Biomedical Innovation , Queensland University of Technology , Brisbane QLD 4059 , Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane QLD 4072 , Australia
| |
Collapse
|
10
|
de Veer SJ, Li CY, Swedberg JE, Schroeder CI, Craik DJ. Engineering potent mesotrypsin inhibitors based on the plant-derived cyclic peptide, sunflower trypsin inhibitor-1. Eur J Med Chem 2018; 155:695-704. [PMID: 29936356 DOI: 10.1016/j.ejmech.2018.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
Plants produce a diverse range of peptides and proteins that inhibit the activity of different serine proteases. The value of these inhibitors not only stems from their native role(s) in planta, but they are also regarded as promising templates for inhibitor engineering. Interest in this field has grown rapidly in recent years, particularly for therapeutic applications. The serine protease mesotrypsin has been implicated in several cancers, but is a challenging target for inhibitor engineering as a number of serine protease inhibitors that typically display broad-range activity show limited activity against mesotrypsin. In this study, we use a cyclic peptide isolated from sunflower seeds, sunflower trypsin inhibitor-1 (SFTI-1), as a scaffold for engineering potent mesotrypsin inhibitors. SFTI-1 comprises 14-amino acids and is a potent inhibitor of human cationic trypsin (Ki = 30 ± 0.8 pM) but shows 165,000-fold weaker activity against mesotrypsin (Ki = 4.96 ± 0.2 μM). Using an inhibitor library based on SFTI-1, we show that the inhibitor's P2' residue (Ile) is a key contributor to SFTI-1's limited activity against mesotrypsin. Substituting P2' Ile with chemically diverse amino acids, including non-canonical aromatic residues, produced new inhibitor variants that maintained a similar structure to SFTI-1 and showed marked improvements in activity (exceeding 100-fold). An assessment of the activity of the new inhibitors against closely-related trypsin paralogs revealed that the improved activity against mesotrypsin was accompanied by a loss in activity against off-target proteases, such that several engineered variants showed comparable activity against mesotrypsin and human cationic trypsin. Together, these findings identify potent mesotrypsin inhibitors that are suitable for further optimisation studies and demonstrate the potential gains in activity and selectivity that can be achieved by optimising the P2' residue, particularly for engineered SFTI-based inhibitors.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Choi Yi Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Zhu Y, Underwood J, Macmillan D, Shariff L, O'Shaughnessy R, Harper JI, Pickard C, Friedmann PS, Healy E, Di WL. Persistent kallikrein 5 activation induces atopic dermatitis-like skin architecture independent of PAR2 activity. J Allergy Clin Immunol 2017; 140:1310-1322.e5. [DOI: 10.1016/j.jaci.2017.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 11/28/2022]
|
12
|
Masurier N, Arama DP, El Amri C, Lisowski V. Inhibitors of kallikrein-related peptidases: An overview. Med Res Rev 2017; 38:655-683. [DOI: 10.1002/med.21451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Dominique P. Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256; Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology; Paris France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| |
Collapse
|
13
|
Terrier VP, Delmas AF, Aucagne V. Efficient synthesis of cysteine-rich cyclic peptides through intramolecular native chemical ligation of N-Hnb-Cys peptide crypto-thioesters. Org Biomol Chem 2017; 15:316-319. [DOI: 10.1039/c6ob02546c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We herein introduce a straightforward synthetic route to cysteine-containing cyclic peptides. It is based on the intramolecular native chemical ligation of thioesters generated in situ from N-Hnb-Cys crypto-thioesters. The strategy is applied to a representative range of natural cyclic disulfide-rich peptide sequences.
Collapse
Affiliation(s)
- Victor P. Terrier
- Centre de Biophysique Moléculaire
- CNRS UPR 4301
- 45071 Orléans Cedex 2
- France
| | - Agnès F. Delmas
- Centre de Biophysique Moléculaire
- CNRS UPR 4301
- 45071 Orléans Cedex 2
- France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire
- CNRS UPR 4301
- 45071 Orléans Cedex 2
- France
| |
Collapse
|
14
|
Chen W, Kinsler VA, Macmillan D, Di WL. Tissue Kallikrein Inhibitors Based on the Sunflower Trypsin Inhibitor Scaffold - A Potential Therapeutic Intervention for Skin Diseases. PLoS One 2016; 11:e0166268. [PMID: 27824929 PMCID: PMC5100903 DOI: 10.1371/journal.pone.0166268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/25/2016] [Indexed: 01/27/2023] Open
Abstract
Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS.
Collapse
Affiliation(s)
- Wenjie Chen
- Infection, Immunity and Inflammation Programme, Immunobiology Section, UCL GOS Institute of Child Health, London, United Kingdom
| | - Veronica A. Kinsler
- Genetics and Genomic Medicine Programme, UCL GOS Institute of Child Health, London, United Kingdom
| | - Derek Macmillan
- Department of Chemistry, University College London, London, United Kingdom
| | - Wei-Li Di
- Infection, Immunity and Inflammation Programme, Immunobiology Section, UCL GOS Institute of Child Health, London, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Kuznetsova SS, Kolesanova EF, Talanova AV, Veselovsky AV. [Prospects for the design of new therapeutically significant protease inhibitors based on knottins and sunflower seed trypsin inhibitor (SFTI 1)]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:353-68. [PMID: 27562989 DOI: 10.18097/pbmc20166204353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plant seed knottins, mainly from the Cucurbitacea family, and sunflower seed trypsin inhibitor (SFTI 1) are the most low-molecular canonical peptide inhibitors of serine proteases. High efficiency of inhibition of various serine proteases, structure rigidity together with the possibility of limited variations of amino acid sequences, high chemical stability, lack of toxic properties, opportunity of production by either chemical synthesis or use of heterologous expression systems make these inhibitors attractive templates for design of new compounds for regulation of therapeutically significant serine protease activities. Hence the design of such compounds represents a prospective research field. The review considers structural characteristics of these inhibitors, their properties, methods of preparation and design of new analogs. Examples of successful employment of natural serine protease inhibitors belonging to knottin family and SFTI 1 as templates for the design of highly specific inhibitors of certain proteases are given.
Collapse
Affiliation(s)
| | | | - A V Talanova
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
16
|
Gao M, Cheng K, Yin H. Targeting protein-protein interfaces using macrocyclic peptides. Biopolymers 2016; 104:310-6. [PMID: 25664609 DOI: 10.1002/bip.22625] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 01/10/2023]
Abstract
Protein-protein interactions (PPIs) are critical in numerous biological processes including signaling transduction, function regulations, and disease development. To regulate PPIs has been thought to be challenging due to their highly dynamic and expansive interfacial areas. Nonetheless, successful examples have been reported of targeting PPIs using small molecules, peptides, and proteins. Peptides, especially macrocyclic peptides have proven to be a particularly useful tool to inhibit PPIs for their exquisite potency, stability and selectivity. Herein we review the recent developments of this area of research, focusing on the macrocyclic peptides isolated from natural products, identified from library screening, and rationally designed based on structures, as PPI regulators.
Collapse
Affiliation(s)
- Meng Gao
- Department of Chemistry, Center of Basic Molecular Science, Tsinghua University, Beijing, China , 100082
| | - Kui Cheng
- Department of Chemistry, Center of Basic Molecular Science, Tsinghua University, Beijing, China , 100082
| | - Hang Yin
- Department of Chemistry, Center of Basic Molecular Science, Tsinghua University, Beijing, China , 100082.,Department of Chemistry and Biochemistry, the BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309-0596
| |
Collapse
|
17
|
Cowper B, Shariff L, Chen W, Gibson SM, Di WL, Macmillan D. Expanding the scope of N → S acyl transfer in native peptide sequences. Org Biomol Chem 2016; 13:7469-76. [PMID: 26066020 DOI: 10.1039/c5ob01029b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the factors that influence N → S acyl transfer in native peptide sequences, and discovery of new reagents that facilitate it, will be key to expanding its scope and applicability. Here, through a study of short model peptides in thioester formation and cyclisation reactions, we demonstrate that a wider variety of Xaa-Cys motifs than originally envisaged are capable of undergoing efficient N → S acyl transfer. We present data for the relative rates of thioester formation and cyclisation for a representative set of amino acids, and show how this expanded scope can be applied to the production of the natural protease inhibitor Sunflower Trypsin Inhibitor-1 (SFTI-1).
Collapse
Affiliation(s)
- Ben Cowper
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Jendrny C, Beck-Sickinger AG. Inhibition of Kallikrein-Related Peptidases 7 and 5 by Grafting Serpin Reactive-Center Loop Sequences onto Sunflower Trypsin Inhibitor-1 (SFTI-1). Chembiochem 2015; 17:719-26. [PMID: 26574674 DOI: 10.1002/cbic.201500539] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 01/30/2023]
Abstract
Serpin proteins irreversibly inhibit serine proteases, but only a small part of the serpin reactive-center loop (RCL) is responsible for the initial protein-protein interaction (PPI). To develop peptidic protease inhibitors, kallikrein-related peptidases 7 (KLK7) and 5 (KLK5) were chosen. Firstly, we demonstrated that short peptides derived from RCL sequences can be cleaved by KLK7 in a substrate-like manner. Next, these substrates were grafted onto the protease-binding loop of sunflower trypsin inhibitor-1 (SFTI-1). Peptides based on kallistatin, α1 -antichymotrypsin, and protein C inhibitor (PCI) inhibited KLK7 with Ki =0.4, 0.5, and 0.7 μm, respectively. In contrast, the trypsin-like KLK5 was only blocked by the peptide derived from PCI (Ki =0.6 μm). Thus, serpin function can be mimicked by introducing its PPI site into the rigid structure of the SFTI-1 scaffold. This approach might be applicable not only to KLKs but also to other serine protease members, thus opening up new therapeutic fields.
Collapse
Affiliation(s)
- Cathleen Jendrny
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität Leipzig, Brüderstrasse 34, 04103, Leipzig, Germany.
| |
Collapse
|