1
|
Zhong YT, Zhao ZF, Chen WC, Edjah PP, Zhu KK, Tian CK, Hong K, Tao WX, Zhang KY, Zhang MK, Wang FQ, Cai YS. Bisabolane-type sesquiterpenoids and cyclic tetrapeptide from the marine fungus Aspergillus sp. WHUF05242. Fitoterapia 2025; 183:106547. [PMID: 40239775 DOI: 10.1016/j.fitote.2025.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Two new bisabolane-type sesquiterpenoids, aspergillolanoids A and B (1 and 2), along with a previously unreported cyclic tetrapeptide, aspergitertide A (5), and four known compounds (3, 4, 6 and 7), have been isolated from the deep-sea-derived fungus Aspergillus sp. WHUF05242. Structural elucidation of these compounds was accomplished through comprehensive spectroscopic analysis, including HR-ESIMS and 1D/2D NMR spectroscopic data. The absolute stereochemistry of 1 was unambiguously determined by single-crystal X-ray crystallographic analysis, while the chiral center configurations of 5 were resolved through time-dependent density functional theory (TDDFT)-based ECD calculations. Antimicrobial evaluation revealed that compound 7 demonstrated moderate antibacterial activity against Staphylococcus aureus with MIC value of 16 μg/mL.
Collapse
Affiliation(s)
- Yu-Ting Zhong
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zi-Fang Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wei-Chen Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Philomina Panin Edjah
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Cong-Kui Tian
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Institute of Selenium Science and Industry, Hubei Minzu University, Enshi 445000, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wei-Xin Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | | | - Meng-Ke Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Fu-Qian Wang
- Department of Pharmacy, Wuhan No.1 Hospital, Wuhan 430022, Hubei, China.
| | - You-Sheng Cai
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Zhou TP, Fan Y, Zhang J, Wang B. Mechanistic Perspective on C-N and C-S Bond Construction Catalyzed by Cytochrome P450 Enzymes. ACS BIO & MED CHEM AU 2025; 5:16-30. [PMID: 39990936 PMCID: PMC11843346 DOI: 10.1021/acsbiomedchemau.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025]
Abstract
Cytochrome P450 enzymes catalyze a large number of oxidative transformations that are responsible for natural product synthesis. Recent studies have revealed their unique ability to catalyze the formation of C-N and C-S bonds, broadening their biosynthetic applications. However, the enzymatic mechanisms behind these reactions are still unclear. This review focuses on theoretical insights into the mechanisms of P450-catalyzed C-N and C-S bond formation. The key roles of the conformational dynamics of substrate radicals, influenced by the enzyme environment, in modulating selectivity and reactivity are highlighted. Understanding these reaction mechanisms offers valuable guidance for P450 enzyme engineering and the design of biosynthetic applications.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yakun Fan
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinyan Zhang
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- State Key Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Song X, Wang Q, He Z, Wang M. Structure, Nuclear Magnetic Resonance Data, Biological Activity, and Synthesis of the Okaramine Family Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:985-999. [PMID: 39760527 DOI: 10.1021/acs.jafc.4c06492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The okaramine family of compounds, a class of alkaloids with broad-spectrum insecticidal activity, has been discovered from species of Penicillium and Aspergillus. These okaramines, characterized by their complex structures and diverse biological activities, have attracted widespread attention from biologists and chemists. To date, only a few okaramines have been synthesized, notably the highly active okaramines A and B, which feature a polycyclic skeleton, including an azocine ring and an unprecedented 2-dimethyl-3-methyl-azetidine ring. These compounds have not yet been synthesized artificially. Their potent insecticidal activity is due to their selective activation of glutamate-gated chloride channels in invertebrates without affecting human ligand-gated anion channels. They are promising candidates as lead insecticides and merit further research. This review provides an overview of the research progress in the structural characteristics, nuclear magnetic resonance data, biological activity, biosynthesis, and total synthesis of okaramines, offering a framework for the development of novel pesticides.
Collapse
Affiliation(s)
- Xun Song
- School of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Qianfan Wang
- School of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zhendan He
- School of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Mingzhong Wang
- School of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| |
Collapse
|
4
|
Yang M, Dong M, Wu QY, Yao S, Pu G, Ma YY, Xiong RF, Hu QF, Wang F, Li YK. Three new isoquinoline alkaloids from the fermentation of Aspergillus sp. 0338 and their anti-MRSA activities. Nat Prod Res 2025; 39:103-109. [PMID: 37695019 DOI: 10.1080/14786419.2023.2254455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
There is growing evidence that bioactive substances produced by microbial endophytes have applicability in medicine, agriculture and industry. To enrich the bioactive substances, in our search for new bioactive metabolites from fungi Aspergillus, the phytochemical reinvestigation on the Aspergillus sp. 0338 was carried out, and this led to the isolation of three new (1-3) and five known alkaloids (4-8). Their structures were elucidated by spectroscopic analysis, including extensive 1D and 2D NMR techniques, as well as comparison with literature values. Additionally, compounds 1-3 were evaluated for their anti-MRSA activities. The results revealed that compounds 1-3 exhibited good inhibitions with IZD of 15.2 ± 1.8, 14.6 ± 2.0, and 13.4 ± 2.2 mm, respectively.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, P. R. China
| | - Miao Dong
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, P. R. China
| | - Qing-Yang Wu
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, P. R. China
| | - Shui Yao
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, P. R. China
| | - Gui Pu
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, P. R. China
| | - Yue-Yu Ma
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, P. R. China
| | - Rui-Feng Xiong
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, P. R. China
| | - Qiu-Fen Hu
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, P. R. China
| | - Fang Wang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, P. R. China
| | - Yin-Ke Li
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, P. R. China
| |
Collapse
|
5
|
Wu M, Janzen DJ, Guan Z, Ye Y, Zhang Y, Li SM. The Promiscuous Flavin-Dependent Monooxygenase PboD from Aspergillus ustus Increases the Structural Diversity of Hydroxylated Pyrroloindoline Diketopiperazines. JOURNAL OF NATURAL PRODUCTS 2024; 87:1171-1178. [PMID: 38557026 DOI: 10.1021/acs.jnatprod.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The potential of natural products as pharmaceutical and agricultural agents is based on their large structural diversity, resulting in part from modifications of the backbone structure by tailoring enzymes during biosynthesis. Flavin-dependent monooxygenases (FMOs), as one such group of enzymes, play an important role in the biosynthesis of diverse natural products, including cyclodipeptide (CDP) derivatives. The FMO PboD was shown to catalyze C-3 hydroxylation at the indole ring of cyclo-l-Trp-l-Leu in the biosynthesis of protubonines, accompanied by pyrrolidine ring formation. PboD substrate promiscuity was investigated in this study by testing its catalytic activity toward additional tryptophan-containing CDPs in vitro and biotransformation in Aspergillus nidulans transformants bearing a truncated protubonine gene cluster with pboD and two acetyltransferase genes. High acceptance of five CDPs was detected for PboD, especially of those with a second aromatic moiety. Isolation and structure elucidation of five pyrrolidine diketopiperazine products, with two new structures, proved the expected stereospecific hydroxylation and pyrrolidine ring formation. Determination of kinetic parameters revealed higher catalytic efficiency of PboD toward three CDPs consisting of aromatic amino acids than of its natural substrate cyclo-l-Trp-l-Leu. In the biotransformation experiments with the A. nidulans transformant, modest formation of hydroxylated and acetylated products was also detected.
Collapse
Affiliation(s)
- Meiting Wu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Daniel J Janzen
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| | - Zhenhua Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Ye
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Strasse 4, Marburg 35037, Germany
| |
Collapse
|
6
|
Zhou TP, Feng J, Wang Y, Li S, Wang B. Substrate Conformational Switch Enables the Stereoselective Dimerization in P450 NascB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. JACS AU 2024; 4:1591-1604. [PMID: 38665654 PMCID: PMC11040706 DOI: 10.1021/jacsau.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
P450 NascB catalyzes the coupling of cyclo-(l-tryptophan-l-proline) (1) to generate (-)-naseseazine C (2) through intramolecular C-N bond formation and intermolecular C-C coupling. A thorough understanding of its catalytic mechanism is crucial for the engineering or design of P450-catalyzed C-N dimerization reactions. By employing MD simulations, QM/MM calculations, and enhanced sampling, we assessed various mechanisms from recent works. Our study demonstrates that the most favorable pathway entails the transfer of a hydrogen atom from N7-H to Cpd I. Subsequently, there is a conformational change in the substrate radical, shifting it from the Re-face to the Si-face of N7 in Substrate 1. The Si-face conformation of Substrate 1 is stabilized by the protein environment and the π-π stacking interaction between the indole ring and heme porphyrin. The subsequent intermolecular C3-C6' bond formation between Substrate 1 radical and Substrate 2 occurs via a radical attack mechanism. The conformational switch of the Substrate 1 radical not only lowers the barrier of the intermolecular C3-C6' bond formation but also yields the correct stereoselectivity observed in experiments. In addition, we evaluated the reactivity of the ferric-superoxide species, showing it is not reactive enough to initiate the hydrogen atom abstraction from the indole NH group of the substrate. Our simulation provides a comprehensive mechanistic insight into how the P450 enzyme precisely controls both the intramolecular C-N cyclization and intermolecular C-C coupling. The current findings align with the available experimental data, emphasizing the pivotal role of substrate dynamics in governing P450 catalysis.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianqiang Feng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yongchao Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shengying Li
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Wang Y, Chen L, Fang W, Zeng Z, Wu Z, Liu F, Liu X, Gong Y, Zhu L, Wang K. Genomic and Comparative Transcriptomic Analyses Reveal Key Genes Associated with the Biosynthesis Regulation of Okaramine B in Penicillium daleae NBP-49626. Int J Mol Sci 2024; 25:1965. [PMID: 38396642 PMCID: PMC10888127 DOI: 10.3390/ijms25041965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Restricted production of fungal secondary metabolites hinders the ability to conduct comprehensive research and development of novel biopesticides. Okaramine B from Penicillium demonstrates remarkable insecticidal efficacy; however, its biosynthetic yield is low, and its regulatory mechanism remains unknown. The present study found that the yield difference was influenced by fermentation modes in okaramine-producing strains and performed genomic and comparative transcriptome analysis of P. daleae strain NBP-49626, which exhibits significant features. The NBP-49626 genome is 37.4 Mb, and it encodes 10,131 protein-encoding genes. Up to 5097 differentially expressed genes (DEGs) were identified during the submerged and semi-solid fermentation processes. The oka gene cluster, lacking regulatory and transport genes, displayed distinct transcriptional patterns in response to the fermentation modes and yield of Okaramine B. Although transcription trends of most known global regulatory genes are inconsistent with those of oka, this study identified five potential regulatory genes, including two novel Zn(II)2Cys6 transcription factors, Reg2 and Reg19. A significant correlation was also observed between tryptophan metabolism and Okaramine B yields. In addition, several transporter genes were identified as DEGs. These results were confirmed using real-time quantitative PCR. This study provides comprehensive information regarding the regulatory mechanism of Okaramine B biosynthesis in Penicillium and is critical to the further yield improvement for the development of insecticides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lei Zhu
- National Biopesticide Engineering Technology Research Centre, Hubei Biopesticide Engineering Research Centre, Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (L.C.); (W.F.); (Z.Z.); (Z.W.); (F.L.); (X.L.); (Y.G.)
| | - Kaimei Wang
- National Biopesticide Engineering Technology Research Centre, Hubei Biopesticide Engineering Research Centre, Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.W.); (L.C.); (W.F.); (Z.Z.); (Z.W.); (F.L.); (X.L.); (Y.G.)
| |
Collapse
|
8
|
Zhang Z, Sun Y, Li Y, Song X, Wang R, Zhang D. The potential of marine-derived piperazine alkaloids: Sources, structures and bioactivities. Eur J Med Chem 2024; 265:116081. [PMID: 38181652 DOI: 10.1016/j.ejmech.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Marine-derived piperazine alkaloids (MDPAs) constitute a significant group of natural compounds known for their diverse structures and biological activities. Over the past five decades, substantial efforts have been devoted to isolating these alkaloids from marine sources and characterizing their chemical and bioactive profiles. To date, a total of 922 marine-derived piperazine alkaloids have been reported from various marine organisms. These compounds demonstrate a wide range of pharmacological properties, including cytotoxicity, antibacterial, antifungal, antiviral, and various other activities. Notably, among these activities, cytotoxicity emerges as the most prominent characteristic of marine-derived piperazine alkaloids. This review also summarizes the structure-activity relationship (SAR) studies associated with the cytotoxicity of these compounds. In summary, our objective is to provide an overview of the research progress concerning marine-derived piperazine alkaloids, with the aim of fostering their continued development and utilization.
Collapse
Affiliation(s)
- Zilong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yu Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China.
| |
Collapse
|
9
|
El-Kashef DH, Obidake DD, Schiedlauske K, Deipenbrock A, Scharf S, Wang H, Naumann D, Friedrich D, Miljanovic S, Haj Hassani Sohi T, Janiak C, Pfeffer K, Teusch N. Indole Diketopiperazine Alkaloids from the Marine Sediment-Derived Fungus Aspergillus chevalieri against Pancreatic Ductal Adenocarcinoma. Mar Drugs 2023; 22:5. [PMID: 38276643 PMCID: PMC10820104 DOI: 10.3390/md22010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
A new prenylated indole diketopiperazine alkaloid, rubrumline P (1), was isolated along with six more analogues and characterized from the fermentation culture of a marine sediment-derived fungus, Aspergillus chevalieri, collected at a depth of 15 m near the lighthouse in Dahab, Red Sea, Egypt. In the current study, a bioassay-guided fractionation allowed for the identification of an active fraction displaying significant cytotoxic activity against the human pancreatic adenocarcinoma cell line PANC-1 from the EtOAc extract of the investigated fungus compared to the standard paclitaxel. The structures of the isolated compounds from the active fraction were established using 1D/2D NMR spectroscopy and mass spectrometry, together with comparisons with the literature. The absolute configuration of the obtained indole diketopiperazines was established based on single-crystal X-ray diffraction analyses of rubrumline I (2) and comparisons of optical rotations and NMR data, as well as on biogenetic considerations. Genome sequencing indicated the formation of prenyltransferases, which was subsequently confirmed by the isolation of mono-, di-, tri-, and tetraprenylated compounds. Compounds rubrumline P (1) and neoechinulin D (4) confirmed preferential cytotoxic activity against PANC-1 cancer cells with IC50 values of 25.8 and 23.4 µM, respectively. Although the underlying mechanism-of-action remains elusive in this study, cell cycle analysis indicated a slight increase in the sub-G1 peak after treatment with compounds 1 and 4.
Collapse
Affiliation(s)
- Dina H. El-Kashef
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Deborah D. Obidake
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Katja Schiedlauske
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Alina Deipenbrock
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Sebastian Scharf
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Hao Wang
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Daniela Naumann
- Department of Chemistry and Biochemistry, University of Cologne, 50939 Cologne, Germany
| | - Daniel Friedrich
- Department of Chemistry and Biochemistry, University of Cologne, 50939 Cologne, Germany
| | - Simone Miljanovic
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| | - Takin Haj Hassani Sohi
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.H.E.-K.)
| |
Collapse
|
10
|
Holland DC, Carroll AR. Marine indole alkaloid diversity and bioactivity. What do we know and what are we missing? Nat Prod Rep 2023; 40:1595-1607. [PMID: 36790012 DOI: 10.1039/d2np00085g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Covering: marine indole alkaloids (n = 2048) and their reported bioactivities up to the end of 2021Despite increasing numbers of marine natural products (MNPs) reported each year, most have only been examined for cytotoxic, antibacterial, and/or antifungal biological activities with the majority found to be inactive in these assays. In this context, why are natural products continuing to be examined in assays they are unlikely to show significant activity in, and what targets might be more useful for expanding knowledge of their biologically relevant chemical space? We have undertaken a meta-analysis of the biological activities for 2048 marine indole alkaloids (MIAs), a diverse sub-class of MNPs reported up to the end of 2021, and this has highlighted that the bioactivity potentials for up to 86% of published MIAs remains underexplored and/or undefined. Although most published MIAs are not cytotoxic or antimicrobial, there is a continued focus on using these assays to evaluate new structurally related analogues. Using cheminformatics analyses, the chemical diversity of the 2048 MIAs were clustered using fragment based fingerprints and their reported bioactivity potency towards specific disease targets was assessed for structure activity trends. These analyses showed that there are groups of MIAs that possess potent and diverse activities and that many analogues, previously tested only in cellular toxicity assays, could be better exploited to generate structure activity relationships associated with leads to treat emerging diseases. A collection of indole drug and drug-lead structures from non-natural sources were also incorporated into the dataset providing complementary bioactivity profiles that were further used to predict underexplored areas of potential new activity and to better direct future testing of MIAs. Our findings clearly suggest the biological evaluation of MIAs continues to be conducted on a narrow range of bioassays and disease targets, and that shifting the focus to non-toxic disease targets should provide expanded knowledge of biologically relevant chemical space aimed at maximising the potential of MIAs for drug discovery.
Collapse
Affiliation(s)
- Darren C Holland
- School of Environment and Science, Griffith University, Gold Coast, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| |
Collapse
|
11
|
Walker KL, Loach RP, Movassaghi M. Total synthesis of complex 2,5-diketopiperazine alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2023; 90:159-206. [PMID: 37716796 PMCID: PMC10955524 DOI: 10.1016/bs.alkal.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The 2,5-diketopiperazine (DKP) motif is present in many biologically relevant, complex natural products. The cyclodipeptide substructure offers structural rigidity and stability to proteolysis that makes these compounds promising candidates for medical applications. Due to their fascinating molecular architecture, synthetic organic chemists have focused significant effort on the total synthesis of these compounds. This review covers many such efforts on the total synthesis of DKP containing complex alkaloid natural products.
Collapse
Affiliation(s)
- Katherine L Walker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Richard P Loach
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
12
|
Jiang Y, Chen C, Zhu H, Li Q, Mao L, Liao H, Nan Y, Wang Z, Zhou H, Zhou Q, Zhang Y. An indole diketopiperazine alkaloid and a bisabolane sesquiterpenoid with unprecedented skeletons from Aspergillus fumigatus. Org Biomol Chem 2023; 21:2236-2242. [PMID: 36815264 DOI: 10.1039/d2ob02220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fumitryprostatin A (1), the first example of an indole diketopiperazine alkaloid with a tricyclic 5/6/5 skeleton characterized by a dipyrrolo[1,2-a:1',2'-d]pyrazine-5,10-dione ring system decorated with a prenylated indole moiety, and fuminoid A (2), a sesquiterpenoid with a bicyclo[3.2.1]octane ring featuring a novel carbon skeleton via the transformation of the methyl, were isolated from the fungus Aspergillus fumigatus along with six known diketopiperazine alkaloids. The structure with the absolute configuration of 1 was determined based on spectroscopic analyses and X-ray crystallographic analysis, while the configuration of 2 was assigned tentatively by 13C NMR data with DP4+ probability analyses and ECD calculations. A plausible biosynthetic pathway for 1 was proposed starting from L-Trp and L-Pro via normal indole diketopiperazine. Compound 1 exhibited moderate cytotoxic activity with an IC50 value of 14.6 μM, while compound 8 exhibited moderate immunosuppressive activity in vitro.
Collapse
Affiliation(s)
- Yaqin Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yiyang Nan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhiping Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Hongjian Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
13
|
New Marine Fungal Deoxy-14,15-Dehydroisoaustamide Resensitizes Prostate Cancer Cells to Enzalutamide. Mar Drugs 2023; 21:md21010054. [PMID: 36662227 PMCID: PMC9861654 DOI: 10.3390/md21010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Marine fungi serve as a valuable source for new bioactive molecules bearing various biological activities. In this study, we report on the isolation of a new indole diketopiperazine alkaloid deoxy-14,15-dehydroisoaustamide (1) from the marine-derived fungus Penicillium dimorphosporum KMM 4689 associated with a soft coral. The structure of this metabolite, including its absolute configuration, was determined by HR-MS, 1D and 2D NMR as well as CD data. Compound 1 is a very first deoxyisoaustamide alkaloid possessing two double bonds in the proline ring. The isolated compound was noncytotoxic to a panel of human normal and cancer cell lines up to 100 µM. At the same time, compound 1 resensitized prostate cancer 22Rv1 cells to androgen receptor (AR) blocker enzalutamide. The mechanism of this phenomenon was identified as specific drug-induced degradation of androgen receptor transcription variant V7 (AR-V7), which also resulted in general suppression of AR signaling. Our data suggest that the isolated alkaloid is a promising candidate for combinational therapy of castration resistant prostate cancer, including drug-resistant subtypes.
Collapse
|
14
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Lv D, Xia J, Guan X, Lai Q, Zhang B, Lin J, Shao Z, Luo S, Zhangsun D, Qin JJ, Wang W. Indole Diketopiperazine Alkaloids Isolated From the Marine-Derived Fungus Aspergillus chevalieri MCCC M23426. Front Microbiol 2022; 13:950857. [PMID: 35875553 PMCID: PMC9301495 DOI: 10.3389/fmicb.2022.950857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Two new indole diketopiperazines (1-2) obtained from the fermentation culture of a deep-sea-derived fungus Aspergillus chevalieri MCCC M23426, were characterized, together with nine biogenetic related compounds (3-11). The structures of 1-2 were assigned based on NMR, MS, NMR calculation, DP4+ analysis, and ECD calculation. The bioactive assay showed that compounds 1, 5-7 significantly inhibited the growth of Staphylococcus aureus. Meanwhile, compound 8 potently reduced the cell viability of gastric cancer cell MKN1 with an IC50 value of 4.6 μM.
Collapse
Affiliation(s)
- Dongli Lv
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Qiliang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Beibei Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jianhui Lin
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
16
|
Sun C, Tian W, Lin Z, Qu X. Biosynthesis of pyrroloindoline-containing natural products. Nat Prod Rep 2022; 39:1721-1765. [PMID: 35762180 DOI: 10.1039/d2np00030j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2022Pyrroloindoline is a privileged tricyclic indoline motif widely present in many biologically active and medicinally valuable natural products. Thus, understanding the biosynthesis of this molecule is critical for developing convenient synthetic routes, which is highly challenging for its chemical synthesis due to the presence of rich chiral centers in this molecule, especially the fully substituted chiral carbon center at the C3-position of its rigid tricyclic structure. In recent years, progress has been made in elucidating the biosynthetic pathways and enzymatic mechanisms of pyrroloindoline-containing natural products (PiNPs). This article reviews the main advances in the past few decades based on the different substitutions on the C3 position of PiNPs, especially the various key enzymatic mechanisms involved in the biosynthesis of different types of PiNPs.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Li K, Chen S, Pang X, Cai J, Zhang X, Liu Y, Zhu Y, Zhou X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur J Med Chem 2022; 230:114117. [PMID: 35063731 DOI: 10.1016/j.ejmech.2022.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
The mangrove forests are a complex ecosystem, and the microbial communities in mangrove sediments play a critical role in the biogeochemical cycles of mangrove ecosystems. Mangrove sediments-derived microbes (MSM), as a rich reservoir of natural product diversity, could be utilized in the exploration of new antibiotics or drugs. To understand the structural diversity and bioactivities of the metabolites of MSM, this review for the first time provides a comprehensive overview of 519 natural products isolated from MSM with their bioactivities, up to 2021. Most of the structural types of these compounds are alkaloids, lactones, xanthones, quinones, terpenoids, and steroids. Among them, 210 compounds are obtained from bacteria, most of which are from Streptomyces, while 309 compounds are from fungus, especially genus Aspergillus and Penicillium. The pharmacological mechanisms of some representative lead compounds are well studied, revealing that they have important medicinal potentials, such as piericidins with anti-renal cell cancer effects, azalomycins with anti-MRSA activities, and ophiobolins as antineoplastic agents. The biosynthetic pathways of representative natural products from MSM have also been summarized, especially ikarugamycin, piericidins, divergolides, and azalomycins. In addition, the total synthetic strategies of representative secondary metabolites from MSM are also reviewed, such as piericidin A and borrelidin. This review provides an important reference for the research status of natural products isolated from MSM and the lead compounds worthy of further development, and reveals that MSM have important medicinal values and are worthy of further development.
Collapse
Affiliation(s)
- Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinya Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
18
|
Lee S, Sperry J. Isolation and biological activity of azocine and azocane alkaloids. Bioorg Med Chem 2021; 54:116560. [PMID: 34923389 DOI: 10.1016/j.bmc.2021.116560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022]
Abstract
Thousands of known alkaloids contain a nitrogen (N) heterocycle. While five-, six- and seven-membered N-heterocycles (ie: pyrroles, imidazoles, indoles, pyridines and azepines and their saturated variants) are common, those with an eight-membered N-heterocycle are comparatively rare. This review discusses the structure and bioactivity of alkaloids that contain an azocine (or saturated azocane) ring, and the array of sources whence they originate.
Collapse
Affiliation(s)
- Stephanie Lee
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| |
Collapse
|
19
|
Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021; 11:1515. [PMID: 34680148 PMCID: PMC8533947 DOI: 10.3390/biom11101515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Istvan Toth
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Sherif Elnagdy
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Maha AlKhazindar
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| |
Collapse
|
20
|
Chen S, Cai R, Liu Z, Cui H, She Z. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep 2021; 39:560-595. [PMID: 34623363 DOI: 10.1039/d1np00041a] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering 1989 to 2020The mangrove forests are a complex ecosystem occurring at tropical and subtropical intertidal estuarine zones and nourish a diverse group of microorganisms including fungi, actinomycetes, bacteria, cyanobacteria, algae, and protozoa. Among the mangrove microbial community, mangrove associated fungi, as the second-largest ecological group of the marine fungi, not only play an essential role in creating and maintaining this biosphere but also represent a rich source of structurally unique and diverse bioactive secondary metabolites, attracting significant attention of organic chemists and pharmacologists. This review summarizes the discovery relating to the source and characteristics of metabolic products isolated from mangrove-associated fungi over the past thirty years (1989-2020). Its emphasis included 1387 new metabolites from 451 papers, focusing on bioactivity and the unique chemical diversity of these natural products.
Collapse
Affiliation(s)
- Senhua Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,College of Science, Shantou University, Shantou 515063, China
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Cui
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
21
|
Bioactive Polyketide and Diketopiperazine Derivatives from the Mangrove-Sediment-Derived Fungus Aspergillus sp. SCSIO41407. Molecules 2021; 26:molecules26164851. [PMID: 34443439 PMCID: PMC8399180 DOI: 10.3390/molecules26164851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Ten polyketide derivatives (1–10), including a new natural product named (E)-2,4-dihydroxy-3-methyl-6-(2-oxopent-3-en-1-yl) benzaldehyde (1), and five known diketopiperazines (11–15), were isolated from the mangrove-sediment-derived fungus Aspergillus sp. SCSIO41407. The structures of 1–15 were determined via NMR and MS spectroscopic analysis. In a variety of bioactivity screening, 3 showed weak cytotoxicity against the A549 cell line, and 2 exhibited weak antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 3, 5, and 6 showed inhibition against acetylcholinesterase (AChE) with IC50 values of 23.9, 39.9, and 18.6 μM. Compounds 11, 12, and 14 exhibited obvious inhibitory activities of lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) with IC50 values of 19.2, 20.9, and 8.7 μM, and they also suppressed RANKL-induced osteoclast differentiation in bone marrow macrophages cells (BMMCs), with the concentration of 5 μM. In silico molecular docking with AChE and NF-κB p65 protein were also performed to understand the inhibitory activities, and 1, 11–14 showed obvious protein/ligand-binding effects to the NF-κB p65 protein.
Collapse
|
22
|
Li XW, Si TX, Liu YP, Wang MZ, Chan ASC. Divergent syntheses of okaramines C, J, L, and S-U. Org Biomol Chem 2021; 18:3848-3852. [PMID: 32400817 DOI: 10.1039/d0ob00587h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The total synthesis of six novel okaramines (C, J, L, and S-U) was accomplished with a precise synthesis scheme involving a few steps and a practical yield of 6.7%-23% was obtained. The significance of this study includes the design of a successful and convenient synthesis method for preparation of 3a-hydroxy-pyrrolo[2,3-b]-indole and C-7 prenylated l-tryptophan derivatives using a nucleophilic attack of cyclopropylazetoindoline and an aza-Claisen rearrangement of N-reverse-prenyl tryptophan, respectively.
Collapse
Affiliation(s)
- Xiao-Wan Li
- School of Pharmaceutical Science, Shenzhen Technology University, Shenzhen 518118, China. and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tong-Xu Si
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Ming-Zhong Wang
- School of Pharmaceutical Science, Shenzhen Technology University, Shenzhen 518118, China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
23
|
Bhardwaj N, Pathania A, Kumar P. Naturally Available Nitrogen-Containing Fused Heterocyclics as Prospective Lead Molecules in Medicinal Chemistry. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083805666190613125700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterocyclic compounds constitute one of the largest and most versatile families
of organic compounds. There are many heterocyclic compounds that are being isolated from
natural sources and day by day the number is increasing rapidly due to their enormous utility.
Nitrogen containing heterocyclic compounds have a prominent role in medicinal chemistry,
biochemistry and other streams of science. In this review, we have covered most of the
biologically active nitrogen containing heterocyclic compounds obtained from the natural
sources including indole, carbazole, quinoline, isoquinoline and benzothiazole ring system.
These isolated nitrogen containing heterocyclic compounds render wide spectrum of biological
activities including antifungal, anti-inflammatory, antibacterial, antioxidants, anticonvulsant,
anti-allergic, herbicidal and anticancer activities.
Collapse
Affiliation(s)
- Nivedita Bhardwaj
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Akashdeep Pathania
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
24
|
Meng ZH, Sun TT, Zhao GZ, Yue YF, Chang QH, Zhu HJ, Cao F. Marine-derived fungi as a source of bioactive indole alkaloids with diversified structures. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:44-61. [PMID: 37073395 PMCID: PMC10077242 DOI: 10.1007/s42995-020-00072-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Marine-derived fungi are well known as rich sources of bioactive natural products. Growing evidences indicated that indole alkaloids, isolated from a variety of marine-derived fungi, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities, and therefore, indole alkaloids have potential to be pharmaceutical lead compounds. Systemic compilation of the relevant literature. In this review, we demonstrated a comprehensive overview of 431 new indole alkaloids from 21 genera of marine-derived fungi with an emphasis on their structures and bioactivities, covering literatures published during 1982-2019.
Collapse
Affiliation(s)
- Zhi-Hui Meng
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Tian-Tian Sun
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Guo-Zheng Zhao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Yu-Fei Yue
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Qing-Hua Chang
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Hua-Jie Zhu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Fei Cao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| |
Collapse
|
25
|
Ding Y, Zhu X, Hao L, Zhao M, Hua Q, An F. Bioactive Indolyl Diketopiperazines from the Marine Derived Endophytic Aspergillus versicolor DY180635. Mar Drugs 2020; 18:E338. [PMID: 32605149 PMCID: PMC7401283 DOI: 10.3390/md18070338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/25/2023] Open
Abstract
Four new indolyl diketopiperazines, aspamides A-E (1-4) and two new diketopiperazines, aspamides F-G (5-6), along with 11 known diketopiperazines and intermediates were isolated from the solid culture of Aspergillus versicolor, which is an endophyte with the sea crab (Chiromantes haematocheir). Further chiral high-performance liquid chromatography resolution gave enantiomers (+)- and (-)-4, respectively. The structures and absolute configurations of compounds 1-6 were determined by the comprehensive analyses of nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), and electronic circular dichroism (ECD) calculation. All isolated compounds were selected for the virtual screening on the coronavirus 3-chymoretpsin-like protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and the docking scores of compounds 1-2, 5, 6, 8 and 17 were top among all screened molecules, may be helpful in fighting with Corona Virus Disease-19 (COVID-19) after further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Faliang An
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China; (Y.D.); (X.Z.); (L.H.); (M.Z.); (Q.H.)
| |
Collapse
|
26
|
Kato H, Sebe M, Nagaki M, Eguchi K, Kagiyama I, Hitora Y, Frisvad JC, Williams RM, Tsukamoto S. Taichunins A-D, Norditerpenes from Aspergillus taichungensis (IBT 19404). JOURNAL OF NATURAL PRODUCTS 2019; 82:1377-1381. [PMID: 30995043 DOI: 10.1021/acs.jnatprod.8b01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Four new norditerpenes, taichunins A-D (1-4), were isolated from the fungus Aspergillus taichungensis (IBT 19404). Compound 1 has a new carbon framework. The absolute configurations were determined by the calculated ECD spectral method. Compound 1 was cytotoxic against HeLa cells with an IC50 value of 4.5 μM, whereas 2-4 were nontoxic at 50 μM.
Collapse
Affiliation(s)
- Hikaru Kato
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Kumamoto 862-0973 , Japan
| | - Momona Sebe
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Kumamoto 862-0973 , Japan
| | - Mika Nagaki
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Kumamoto 862-0973 , Japan
| | - Keisuke Eguchi
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Kumamoto 862-0973 , Japan
| | - Ippei Kagiyama
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Kumamoto 862-0973 , Japan
| | - Yuki Hitora
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Kumamoto 862-0973 , Japan
| | - Jens C Frisvad
- Section for Eukaryotic Biotechnology, Departments of System Biology , Technical University of Denmark , Building 221, 2800 Kongens Lyngby , Denmark
| | - Robert M Williams
- Department of Chemistry , Colorado State University , 301 West Pitkin Street , Fort Collins , Colorado 80523 , United States
- University of Colorado Cancer Center , Aurora , Colorado 80045 , United States
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi , Kumamoto 862-0973 , Japan
| |
Collapse
|
27
|
Blanc A, Perrin DM. Synthesis of 3a-hydroxyhexahydropyrrolo[2,3-B]Indole-2-carboxamide, an oxidation product of tryptophan present in natural products. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Antoine Blanc
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| | - David M. Perrin
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| |
Collapse
|
28
|
Hubka V, Nováková A, Jurjević Ž, Sklenář F, Frisvad JC, Houbraken J, Arendrup MC, Jørgensen KM, Siqueira JPZ, Gené J, Kolařík M. Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov. Int J Syst Evol Microbiol 2018; 68:995-1011. [PMID: 29458472 DOI: 10.1099/ijsem.0.002583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aspergillus candidus is a species frequently isolated from stored grain, food, indoor environments, soil and occasionally also from clinical material. Recent bioprospecting studies highlighted the potential of using A. candidus and its relatives in various industrial sectors as a result of their significant production of enzymes and bioactive compounds. A high genetic variability was observed among A. candidus isolates originating from various European countries and the USA, that were mostly isolated from indoor environments, caves and clinical material. The A. candidus sensu lato isolates were characterized by DNA sequencing of four genetic loci, and agreement between molecular species delimitation results, morphological characters and exometabolite spectra were studied. Classical phylogenetic methods (maximum likelihood, Bayesian inference) and species delimitation methods based on the multispecies coalescent model supported recognition of up to three species in A. candidus sensu lato. After evaluation of phenotypic data, a broader species concept was adopted, and only one new species, Aspergillus dobrogensis, was proposed. This species is represented by 22 strains originating from seven countries (ex-type strain CCF 4651T=NRRL 62821T=IBT 32697T=CBS 143370T) and its differentiation from A. candidus is relevant for bioprospecting studies because these species have different exometabolite profiles. Evaluation of the antifungal susceptibility of section Candidi members to six antifungals using the reference EUCAST method showed that all species have low minimum inhibitory concentrations for all tested antifungals. These results suggest applicability of a wide spectrum of antifungal agents for treatment of infections caused by species from section Candidi.
Collapse
Affiliation(s)
- Vit Hubka
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alena Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - František Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Maiken C Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - João P Z Siqueira
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Laboratório de Microbiologia, Faculdade de Medicina de SãoJosé do Rio Preto, São José do Rio Preto, Brazil
| | - Josepa Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Miroslav Kolařík
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
29
|
Prenylated indole alkaloids and chromone derivatives from the fungus Penicillium sp. SCSIO041218. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Wang X, Li Y, Zhang X, Lai D, Zhou L. Structural Diversity and Biological Activities of the Cyclodipeptides from Fungi. Molecules 2017; 22:E2026. [PMID: 29168781 PMCID: PMC6149763 DOI: 10.3390/molecules22122026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022] Open
Abstract
Cyclodipeptides, called 2,5-diketopiperazines (2,5-DKPs), are obtained by the condensation of two amino acids. Fungi have been considered to be a rich source of novel and bioactive cyclodipeptides. This review highlights the occurrence, structures and biological activities of the fungal cyclodipeptides with the literature covered up to July 2017. A total of 635 fungal cyclodipeptides belonging to the groups of tryptophan-proline, tryptophan-tryptophan, tryptophan-Xaa, proline-Xaa, non-tryptophan-non-proline, and thio-analogs have been discussed and reviewed. They were mainly isolated from the genera of Aspergillus and Penicillium. More and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi. Some of them were screened to have cytotoxic, phytotoxic, antimicrobial, insecticidal, vasodilator, radical scavenging, antioxidant, brine shrimp lethal, antiviral, nematicidal, antituberculosis, and enzyme-inhibitory activities to show their potential applications in agriculture, medicinal, and food industry.
Collapse
Affiliation(s)
- Xiaohan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yuying Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xuping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
31
|
Lai CY, Lo IW, Hewage RT, Chen YC, Chen CT, Lee CF, Lin S, Tang MC, Lin HC. Biosynthesis of Complex Indole Alkaloids: Elucidation of the Concise Pathway of Okaramines. Angew Chem Int Ed Engl 2017. [PMID: 28631282 DOI: 10.1002/anie.201705501] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The okaramines are a class of complex indole alkaloids isolated from Penicillium and Aspergillus species. Their potent insecticidal activity arises from selectively activating glutamate-gated chloride channels (GluCls) in invertebrates, not affecting human ligand-gated anion channels. Okaramines B (1) and D (2) contain a polycyclic skeleton, including an azocine ring and an unprecedented 2-dimethyl-3-methyl-azetidine ring. Owing to their complex scaffold, okaramines have inspired many total synthesis efforts, but the enzymology of the okaramine biosynthetic pathway remains unexplored. Here, we identified and characterized the biosynthetic gene cluster (oka) of 1 and 2, then elucidated the pathway with target gene inactivation, heterologous reconstitution, and biochemical characterization. Notably, we characterized an α-ketoglutarate-dependent non-heme FeII dioxygenase that forged the azetidine ring on the okaramine skeleton.
Collapse
Affiliation(s)
- Chen-Yu Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei115, Taiwan R.O.C
| | - I-Wen Lo
- Institute of Biological Chemistry, Academia Sinica, Taipei115, Taiwan R.O.C
| | - Ranuka T Hewage
- Institute of Biological Chemistry, Academia Sinica, Taipei115, Taiwan R.O.C
| | - Yi-Chen Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei115, Taiwan R.O.C
| | - Chien-Ting Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei115, Taiwan R.O.C
| | - Chi-Fang Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei115, Taiwan R.O.C
| | - Steven Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei115, Taiwan R.O.C
| | - Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei115, Taiwan R.O.C
| |
Collapse
|
32
|
Lai CY, Lo IW, Hewage RT, Chen YC, Chen CT, Lee CF, Lin S, Tang MC, Lin HC. Biosynthesis of Complex Indole Alkaloids: Elucidation of the Concise Pathway of Okaramines. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chen-Yu Lai
- Institute of Biological Chemistry; Academia Sinica; Taipei115 Taiwan R.O.C
| | - I-Wen Lo
- Institute of Biological Chemistry; Academia Sinica; Taipei115 Taiwan R.O.C
| | - Ranuka T. Hewage
- Institute of Biological Chemistry; Academia Sinica; Taipei115 Taiwan R.O.C
| | - Yi-Chen Chen
- Institute of Biological Chemistry; Academia Sinica; Taipei115 Taiwan R.O.C
| | - Chien-Ting Chen
- Institute of Biological Chemistry; Academia Sinica; Taipei115 Taiwan R.O.C
| | - Chi-Fang Lee
- Institute of Biological Chemistry; Academia Sinica; Taipei115 Taiwan R.O.C
| | - Steven Lin
- Institute of Biological Chemistry; Academia Sinica; Taipei115 Taiwan R.O.C
| | - Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry; Academia Sinica; Taipei115 Taiwan R.O.C
| |
Collapse
|
33
|
Chadha N, Silakari O. Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view. Eur J Med Chem 2017; 134:159-184. [DOI: 10.1016/j.ejmech.2017.04.003] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/09/2017] [Accepted: 04/02/2017] [Indexed: 01/01/2023]
|
34
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
35
|
Liu L, Wang L, Bao L, Ren J, Bahadur Basnet B, Liu R, He L, Han J, Yin WB, Liu H. Versicoamides F–H, Prenylated Indole Alkaloids from Aspergillus tennesseensis. Org Lett 2017; 19:942-945. [DOI: 10.1021/acs.orglett.7b00145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Long Wang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
| | - Li Bao
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Jinwei Ren
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Buddha Bahadur Basnet
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- International
College, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Ruixing Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Luwei He
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Junjie Han
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
| | - Wen-Bing Yin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Hongwei Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| |
Collapse
|
36
|
Ma YM, Liang XA, Kong Y, Jia B. Structural Diversity and Biological Activities of Indole Diketopiperazine Alkaloids from Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6659-6671. [PMID: 27538469 DOI: 10.1021/acs.jafc.6b01772] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Indole diketopiperazine alkaloids are secondary metabolites of microorganisms that are widely distributed in filamentous fungi, especially in the genera Aspergillus and Penicillium of the phylum Ascomycota or sac fungi. These alkaloids represent a group of natural products characterized by diversity in both chemical structures and biological activities. This review aims to summarize 166 indole diketopiperazine alkaloids from fungi published from 1944 to mid-2015. The emphasis is on diverse chemical structures within these alkaloids and their relevant biological activities. The aim is to assess which of these compounds merit further study for purposes of drug development.
Collapse
Affiliation(s)
- Yang-Min Ma
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| | - Xi-Ai Liang
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| | - Yang Kong
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| | - Bin Jia
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| |
Collapse
|
37
|
Guo W, Zhang Z, Zhu T, Gu Q, Li D. Penicyclones A-E, Antibacterial Polyketides from the Deep-Sea-Derived Fungus Penicillium sp. F23-2. JOURNAL OF NATURAL PRODUCTS 2015; 78:2699-2703. [PMID: 26540093 DOI: 10.1021/acs.jnatprod.5b00655] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Five new ambuic acid analogues, penicyclones A-E (1-5), were isolated from the extract of the deep-sea-derived fungus Penicillium sp. F23-2. The structures including the absolute configurations were established by interpretation of NMR and MS data, as well as the application of ECD, X-ray crystallography, and a chemical conversion, as well as the TDDFT-ECD calculations. Penicyclones A-E (1-5) exhibited antimicrobial activity against the Gram-positive bacterium Staphylococcus aureus with MIC values ranging from 0.3 to 1.0 μg/mL.
Collapse
Affiliation(s)
- Wenqiang Guo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Zhenzhen Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| |
Collapse
|
38
|
Abstract
Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed.
Collapse
Affiliation(s)
- Natalie Netz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|