1
|
Jiang S, Liang M, Chen X, Yang R, Ding HX, Luo MJ, Huang H, Song XR, Xiao Q. TMSCl-Promoted Sulfonylation of Propargylic Alcohols with Sodium Sulfinates for the Construction of ( E)-1,3-Disulfonylpropenes and ( E)-1-Sulfonylpropenols. J Org Chem 2024; 89:15694-15707. [PMID: 39395003 DOI: 10.1021/acs.joc.4c01829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
A direct and novel transformation of propargylic alcohols with sodium sulfinates for the regio- and stereoselective synthesis of (E)-1,3-disulfonylpropenes and (E)-1-sulfonylpropenols was successfully developed in the presence of TMSCl under mild conditions. The preliminary mechanistic experiments demonstrated that the reaction underwent an unprecedented dual nucleophilic substitution/radical addition process, in which sodium sulfinates were used not only as nucleophiles but also as a sulfonyl radical source.
Collapse
Affiliation(s)
- Shimin Jiang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Meng Liang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Xi Chen
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Ruchun Yang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Hai-Xin Ding
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Mu-Jia Luo
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Haiyang Huang
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Xian-Rong Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| | - Qiang Xiao
- Jiangxi Province Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi Province 330013, China
| |
Collapse
|
2
|
Ding R, Gang D, Tang X, Wu T, Liu L, Mao YY, Li ZR, Gao H. Sulfonyl Radical-Induced Regioselective Cyclization of Enamide-Olefin To Form Sulfonylated 6-7-Membered Cyclic Enamines. J Org Chem 2024; 89:15733-15738. [PMID: 39413396 DOI: 10.1021/acs.joc.4c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Remarkable progress has been made in the radical cascade cyclization of heteroaryl- or aryl-tethered alkenes to construct benzene-fused frameworks via the cracking of aryl C-H bonds. In contrast, the radical cascade cyclization of linear dienes through the cracking of vinyl C-H bonds to construct nonbenzene-fused ring frameworks with endocyclic double bonds has significantly lagged behind, and major advances have largely been restricted to the generation of 5-membered heterocycles, such as pyrrolinones. Herein, we report the silver-mediated regioselective sulfonylation-cyclization of linear dienes with sodium sulfinates to form sulfonylated 6- and 7-membered cyclic enamines.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Dong Gang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Xu Tang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Tao Wu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Lei Liu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Yue-Yuan Mao
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Zi-Rong Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Hui Gao
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
3
|
Liu T, Tang Y, Guo J, Hang Y, Zhang K, Zheng C, Zhong W, Song D, Ling F. Paired Electrocatalysis-Enabled Cross Coupling of Sulfinamides with Olefins toward the Synthesis of Vinyl Sulfoximines. Org Lett 2024; 26:8463-8467. [PMID: 39356466 DOI: 10.1021/acs.orglett.4c02859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
We present here a novel paired electrocatalysis-enabled convenient synthesis of the (E)-vinyl sulfoximines through the cross-coupling reaction of sulfinamides and olefins. This protocol showed a broad substrate scope and excellent E selectivity of products under metal- and oxidant-free conditions. A preliminary mechanistic study suggested that fluorinated sulfoximine generated from anodic oxidation of sulfinamide was the key intermediate that was then converted into the sulfonimidoyl radical at the cathode with the help of DBU in this reaction.
Collapse
Affiliation(s)
- Tao Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yan Tang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiyuan Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yunfei Hang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Kali Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Changdi Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Weihui Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dingguo Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Zhejiang Hisoar Pharmaceutical Company, Ltd., Taizhou 318000, People's Republic of China
| |
Collapse
|
4
|
Jia L, Lu Y, Chen Y, Zhong Y, Zhao F, Zhou Y. Visible-Light-Induced Metal- and Photosensitizer-Free C(sp 3)-H Phosphorylation of 3,4-Dihydroquinoxalin-2(1 H)-ones with Diphenylphosphine Oxide. J Org Chem 2024; 89:11659-11664. [PMID: 39088305 DOI: 10.1021/acs.joc.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Herein, we report a direct phosphorylation of the C(sp3)-H bond of 3,4-dihydroquinoxalin-2(1H)-ones using oxygen as a green oxidant under visible light at room temperature. This transformation was readily accomplished in the absence of metal and photosensitizer to construct new C(sp3)-P bonds and provide a series of phosphonylated dihydroquinoxalin-2-ones in good to excellent yields. This approach opens straightforward and environmentally friendly access to 3-phosphoryl quinoxalin-2-ones derivatives.
Collapse
Affiliation(s)
- Li Jia
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Yanan Lu
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Ying Chen
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Yu Zhong
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Fen Zhao
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
- Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Yongyun Zhou
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, Yunnan 650500, China
- Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650500, China
| |
Collapse
|
5
|
Li RX, Chen Y, Huang LQ, Guan Z, He YH. Visible-Light Induced Radical Addition-Elimination Reaction for Constructing Allylic Sulfones from Sulfonyl Chlorides and Allyl Bromides. J Org Chem 2024; 89:4619-4627. [PMID: 38536672 DOI: 10.1021/acs.joc.3c02893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Allyl sulfones are commonly present in bioactive compounds and organic building blocks. This work introduces a photocatalytic radical addition-elimination reaction involving readily accessible sulfonyl chlorides and allyl bromides. It delivers structurally diverse allylic sulfones in moderate to excellent yields, showcasing a high tolerance to functional groups. Notably, this method operates under mild reaction conditions without the need for oxidants, stoichiometric reducing metals, or additives.
Collapse
Affiliation(s)
- Rui-Xue Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuan Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lan-Qian Huang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Xiong B, Shi C, Ren Y, Xu W, Liu Y, Zhu L, Cao F, Tang KW, Yin SF. Zn-Catalyzed Dehydroxylative Phosphorylation of Allylic Alcohols with P(III)-Nucleophiles. J Org Chem 2024; 89:3033-3048. [PMID: 38372254 DOI: 10.1021/acs.joc.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel and efficient protocol for the synthesis of diarylallyl-functionalized phosphonates, phosphinates, and phosphine oxides through the zinc-catalyzed dehydroxylative phosphorylation of allylic alcohols with P(III)-nucleophiles via a Michaelis-Arbuzov-type rearrangement is reported. A broad range of allylic alcohols and P(III)-nucleophiles (P(OR)3, ArP(OR)2, and Ar2P(OR)) are well tolerated in this reaction, and the expected dehydroxylative phosphorylation products could be synthesized with good to excellent yields under the optimal reaction conditions. The reaction can be easily scaled up at a gram-synthesis level. Furthermore, through the step-by-step control experiments, kinetic study experiments, and 31P NMR tracking experiments, we acquired insights into the reaction and proposed the possible mechanism for this transformation.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Chonghao Shi
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yining Ren
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Fan Cao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
7
|
Lv W, Yang P, Yuan J, Li J, Liang M, Liu Y, Xing D, Yang L. Phototriggered Fluoroalkylation/Cyclization of Unactivated 1-Acryloyl-2-cyanoindoles: Synthesis of RCOCF 2-Substituted Pyrrolo[1,2- a]indolediones. J Org Chem 2024; 89:3525-3537. [PMID: 38362898 DOI: 10.1021/acs.joc.3c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A photochemical approach toward RCOCF2-substituted pyrrolo[1,2-a]indolediones was developed by the radical cascade difluoroalkylation/cyclization reaction of unactivated 1-acryloyl-2-cyanoindoles with ethyl iododifluoroacetate or iododifluoramides under visible-light irradiation. This transition-metal- and photosensitizer-free protocol afforded diverse difluoroalkylated pyrrolo[1,2-a]indolediones in moderate to good yields under mild reaction conditions. Most appealingly, the reaction can proceed smoothly under sunlight irradiation, which opens a new avenue toward difluoroalkylated pyrrolo[1,2-a]indolediones.
Collapse
Affiliation(s)
- Weixian Lv
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Pengyuan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jiayi Li
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Mengran Liang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yitong Liu
- School of International Education, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Dongliang Xing
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| |
Collapse
|
8
|
Wang D, Du J, Lin WL, Li YS, Dong ZB. Thiolation of Terminal Alkynes with Thiuram Disulfide Reagents Using Water as the Hydrogen Source: Stereoselective Synthesis of ( Z)-Vinyl Sulfides. J Org Chem 2023. [PMID: 38019102 DOI: 10.1021/acs.joc.3c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A stereoselective and environmentally friendly thiolation of terminal alkynes was reported. Thiuram disulfide reagents (tetramethylthiuram disulfide and tetraethylthiuram disulfide) that reacted with alkynes in dimethyl sulfoxide (DMSO)/H2O could give (Z)-vinyl sulfides in good yields (up to 88%). This protocol features broad substrate scope, good stereoselectivity, high atom economy, good yields, and is transition metal-free. Mechanistic studies revealed that water and DMSO served as hydrogen sources, which greatly highlighted the unique reactivity of this special reaction involving two H-atom donors.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jing Du
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wan-Li Lin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yue-Sheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhi-Bing Dong
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Kaymak P, Yang M, Benkő Z. A quest for stable phosphonyl radicals: limitations and possibilities of carbocyclic backbones and bulky substituents. Dalton Trans 2023; 52:13930-13945. [PMID: 37753839 DOI: 10.1039/d3dt02658b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Although phosphonyl radicals play an important role as transient species in many chemical transformations, such as photoinitiated polymerisation reactions, permanently stable phosphonyl radicals are yet to be discovered. In this computational study, we aim at a conceptual understanding of the electronic effects influencing the stabilities of phosphonyl radicals through computing radical stabilisation energies (RSEs) for a large set of phosphonyl radicals with carbocyclic backbones. The studied radicals exhibit ring sizes varying from 3- to 7-membered with full saturation or different grades of unsaturation adjacent to the P-centre in an endo or exocyclic fashion. To gain deeper insight into the stabilisation effects and delocalisation, the geometrical aspects, electronic structures, and spin distributions of the radicals were scrutinised. The five-membered, fully unsaturated ring (phospholyl oxide), which has a planar structure, offers the most substantial electronic stabilisation. By embedding this ring into a more extended π-system, the possibility of gaining further stabilisation was also explored. To screen the effect of steric congestion on the stabilities of previously selected radicals toward dimerisation, a large number of bulky substituents with different sizes and shapes were systematically investigated. Our results outline that stable phosphonyl radicals seem accessible, provided that the electronic stabilisation effects are supplemented by well-designed bulky substituents.
Collapse
Affiliation(s)
- Pelin Kaymak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Meng Yang
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
- HUN-REN-BME Computation Driven Chemistry Research Group, H-1111 Budapest, Hungary
| |
Collapse
|
10
|
Ogawa A, Yamamoto Y. Multicomponent Reactions between Heteroatom Compounds and Unsaturated Compounds in Radical Reactions. Molecules 2023; 28:6356. [PMID: 37687185 PMCID: PMC10488953 DOI: 10.3390/molecules28176356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In this mini-review, we present our concepts for designing multicomponent reactions with reference to a series of sequential radical reactions that we have developed. Radical reactions are well suited for the design of multicomponent reactions due to their high functional group tolerance and low solvent sensitivity. We have focused on the photolysis of interelement compounds with a heteroatom-heteroatom single bond, which readily generates heteroatom-centered radicals, and have studied the photoinduced radical addition of interelement compounds to unsaturated compounds. First, the background of multicomponent radical reactions is described, and basic concepts and methodology for the construction of multicomponent reactions are explained. Next, examples of multicomponent reactions involving two interelement compounds and one unsaturated compound are presented, as well as examples of multicomponent reactions involving one interelement compound and two unsaturated compounds. Furthermore, multicomponent reactions involving intramolecular cyclization processes are described.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan;
| |
Collapse
|
11
|
Wu X, Zhang W, Sun G, Zou X, Sang X, He Y, Gao B. Turning sulfonyl and sulfonimidoyl fluoride electrophiles into sulfur(VI) radicals for alkene ligation. Nat Commun 2023; 14:5168. [PMID: 37620301 PMCID: PMC10449886 DOI: 10.1038/s41467-023-40615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Sulfonyl and sulfonimidoyl fluorides are versatile substrates in organic synthesis and medicinal chemistry. However, they have been exclusively used as S(VI)+ electrophiles for defluorinative ligations. Converting sulfonyl and sulfonimidoyl fluorides to S(VI) radicals is challenging and underexplored due to the strong bond dissociation energy of SVI-F and high reduction potentials, but once achieved would enable dramatically expanded synthetic utility and downstream applications. In this report, we disclose a general platform to address this issue through cooperative organosuperbase activation and photoredox catalysis. Vinyl sulfones and sulfoximines are obtained with excellent E selectivity under mild conditions by coupling reactions with alkenes. The synthetic utility of this method in the preparation of functional polymers and dyes is also demonstrated.
Collapse
Affiliation(s)
- Xing Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenbo Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guangwu Sun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xi Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoru Sang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yongmin He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
12
|
Pagire S, Shu C, Reich D, Noble A, Aggarwal VK. Convergent Deboronative and Decarboxylative Phosphonylation Enabled by the Phosphite Radical Trap "BecaP". J Am Chem Soc 2023; 145:18649-18657. [PMID: 37552886 PMCID: PMC10450818 DOI: 10.1021/jacs.3c06524] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/10/2023]
Abstract
Carbon-phosphorus bond formation is significant in synthetic chemistry because phosphorus-containing compounds offer numerous indispensable biochemical roles. While there is a plethora of methods to access organophosphorus compounds, phosphonylations of readily accessible alkyl radicals to form aliphatic phosphonates are rare and not commonly used in synthesis. Herein, we introduce a novel phosphorus radical trap "BecaP" that enables facile and efficient phosphonylation of alkyl radicals under visible light photocatalytic conditions. Importantly, the ambiphilic nature of BecaP allows redox neutral reactions with both nucleophilic (activated by single-electron oxidation) and electrophilic (activated by single-electron reduction) alkyl radical precursors. Thus, a broad scope of feedstock alkyl potassium trifluoroborate salts and redox active carboxylate esters could be employed, with each class of substrate proceeding through a distinct mechanistic pathway. The mild conditions are applicable to the late-stage installation of phosphonate motifs into medicinal agents and natural products, which is showcased by the straightforward conversion of baclofen (muscle relaxant) to phaclofen (GABAB antagonist).
Collapse
Affiliation(s)
- Santosh
K. Pagire
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Chao Shu
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- National
Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Dominik Reich
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Adam Noble
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
13
|
Ding R, Li L, Yu YT, Zhang B, Wang PL. Photoredox-Catalyzed Synthesis of 3-Sulfonylated Pyrrolin-2-ones via a Regioselective Tandem Sulfonylation Cyclization of 1,5-Dienes. Molecules 2023; 28:5473. [PMID: 37513345 PMCID: PMC10386375 DOI: 10.3390/molecules28145473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
A mild, visible-light-induced, regioselective cascade sulfonylation-cyclization of 1,5-dienes with sulfonyl chlorides through the intermolecular radical addition/cyclization of alkenes C(sp2)-H was developed. This procedure proceeds well and affords a mild and efficient route to a range of monosulfonylated pyrrolin-2-ones at room temperatures.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Liang Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Ya-Ting Yu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Bing Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233100, China
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
- Information College, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
14
|
Zhou H, Fan LW, Ren YQ, Wang LL, Yang CJ, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Chemo- and Enantioselective Radical 1,2-Carbophosphonylation of Styrenes. Angew Chem Int Ed Engl 2023; 62:e202218523. [PMID: 36722939 DOI: 10.1002/anie.202218523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
The copper-catalyzed enantioselective radical difunctionalization of alkenes from readily available alkyl halides and organophosphorus reagents possessing a P-H bond provides an appealing approach for the synthesis of α-chiral alkyl phosphorus compounds. The major challenge arises from the easy generation of a P-centered radical from the P-H-type reagent and its facile addition to the terminal side of alkenes, leading to reverse chemoselectivity. We herein disclose a radical 1,2-carbophosphonylation of styrenes in a highly chemo- and enantioselective manner. The key to the success lies in not only the implementation of dialkyl phosphites with a strong bond dissociation energy to promote the desired chemoselectivity but also the utilization of an anionic chiral N,N,N-ligand to forge the chiral C(sp3 )-P bond. The developed Cu/N,N,N-ligand catalyst has enriched our library of single-electron transfer catalysts in the enantioselective radical transformations.
Collapse
Affiliation(s)
- Huan Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang-Qing Ren
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Lei Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang-Jiang Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,School of Science and Institute of Scientific Research, Great Bay University, Dongguan, 523000, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
15
|
Volkova Y, Zavarzin I. Synthesis of Phosphorus(V)-Substituted Six-Membered N-Heterocycles: Recent Progress and Challenges. Molecules 2023; 28:molecules28062472. [PMID: 36985443 PMCID: PMC10054050 DOI: 10.3390/molecules28062472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Heterocycles functionalized with pentavalent phosphorus are of great importance since they include a great variety of biologically active compounds and pharmaceuticals, advanced materials, and valuable reactive intermediates for organic synthesis. Significant progress in synthesis of P(O)R2-substituted six-membered heterocycles has been made in the past decade. This review covers the synthetic strategies towards aromatic monocyclic six-membered N-heterocycles, such as pyridines, pyridazines, pyrimidines, and pyrazines bearing phosphonates and phosphine oxides, which were reported from 2012 to 2022.
Collapse
|
16
|
Budnikova YH. Phosphorus-Centered Radicals: Synthesis, Properties, and Applications. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Huang AX, Fu YR, Zhu HL, Zeng FL, Chen XL, Tang S, Qu LB, Yu B. Visible-Light-Promoted Phosphorylation/Cyclization of 1-Acryloyl-2-cyanoindoles in Green Solvent. J Org Chem 2022; 87:14433-14442. [PMID: 36257064 DOI: 10.1021/acs.joc.2c01890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced persulfate-promoted cascade phosphorylation/cyclization reaction to access various phosphorylated pyrrolo[1,2-a]indolediones under mild conditions was developed. Notably, the transformation was carried out with diethyl carbonate/H2O as a green medium at room temperature. More impressively, traditional metal catalysts and photocatalysts could be effectively avoided. The reactions are simple to operate, easy to scale up, and have good functional group tolerance.
Collapse
Affiliation(s)
- An-Xiang Huang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yi-Rui Fu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Hu-Lin Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Renmingnan Road No. 120, Hunan 416000, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| |
Collapse
|
18
|
Li J, Liu B, Hu Y, Li X, Huo Y, Chen Q. Hypervalent iodine-induced disulfenylation of thiophene derivatives with thiophenols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Li Q, Zhao CQ, Chen T, Han LB. Direct phosphorylation of benzylic C-H bonds under transition metal-free conditions forming sp 3C-P bonds. RSC Adv 2022; 12:18441-18444. [PMID: 35799919 PMCID: PMC9227801 DOI: 10.1039/d2ra02812c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 12/16/2022] Open
Abstract
Direct phosphorylation of benzylic C-H bonds was achieved in a biphasic system under transition metal-free conditions. A selective radical/radical sp3C-H/P(O)-H cross coupling was proposed, and various substituted toluenes were applicable. The transformation provided a promising method for constructing sp3C-P bonds.
Collapse
Affiliation(s)
- Qiang Li
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Chang-Qiu Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Li-Biao Han
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
- Zhejiang Yanfan New Materials Co., Ltd. Shangyu Zhejiang Province 312369 China
| |
Collapse
|
20
|
Gao X, Pan X, Wang P, Jin Z. Visible Light-induced Phosphine-Catalyzed Perfluoroalkylation of Indoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photo-induced, catalytic phosphine-promoted perfluoroalkylation reaction of indole molecules is developed. Inexpensive and readily available PPh3 is used in a catalytic amount as the sole reaction initiator in this protocol....
Collapse
|
21
|
Liu C, Li H, Wang B, Guo Z, Wang Y, Zhang J, Xie M. Temperature Controlled Di- and Monosulfonylation of Propargyl Alcohols with Sodium Sulfinates: Switchable Access to (E)-Allyl, Vinyldisulfones and Propargyl Sulfones. Org Chem Front 2022. [DOI: 10.1039/d1qo01906f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A switchable di- and monosulfonylation of propargyl alcohols with sodium sulfinates is developed, which successfully affords (E)-allyl, vinyldisulfones and propargyl sulfones in good to excellent yields, respectively. The salient features...
Collapse
|
22
|
Shi S, Zheng Z, Zhang Y, Yang Y, Ma D, Gao Y, Liu Y, Tang G, Zhao Y. Photoinduced Phosphorylation/Cyclization of Cyanoaromatics for Divergent Access to Mono- and Diphosphorylated Polyheterocycles. Org Lett 2021; 23:9348-9352. [PMID: 34846909 DOI: 10.1021/acs.orglett.1c03360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The visible-light-driven switchable phosphorylation of cyanoaromatics with the 1,6-enyne moiety for the diverse and selective synthesis of phosphorylated polyheterocycles, including phosphorylated aminophosphonates, iminophosphonates, and ketones, has been described. Importantly, these photocatalytic transformations feature good functional group tolerance and high regio- and chemoselectivities under mild reaction conditions. These findings might stimulate the exploration of new photocatalytic utilizations of P(O)-H compounds by employing CN-containing substrates as the radical acceptors.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhipeng Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yumeng Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufei Yang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Denghui Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
23
|
Zhang Y, Cai Z, Struwe J, Ma C, Zeng W, Liao X, Xu M, Ackermann L. Dibenzocycloheptanones construction through a removable P-centered radical: synthesis of allocolchicine analogues. Chem Sci 2021; 12:15727-15732. [PMID: 35003604 PMCID: PMC8654019 DOI: 10.1039/d1sc05404j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Dibenzocycloheptanones containing a tricyclic 6-7-6-system are present in numerous biologically active natural molecules. However, the simple and efficient preparation of derivatives containing a dibenzocycloheptanone scaffold remains difficult to date. Herein, we report a versatile strategy for the construction of these challenging seven-membered rings using a 7-endo-trig cyclization which is initiated by a phosphorus-centered radical. This approach provides a step-economical regime for the facile assembly of a wide range of phosphorylated dibenzocycloheptanones. Remarkably, we also have devised a traceless addition/exchange strategy for the preparation of dephosphorylated products at room temperature with excellent yields. Therefore, this protocol allows for the concise synthesis of biorelevant allocochicine derivatives.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Drug Discovery & Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Zhenzhi Cai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Drug Discovery & Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Germany
| | - Chanchan Ma
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Drug Discovery & Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Wangyu Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Drug Discovery & Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Xinyi Liao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Drug Discovery & Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Min Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Drug Discovery & Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Germany
| |
Collapse
|
24
|
Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. CHEMSUSCHEM 2021; 14:4878-4902. [PMID: 34476903 PMCID: PMC9292207 DOI: 10.1002/cssc.202101635] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfones play a pivotal role in modern organic chemistry. They are highly versatile building blocks and find various applications as drugs, agrochemicals, or functional materials. Therefore, sustainable access to this class of molecules is of great interest. Herein, the goal was to provide a summary on recent developments in the field of sustainable sulfone synthesis. Advances and existing limitations in traditional approaches towards sulfones were reviewed on selected examples. Furthermore, novel emerging technologies for a more sustainable sulfone synthesis and future directions were discussed.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Medicinal Chemistry, School of PharmacyQingdao University Medical CollegeNo.1 Ningde Road266073QingdaoP. R. China
| | - Kamil Hofman
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Marius Friedrich
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Julian Keller
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Georg Manolikakes
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| |
Collapse
|
25
|
Primary Phosphines and Phosphine Oxides with a Stereogenic Carbon Center Adjacent to the Phosphorus Atom: Synthesis and Anti-Markovnikov Radical Addition to Alkenes. ORGANICS 2021. [DOI: 10.3390/org2040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Organophosphorus compounds with stereogenic phosphorus and carbon atoms have received increasing attention. In this regards, primary phosphines with a stereogenic carbon atom adjacent to the phosphorus atom were synthesized by the reduction in phosphonates and phosphonoselenoates with a binaphthyl group. Their oxidized products, i.e., phosphine oxides with a stereogenic tetrasubstituted carbon atom, were found to undergo BEt3-mediated radical addition to cyclohexene to give P-stereogenic secondary phosphine oxides with a diastereoselectivity of 91:9. The products were characterized by ordinary analytical methods, such as Fourier transform infrared spectroscopy; 1H, 13C, and 31P NMR spectroscopies; and mass spectroscopy. Computational studies on the phosphorus-centered radical species and the obtained product implied that the thermodynamically stable radical and the adduct may be formed as a major diastereomer. The radical addition to a range of alkenes took place in an anti-Markovnikov fashion to give P-stereogenic secondary phosphine oxides. A variety of functional groups in the alkenes were tolerated under the reaction conditions to afford secondary phosphine oxides in moderate yields. Primary phosphines with an alkenyl group, which were generated in situ, underwent intramolecular cyclization to give five- and six-membered cyclic phosphines in high yields after protection by BH3.
Collapse
|
26
|
Smith PJ, Jiang Y, Tong Z, Pickford HD, Christensen KE, Nugent J, Anderson EA. Synthesis of Polysubstituted Fused Pyrroles by Gold-Catalyzed Cycloisomerization/1,2-Sulfonyl Migration of Yndiamides. Org Lett 2021; 23:6547-6552. [PMID: 34369785 DOI: 10.1021/acs.orglett.1c02360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Yndiamides (bis-N-substituted alkynes) are valuable precursors to azacycles. Here we report a cycloisomerization/1,2-sulfonyl migration of alkynyl-yndiamides to form tetrahydropyrrolopyrroles, unprecedented heterocyclic scaffolds that are relevant to medicinal chemistry. This functional group tolerant transformation can be achieved using Au(I) catalysis that proceeds at ambient temperature, and a thermally promoted process. The utility of the products is demonstrated by a range of reactions to functionalize the fused pyrrole core.
Collapse
Affiliation(s)
- Philip J Smith
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zixuan Tong
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Helena D Pickford
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | | | - Jeremy Nugent
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Edward A Anderson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
27
|
Wu SP, Wang DK, Kang QQ, Ge GP, Zheng H, Zhu M, Li T, Zhang JQ, Wei WT. Sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes. Chem Commun (Camb) 2021; 57:8288-8291. [PMID: 34318821 DOI: 10.1039/d1cc03252f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and broad substrate scope are the attractive features of this synthetic protocol, which provides a unique platform for precise radical cyclization.
Collapse
Affiliation(s)
- Shi-Ping Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen D, Lin L, Peng X, Yu X, Yang Z, Liu Y, Zhang X, Li J, Jiang H. Transition-metal-free NaI-mediated reaction of aryl sulfonyl chloride with alkynes: Synthesis of (E)-β-iodovinyl sulfones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Kittikool T, Phakdeeyothin K, Chantarojsiri T, Yotphan S. Manganese‐Promoted Regioselective Direct
C3
‐Phosphinoylation of 2‐Pyridones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanakorn Kittikool
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| |
Collapse
|
30
|
Nadolska M, Prześniak-Welenc M, Łapiński M, Sadowska K. Synthesis of Phosphonated Carbon Nanotubes: New Insight into Carbon Nanotubes Functionalization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2726. [PMID: 34064192 PMCID: PMC8196758 DOI: 10.3390/ma14112726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Carbon nanotubes were successfully functionalized for the first time in a free radical phosphonylation reaction. Three synthetic protocols were proposed. Carbon nanotubes and diethylphosphite reacted in the presence of known radical initiator, such as azobisisobutyronitrile, single electron oxidant-Mn(OAc)3, or under UV radiation. The functionalized material was fully characterized by means of spectroscopic methods, together with microscopic, surface area and thermogravimetric analyses. UV-illumination was found to be the most effective approach for introducing phosphonates onto carbon nanotubes. X-ray photoelectron spectroscopy analysis showed 6% phosphorus in this sample. Moreover, the method was performed at room temperature for only one hour, using diethylphosphite as a reactant and as a solvent. The functionalized carbon nanotubes showed an improved thermal stability, with a decomposition onset temperature increase of more than 130 °C. This makes it very promising material for flame retarding applications.
Collapse
Affiliation(s)
- Małgorzata Nadolska
- Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.N.); (M.P.-W.); (M.Ł.)
| | - Marta Prześniak-Welenc
- Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.N.); (M.P.-W.); (M.Ł.)
| | - Marcin Łapiński
- Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland; (M.N.); (M.P.-W.); (M.Ł.)
| | - Kamila Sadowska
- Institute of Biocybernetics, Biomedical Engineering of the Polish Academy of Sciences, 02-109 Warsaw, Poland
| |
Collapse
|
31
|
Liu Y, Li JL, Liu XG, Wu JQ, Huang ZS, Li Q, Wang H. Radical Borylative Cyclization of Isocyanoarenes with N-Heterocyclic Carbene Borane: Synthesis of Borylated Aza-arenes. Org Lett 2021; 23:1891-1897. [PMID: 33591193 DOI: 10.1021/acs.orglett.1c00309] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Borylated aza-arenes are of great importance in the area of organic synthesis. A radical borylative cyclization of isocyanoarenes with N-heterocyclic carbene borane (NHC-BH3) under metal-free conditions was developed. The reaction allows the efficient assembly of several types of borylated aza-arenes (phenanthridines, benzothiazoles, etc.), which are difficult to access using alternative methods. Mild reaction conditions, a good functional-group tolerance, and generally good efficiencies were observed. The utility of these products is demonstrated, and the mechanism is discussed.
Collapse
Affiliation(s)
- Yao Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji-Lin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xu-Ge Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Qiang Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
32
|
Zhao X, Ou Y, Liu Y, Maruoka K, Chen Q. Recent Progress in the Construction of S—S, P—S and C—S Bonds Involving O2-Initiated Sulfur-Centered Radicals. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Liu Y, Chen XL, Li XY, Zhu SS, Li SJ, Song Y, Qu LB, Yu B. 4CzIPN-tBu-Catalyzed Proton-Coupled Electron Transfer for Photosynthesis of Phosphorylated N-Heteroaromatics. J Am Chem Soc 2020; 143:964-972. [DOI: 10.1021/jacs.0c11138] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Liu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture & Forestry University, Xinyang 464000, China
| | - Xiao-Lan Chen
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xiao-Yun Li
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Shan-Shan Zhu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Shi-Jun Li
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yan Song
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Ling-Bo Qu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Bing Yu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
34
|
Difunctionalization of Alkenes and Alkynes via Intermolecular Radical and Nucleophilic Additions. MOLECULES (BASEL, SWITZERLAND) 2020; 26:molecules26010105. [PMID: 33379397 PMCID: PMC7795514 DOI: 10.3390/molecules26010105] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022]
Abstract
Popular and readily available alkenes and alkynes are good substrates for the preparation of functionalized molecules through radical and/or ionic addition reactions. Difunctionalization is a topic of current interest due to its high efficiency, substrate versatility, and operational simplicity. Presented in this article are radical addition followed by oxidation and nucleophilic addition reactions for difunctionalization of alkenes or alkynes. The difunctionalization could be accomplished through 1,2-addition (vicinal) and 1,n-addition (distal or remote) if H-atom or group-transfer is involved in the reaction process. A wide range of moieties, such as alkyl (R), perfluoroalkyl (Rf), aryl (Ar), hydroxy (OH), alkoxy (OR), acetatic (O2CR), halogenic (X), amino (NR2), azido (N3), cyano (CN), as well as sulfur- and phosphorous-containing groups can be incorporated through the difunctionalization reactions. Radicals generated from peroxides or single electron transfer (SET) agents, under photoredox or electrochemical reactions are employed for the reactions.
Collapse
|
35
|
Han J, Kim J, Lee J, Kim Y, Lee SY. Boron Lewis Acid-Catalyzed Hydrophosphinylation of N-Heteroaryl-Substituted Alkenes with Secondary Phosphine Oxides. J Org Chem 2020; 85:15476-15487. [PMID: 33179920 DOI: 10.1021/acs.joc.0c02246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the boron-catalyzed hydrophosphinylation of N-heteroaryl-substituted alkenes with secondary phosphine oxides that furnishes various phosphorus-containing N-heterocycles. This process proceeds under mild conditions and enables the introduction of a phosphorus atom into multisubstituted alkenylazaarenes. The available mechanistic data can be explained by a reaction pathway wherein the C-P bond is created by the reaction between the activated alkene (by coordination to a boron catalyst) and the phosphorus(III) nucleophile (in tautomeric equilibrium with phosphine oxide).
Collapse
Affiliation(s)
- Jimin Han
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jongwon Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehoo Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Younghun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
36
|
Yan J, Wang Y, Hou S, Shi L, Zhu X, Hao X, Song M. NCC Pincer Ni (II) Complexes Catalyzed Hydrophosphination of Nitroalkenes with Diphenylphosphine. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jing Yan
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Yan‐Bing Wang
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Senyao Hou
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Linlin Shi
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Xinju Zhu
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Xin‐Qi Hao
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| | - Mao‐Ping Song
- College of Chemistry Zhengzhou University No. 100 of Science Road Zhengzhou Henan 450001 P. R. China
| |
Collapse
|
37
|
Miura T, Moriyama D, Miyakawa S, Murakami M. Synthesis of Alkyl Sulfones from Alkenes and Tosylmethylphosphonium Iodide through Photo-promoted C–C Bond Formation. CHEM LETT 2020. [DOI: 10.1246/cl.200530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Daisuke Moriyama
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Sho Miyakawa
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
38
|
Cicco L, Fombona-Pascual A, Sánchez-Condado A, Carriedo GA, Perna FM, Capriati V, Presa Soto A, García-Álvarez J. Fast and Chemoselective Addition of Highly Polarized Lithium Phosphides Generated in Deep Eutectic Solvents to Aldehydes and Epoxides. CHEMSUSCHEM 2020; 13:4967-4973. [PMID: 32666628 DOI: 10.1002/cssc.202001449] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Highly polarized lithium phosphides (LiPR2 ) were synthesized, for the first time, in deep eutectic solvents as sustainable reaction media, at room temperature and in the absence of protecting atmosphere, through direct deprotonation of both aliphatic and aromatic secondary phosphines (HPR2 ) by n-BuLi. The subsequent addition of in-situ generated LiPR2 to aldehydes or epoxides proceeded quickly and chemoselectively, thereby allowing the straightforward access to the corresponding α- or β-hydroxy phosphine oxides, respectively, under air and at room temperature (bench conditions), which are traditionally considered as textbook-prohibited conditions in the field of polar organometallic chemistry of s-block elements.
Collapse
Affiliation(s)
- Luciana Cicco
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona, 4, 70125, Bari, Italy
| | - Alba Fombona-Pascual
- Departamento de Química Orgánica e Inorgánica, IUQOEM) Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Facultad de Química, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Julián Clavería, 8, 33006, Oviedo, Spain
| | - Alba Sánchez-Condado
- Departamento de Química Orgánica e Inorgánica, IUQOEM) Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Gabino A Carriedo
- Departamento de Química Orgánica e Inorgánica, IUQOEM) Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Filippo M Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona, 4, 70125, Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona, 4, 70125, Bari, Italy
| | - Alejandro Presa Soto
- Departamento de Química Orgánica e Inorgánica, IUQOEM) Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Joaquín García-Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Departamento de Química Orgánica e Inorgánica, (IUQOEM), Facultad de Química, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Julián Clavería, 8, 33006, Oviedo, Spain
| |
Collapse
|
39
|
Mulina OM, Ilovaisky AI, Parshin VD, Terent'ev AO. Oxidative Sulfonylation of Multiple Carbon‐Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Vadim D. Parshin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
40
|
Chen C, Sun W, Yan Y, Yang F, Wang Y, Zhu Y, Liu L, Zhu B. Palladium‐Catalyzed Phosphoryl‐Carbamoylation of Alkenes: Construction of Nonbenzylic C(
sp
3
)−P(O)R
2
Bonds via C(
sp
3
)−Pd(II)−P(O)R
2
Reductive Elimination. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Yan Yan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Fang Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Yuebo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Yan‐Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai University Shandong, Yantai 264005 People's Republic of China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
41
|
Li Y, Liu J, He F, Wu J. Photoredox‐Catalyzed Functionalization of Alkenes with Thiourea Dioxide: Construction of Alkyl Sulfones or Sulfonamides. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuewen Li
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou Zhejiang 318000 China
| | - Jin‐Biao Liu
- School of Metallurgical and Chemical EngineeringJiangxi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Fu‐Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou Zhejiang 318000 China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou Zhejiang 318000 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
42
|
Zhao QQ, Zhou XS, Xu SH, Wu YL, Xiao WJ, Chen JR. Visible-Light-Driven Nitrogen Radical-Catalyzed [3 + 2] Cyclization of Vinylcyclopropanes and N-Tosyl Vinylaziridines with Alkenes. Org Lett 2020; 22:2470-2475. [DOI: 10.1021/acs.orglett.0c00712] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Quan-Qing Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Xue-Song Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Shuang-Hua Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ya-Li Wu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
43
|
Wang C, Huang X, Liu X, Gao S, Zhao B, Yang S. Photo-induced phosphorus radical involved semipinacol rearrangement reaction: Highly synthesis of γ-oxo-phosphonates. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Abstract
Radical reactions have found many applications in carbohydrate chemistry, especially in the construction of carbon–carbon bonds. The formation of carbon–heteroatom bonds has been less intensively studied. This mini-review will summarize the efforts to add heteroatom radicals to unsaturated carbohydrates like endo-glycals. Starting from early examples, developed more than 50 years ago, the importance of such reactions for carbohydrate chemistry and recent applications will be discussed. After a short introduction, the mini-review is divided in sub-chapters according to the heteroatoms halogen, nitrogen, phosphorus, and sulfur. The mechanisms of radical generation by chemical or photochemical processes and the subsequent reactions of the radicals at the 1-position will be discussed. This mini-review cannot cover all aspects of heteroatom-centered radicals in carbohydrate chemistry, but should provide an overview of the various strategies and future perspectives.
Collapse
|
45
|
Kramer P, Halaczkiewicz M, Sun Y, Kelm H, Manolikakes G. Iron(III)-Mediated Oxysulfonylation of Enamides with Sodium and Lithium Sulfinates. J Org Chem 2020; 85:3617-3637. [DOI: 10.1021/acs.joc.9b03299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Philipp Kramer
- Institute for Organic Chemistry, Technical University Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Miro Halaczkiewicz
- Institute for Organic Chemistry, Technical University Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Yu Sun
- Institute for Organic Chemistry, Technical University Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Harald Kelm
- Institute for Organic Chemistry, Technical University Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Georg Manolikakes
- Institute for Organic Chemistry, Technical University Kaiserslautern, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
46
|
Si E, Zhao P, Wang L, Duan Z, Mathey F. New Access to Six-Membered Phosphacycle Annulated Polyaromatic Ring System. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Erbing Si
- College of Chemistry; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Peng Zhao
- College of Chemistry; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Lili Wang
- College of Chemistry; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - Zheng Duan
- College of Chemistry; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center; Zhengzhou University; 450001 Zhengzhou P. R. China
| | - François Mathey
- College of Chemistry; International Phosphorus Laboratory; International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Green Catalysis Center; Zhengzhou University; 450001 Zhengzhou P. R. China
| |
Collapse
|
47
|
Pan D, Nie G, Jiang S, Li T, Jin Z. Radical reactions promoted by trivalent tertiary phosphines. Org Chem Front 2020. [DOI: 10.1039/d0qo00473a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The background and recent breakthroughs in the single-electron-transfer (SET) reactions with trivalent tertiary phosphines are summarized and discussed in detail, and an outlook in the developments within this field is provided.
Collapse
Affiliation(s)
- Dingwu Pan
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education
- Guizhou University
- Guiyang 550025
- China
| | - Guihua Nie
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education
- Guizhou University
- Guiyang 550025
- China
| | - Shichun Jiang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education
- Guizhou University
- Guiyang 550025
- China
| | - Tingting Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education
- Guizhou University
- Guiyang 550025
- China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering
- Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education
- Guizhou University
- Guiyang 550025
- China
| |
Collapse
|
48
|
Khan I, Zaib S, Ibrar A. New frontiers in the transition-metal-free synthesis of heterocycles from alkynoates: an overview and current status. Org Chem Front 2020. [DOI: 10.1039/d0qo00698j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the successful utilization of transition-metal-free approaches for the modular assembly of various heterocycles from alkynoates.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester M13 9PL
- UK
| | - Sumera Zaib
- Department of Biochemistry
- Faculty of Life Sciences
- University of Central Punjab
- Lahore-54590
- Pakistan
| | - Aliya Ibrar
- Department of Chemistry
- Faculty of Natural Sciences
- The University of Haripur
- Haripur, KPK-22620
- Pakistan
| |
Collapse
|
49
|
Zheng Y, You Y, Shen Q, Zhang J, Liu L, Duan XH. Visible-light-induced anti-Markovnikov hydrosulfonation of styrene derivatives. Org Chem Front 2020. [DOI: 10.1039/d0qo00497a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A visible-light-induced anti-Morkovnikov hydrosulfonation reaction of styrene derivatives with sodium sulfinates has been developed, featuring mild reaction conditions, good functional-group tolerance, good yields and high regioselectivity.
Collapse
Affiliation(s)
- Yinan Zheng
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Ying You
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Qianqian Shen
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Junjie Zhang
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Le Liu
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xin-Hua Duan
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
50
|
Fu Y, Li MP, Shi CZ, Li FR, Du Z, Huo C. Double C-N bond cleavages of N-alkyl 4-oxopiperidinium salts: access to unsymmetrical tertiary sulfonamides. Org Biomol Chem 2019; 17:10172-10177. [PMID: 31755519 DOI: 10.1039/c9ob02107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this paper, regiospecific, double intraannular C-N bond cleavages of N-alkyl 4-oxopiperidinium salts are presented. The reaction sequence involves a charge-transfer complex, in situ formed between sulfonyl chloride and N-methylmorpholine, which induces S-Cl bond homolysis of sulfonyl chloride, yielding a reactive sulfonyl radical that further induces the double C-N bond cleavages of N-alkyl 4-oxopiperidinium salt. The secondary amine thus produced was trapped by sulfonyl chloride to yield the desired sulfonamide product. The key feature of this protocol is that two intraannular C-N bonds of the 4-oxopiperidine ring are cleaved in one step under metal- and oxidant-free conditions.
Collapse
Affiliation(s)
- Ying Fu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Ming-Peng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Chun-Zhao Shi
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Fang-Rong Li
- Pharmacy Department, Gansu University of Traditional Chinese Medicine, 743000, China
| | - Zhengyin Du
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|