1
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
2
|
Youssef DTA, Shaala LA. Psammaplysins: Insights from Natural Sources, Structural Variations, and Pharmacological Properties. Mar Drugs 2022; 20:663. [PMID: 36354986 PMCID: PMC9693029 DOI: 10.3390/md20110663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 04/08/2024] Open
Abstract
Marine natural products (MNPs) continue to be in the spotlight in the global drug discovery endeavor. Currently, more than 32,000 structurally diverse secondary metabolites from marine sources have been isolated, making MNPs a vital source for researchers to look for novel drug candidates. The marine-derived psammaplysins possess the rare and unique 1,6-dioxa-2-azaspiro [4.6] undecane backbone and are represented by 44 compounds in the literature, mostly from sponges of the order Verongiida. Compounds with 1,6-dioxa-2-azaspiro [4.6] undecane moiety exist in the literature under five names, including psammaplysins, ceratinamides, frondoplysins, ceratinadins, and psammaceratins. These compounds displayed significant biological properties including growth inhibitory, antimalarial, antifouling, protein tyrosine phosphatase inhibition, antiviral, immunosuppressive, and antioxidant effects. In this review, a comprehensive literature survey covering natural occurrence of the psammaplysins and related compounds, methods of isolation, structural differences, the biogenesis, and biological/pharmacological properties, will be presented.
Collapse
Affiliation(s)
- Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lamiaa A. Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Lever J, Brkljača R, Rix C, Urban S. Application of Networking Approaches to Assess the Chemical Diversity, Biogeography, and Pharmaceutical Potential of Verongiida Natural Products. Mar Drugs 2021; 19:582. [PMID: 34677481 PMCID: PMC8539549 DOI: 10.3390/md19100582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
This study provides a review of all isolated natural products (NPs) reported for sponges within the order Verongiida (1960 to May 2020) and includes a comprehensive compilation of their geographic and physico-chemical parameters. Physico-chemical parameters were used in this study to infer pharmacokinetic properties as well as the potential pharmaceutical potential of NPs from this order of marine sponge. In addition, a network analysis for the NPs produced by the Verongiida sponges was applied to systematically explore the chemical space relationships between taxonomy, secondary metabolite and drug score variables, allowing for the identification of differences and correlations within a dataset. The use of scaffold networks as well as bipartite relationship networks provided a platform to explore chemical diversity as well as the use of chemical similarity networks to link pharmacokinetic properties with structural similarity. This study paves the way for future applications of network analysis procedures in the field of natural products for any order or family.
Collapse
Affiliation(s)
- James Lever
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia;
| | - Colin Rix
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| | - Sylvia Urban
- School of Science (Applied Chemistry and Environmental Sciences), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (J.L.); (C.R.)
| |
Collapse
|
4
|
Youssef DTA, Asfour HZ, Shaala LA. Psammaceratin A: A Cytotoxic Psammaplysin Dimer Featuring an Unprecedented (2Z,3Z)-2,3-Bis(aminomethylene)succinamide Backbone from the Red Sea Sponge Pseudoceratina arabica. Mar Drugs 2021; 19:433. [PMID: 34436272 PMCID: PMC8399316 DOI: 10.3390/md19080433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Bioassay-guided partition of the extract of the Red Sea sponge Pseudoceratina arabica and HPLC purification of the active fraction gave a psammaplysin dimer, psammaceratin A (1), along with psammaplysin A (2). The dimer comprises two units of psammaplysin A (2) connected via the terminal amines with an unprecedented (2Z,3Z)-2,3-bis(aminomethylene)succinamide moiety, and it represents the first dimer to be identified among the psammaplysin family. Data from 1D- and 2D-NMR and HRMS supported the chemical structures of the compounds. Psammaceratin A (1) and psammaplysin A (2) exhibited significant growth inhibition of HCT 116, HeLa, and MBA-MB-231 cells down to 3.1 μM.
Collapse
Affiliation(s)
- Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Z. Asfour
- Department of Medical Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Lamiaa A. Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
5
|
Discovery of cytotoxic natural products from Red Sea sponges: Structure and synthesis. Eur J Med Chem 2021; 220:113491. [PMID: 33940466 DOI: 10.1016/j.ejmech.2021.113491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Marine ecosystem continues to produce a great wealth of molecules endowed with cytotoxic activity towards a large panel of tumor cells. Marine sponges, apparently defenseless organisms are endowed through evolution with a range of cytotoxic metabolites for self protection against predators and space competition. Interestingly, high biodiversity of sponges with Demospongiae and Calcarea species that have yielded numerous bioactive compounds have been accorded in different regions of the Red Sea. This review for the first time provides a comprehensive overview of 123 cytotoxic agents derived from Red Sea sponges with diverse chemical structures covered till mid 2020 showing activities ranging from mildly active to very active against different panels of cancer cell lines. It has been divided according to the different classes of compounds including alkaloids, terpenoids (sesquiterpenes, diterpenes, triterpenes, sesterterpenes, norsesterterpenes), peptides and macrolides, lipids (steroids, fatty acids/amides and glycerides) etc. The enhancement in the cytotoxicity with respect to the molecular structure changes have been described in detail. We have also accounted for the total synthesis of cytotoxic molecules, subereamolline A, aerothionin, asmarine B, norrsolide and latrunculin B showing interesting activity against different cancer cell lines.
Collapse
|
6
|
Muzychka L, Voronkina A, Kovalchuk V, Smolii OB, Wysokowski M, Petrenko I, Youssef DTA, Ehrlich I, Ehrlich H. Marine biomimetics: bromotyrosines loaded chitinous skeleton as source of antibacterial agents. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:15. [PMID: 33424135 PMCID: PMC7776313 DOI: 10.1007/s00339-020-04167-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 05/10/2023]
Abstract
UNLABELLED The marine sponges of the order Verongiida (Demospongiae: Porifera) have survived on our planet for more than 500 million years due to the presence of a unique strategy of chemical protection by biosynthesis of more than 300 derivatives of biologically active bromotyrosines as secondary metabolites. These compounds are synthesized within spherulocytes, highly specialized cells located within chitinous skeletal fibers of these sponges from where they can be extruded in the sea water and form protective space against pathogenic viruses, bacteria and other predators. This chitin is an example of unique biomaterial as source of substances with antibiotic properties. Traditionally, the attention of researchers was exclusively drawn to lipophilic bromotyrosines, the extraction methods of which were based on the use of organic solvents only. Alternatively, we have used in this work a biomimetic water-based approach, because in natural conditions, sponges actively extrude bromotyrosines that are miscible with the watery environment. This allowed us to isolate 3,5-dibromoquinolacetic acid from an aqueous extract of the dried demosponge Aplysina aerophoba and compare its antimicrobial activity with the same compound obtained by the chemical synthesis. Both synthetic and natural compounds have shown antimicrobial properties against clinical strains of Staphylococcus aureus, Enterococcus faecalis and Propionibacterium acnes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00339-020-04167-0.
Collapse
Affiliation(s)
- Liubov Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kiev, 02094 Ukraine
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia 21018 Ukraine
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia 21018 Ukraine
| | - Oleg B. Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kiev, 02094 Ukraine
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Iaroslav Petrenko
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522 Egypt
| | | | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
7
|
Shaala LA, Youssef DTA. Pseudoceratonic Acid and Moloka'iamine Derivatives from the Red Sea Verongiid Sponge Pseudoceratina arabica. Mar Drugs 2020; 18:E525. [PMID: 33114230 PMCID: PMC7690883 DOI: 10.3390/md18110525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
During an investigation of the chemistry of the Red Sea Verongiid sponge Pseudoceratina arabica, we discovered a small molecule, pseudoceratonic acid (1), along with the new moloka'iamine derivatives, ceratinines N (2), O (3), and the previously reported compounds moloka'iamine (4), hydroxymoloka'iamine (5) and ceratinamine (6). The structural assignments of 1-6 were accomplished by interpretation of their NMR and HRESIMS spectral data. Pseudoceratonic acid possesses a dibrominated hydrazine-derived functional group not found in any reported chemical compound. Pseudoceratonic acid selectively inhibited the growth of E. coli and S. aureus, while ceratinine N selectively inhibited C. albicans. Further, ceratinine N showed potent cytotoxic effects against the triple-negative breast cancer, colorectal carcinoma, and human cervical carcinoma cell lines down to 2.1 µM.
Collapse
Affiliation(s)
- Lamiaa A. Shaala
- King Fahd Medical Research Center, Natural Products Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt
| | - Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
8
|
Bian C, Wang J, Zhou X, Wu W, Guo R. Recent Advances on Marine Alkaloids from Sponges. Chem Biodivers 2020; 17:e2000186. [PMID: 32562510 DOI: 10.1002/cbdv.202000186] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Alkaloids from marine secondary metabolites have received extensive attention from pharmacists in recent years. Miscellaneous alkaloids derived from marine sponges possessed various pharmacological activities including cytotoxicity, antimicrobial, antioxidant, and so on. Herein, we summarized 149 marine alkaloids from sponges based on their structures and bioactivities reported from 2015 to 2020 and analyzed the production environment of marine sponges with rich alkaloids. Moreover, we discussed biosynthesis routes of pyrrole and guanidine alkaloids from marine sponges Agelas and Monanchora. This article will be beneficial for future research on drugs from marine natural products.
Collapse
Affiliation(s)
- Changhao Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Jiangming Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Xinyi Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, P. R. China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, P. R. China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, P. R. China
| |
Collapse
|
9
|
El-Hossary EM, Abdel-Halim M, Ibrahim ES, Pimentel-Elardo SM, Nodwell JR, Handoussa H, Abdelwahab MF, Holzgrabe U, Abdelmohsen UR. Natural Products Repertoire of the Red Sea. Mar Drugs 2020; 18:md18090457. [PMID: 32899763 PMCID: PMC7551641 DOI: 10.3390/md18090457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Marine natural products have achieved great success as an important source of new lead compounds for drug discovery. The Red Sea provides enormous diversity on the biological scale in all domains of life including micro- and macro-organisms. In this review, which covers the literature to the end of 2019, we summarize the diversity of bioactive secondary metabolites derived from Red Sea micro- and macro-organisms, and discuss their biological potential whenever applicable. Moreover, the diversity of the Red Sea organisms is highlighted as well as their genomic potential. This review is a comprehensive study that compares the natural products recovered from the Red Sea in terms of ecological role and pharmacological activities.
Collapse
Affiliation(s)
- Ebaa M. El-Hossary
- National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, Cairo 11765, Egypt;
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Eslam S. Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/Bau D15, 97080 Würzburg, Germany
| | - Sheila Marie Pimentel-Elardo
- Department of Biochemistry, University of Toronto, MaRS Centre West, 661 University Avenue, Toronto, ON M5G 1M1, Canada; (S.M.P.-E.); (J.R.N.)
| | - Justin R. Nodwell
- Department of Biochemistry, University of Toronto, MaRS Centre West, 661 University Avenue, Toronto, ON M5G 1M1, Canada; (S.M.P.-E.); (J.R.N.)
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Miada F. Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Correspondence: (U.H.); (U.R.A.)
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111 New Minia City, Minia 61519, Egypt
- Correspondence: (U.H.); (U.R.A.)
| |
Collapse
|
10
|
Li C, Shi D. Structural and Bioactive Studies of Halogenated Constituents from Sponges. Curr Med Chem 2020; 27:2335-2360. [PMID: 30417770 DOI: 10.2174/0929867325666181112092159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
Abstract
Marine organisms are abundant sources of bioactive natural products. Among metabolites produced by sponges and their associated microbial communities, halogenated natural compounds accounted for an important part due to their potent biological activities. The present review updates and compiles a total of 258 halogenated organic compounds isolated in the past three decades, especially brominated derivatives derived from 31 genera of marine sponges. These compounds can be classified as the following classes: brominated polyunsaturated lipids, nitrogen compounds, brominated tyrosine derivatives and other halogenated compounds. These substances were listed together with their source organisms, structures and bioactivities. For this purpose, 84 references were consulted.
Collapse
Affiliation(s)
- Chao Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dayong Shi
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Chen M, Yan Y, Ge H, Jiao WH, Zhang Z, Lin HW. Pseudoceroximes A-E and Pseudocerolides A-E - Bromotyrosine Derivatives from a Pseudoceratina
sp. Marine Sponge Collected in the South China Sea. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mengxuan Chen
- Ocean College, Zhoushan Campus; Zhejiang University; 316021 Zhoushan P.R. China
| | - Yizhen Yan
- Research Center for Marine Drugs; State Key Laboratory of Oncogenes and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai P.R. China
| | - Hengju Ge
- Ocean College, Zhoushan Campus; Zhejiang University; 316021 Zhoushan P.R. China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs; State Key Laboratory of Oncogenes and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai P.R. China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus; Zhejiang University; 316021 Zhoushan P.R. China
| | - Hou-Wen Lin
- Research Center for Marine Drugs; State Key Laboratory of Oncogenes and Related Genes; Department of Pharmacy, Ren Ji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai P.R. China
| |
Collapse
|
12
|
Shaala LA, Youssef DTA. Cytotoxic Psammaplysin Analogues from the Verongid Red Sea Sponge Aplysinella Species. Biomolecules 2019; 9:E841. [PMID: 31817954 PMCID: PMC6995619 DOI: 10.3390/biom9120841] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023] Open
Abstract
As part of our ongoing interest to identify bioactive chemical entities from marine invertebrates, the Red Sea specimen of the Verongid sponge Aplysinella species was studied. Repeated chromatographic fractionation of the methanolic extract of the sponge and HPLC purification of the cytotoxic fractions led to the isolation and the identification of two new compounds, psammaplysin Z and 19-hydroxypsammaplysin Z (1 and 2), together with the previously reported psammaplysins A (3) and E (4). The structural determination of 1-4 was supported by interpretation of their NMR and high-resolution mass spectra. Psammaplysins A and E displayed cytotoxic activity against MBA-MB-231 and HeLa cell lines with IC50 values down to 0.29 µM. On the other hand, psammaplysin Z and 19-hydroxypsammaplysin Z were moderately cytotoxic, indicating the importance of the terminal amine and 2-(methylene)cyclopent-4-ene-1,3-dione moieties in 3 and 4 for potent cytotoxic activity.
Collapse
Affiliation(s)
- Lamiaa A. Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt
| | - Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
13
|
Li Z, Hong LL, Gu BB, Sun YT, Wang J, Liu JT, Lin HW. Natural Products from Sponges. SYMBIOTIC MICROBIOMES OF CORAL REEFS SPONGES AND CORALS 2019. [PMCID: PMC7122408 DOI: 10.1007/978-94-024-1612-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sponge is one of the oldest multicellular invertebrates in the world. Marine sponges represent one of the extant metazoans of 700–800 million years. They are classified in four major classes: Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha. Among them, three genera, namely, Haliclona, Petrosia, and Discodemia have been identified to be the richest source of biologically active compounds. So far, 15,000 species have been described, and among them, more than 6000 species are found in marine and freshwater systems throughout tropical, temperate, and polar regions. More than 5000 different compounds have been isolated and structurally characterized to date, contributing to about 30% of all marine natural products. The chemical diversity of sponge products is high with compounds classified as alkaloids, terpenoids, peptides, polyketides, steroids, and macrolides, which integrate a wide range of biological activities, including antibacterial, anticancer, antifungal, anti-HIV, anti-inflammatory, and antimalarial. There is an open debate whether all natural products isolated from sponges are produced by sponges or are in fact derived from microorganisms that are inhaled though filter-feeding or that live within the sponges. Apart from their origin and chemoecological functions, sponge-derived metabolites are also of considerable interest in drug development. Therefore, development of recombinant microorganisms engineered for efficient production of sponge-derived products is a promising strategy that deserves further attention in future investigations in order to address the limitations regarding sustainable supply of marine drugs.
Collapse
Affiliation(s)
- Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Background: Breast cancer is the second leading cause of death in women. Alternative medicine with high efficacy is needed for breast cancer treatments, for example induction of apoptosis using natural products. It has been found that many natural apoptosis-inducing compounds are isolated from marine sponge. The objective of this study is to analyze the ability of extracts of the sponge Ancorina sp. to induce apoptosis on human breast cancer T47D cell line and find out its mechanism. Methods: T47D cells were treated with crude extracts of methanol, dichloromethane:methanol (1:1) and dichloromethane Ancorina sp. for 24 h, and doxorubicin was used as a positive control. Methods used for this study were MTT assay to examine cell viability and determine IC 50 of the three extracts, while the percentage of apoptosis and caspase-3 were investigated by flow cytometry. Results: IC 50 values of methanol, dichloromethane:methanol (1:1), and dichloromethane extract were 84.25, 121.45, and 99.85μg/mL respectively. The percentages of apoptotic cells after treatment with methanol, dichloromethane:methanol (1:1), and dichloromethane extracts were 88.68, 27.54 and 53.63% respectively, whereas the percentage of caspase-3 was 77.87, 12.66 and 12.97%, respectively. Conclusions: These results revealed that all extracts of Ancorina sp. have strong or moderate cytotoxicity and have the ability to induce apoptosis on T47D human breast cancer cell line. However, methanol crude extract has high efficacy to induce apoptosis through caspase-3 activation compared to the other extracts. Hence methanol extract warrants further investigation as a natural medicine for human breast cancer.
Collapse
|
15
|
Tunjung WAS, Sayekti PR. Apoptosis induction on human breast cancer T47D cell line by extracts of Ancorina sp. F1000Res 2019; 8:168. [PMID: 31031969 PMCID: PMC6468741 DOI: 10.12688/f1000research.17584.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 10/12/2023] Open
Abstract
Background: Breast cancer is the second leading cause of death in women. Alternative medicine with high efficacy is needed for breast cancer treatments, for example induction of apoptosis using natural products. It has been found that many natural apoptosis-inducing compounds are isolated from marine sponge. The objective of this study is to analyze the ability of extracts of the sponge Ancorina sp. to induce apoptosis on human breast cancer T47D cell line and find out its mechanism. Methods: T47D cells were treated with crude extracts of methanol, dichloromethane:methanol (1:1) and dichloromethane Ancorina sp. for 24 h, and doxorubicin was used as a positive control. Methods used for this study were MTT assay to examine cell viability and determine IC 50 of the three extracts, while the percentage of apoptosis and caspase-3 were investigated by flow cytometry. Results: IC 50 values of methanol, dichloromethane:methanol (1:1), and dichloromethane extract were 84.25, 121.45, and 99.85μg/mL respectively. The percentages of apoptotic cells after treatment with methanol, dichloromethane:methanol (1:1), and dichloromethane extracts were 88.68, 27.54 and 53.63% respectively, whereas the percentage of caspase-3 was 77.87, 12.66 and 12.97%, respectively. Conclusions: These results revealed that all extracts of Ancorina sp. have strong or moderate cytotoxicity and have the ability to induce apoptosis on T47D human breast cancer cell line. However, methanol crude extract has high efficacy to induce apoptosis through caspase-3 activation compared to the other extracts. Hence methanol extract warrants further investigation as a natural medicine for human breast cancer.
Collapse
|
16
|
Shaala LA, Asfour HZ, Youssef DTA, Żółtowska-Aksamitowska S, Wysokowski M, Tsurkan M, Galli R, Meissner H, Petrenko I, Tabachnick K, Ivanenko VN, Bechmann N, Muzychka LV, Smolii OB, Martinović R, Joseph Y, Jesionowski T, Ehrlich H. New Source of 3D Chitin Scaffolds: The Red Sea Demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida). Mar Drugs 2019; 17:E92. [PMID: 30717221 PMCID: PMC6410331 DOI: 10.3390/md17020092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/10/2023] Open
Abstract
The bioactive bromotyrosine-derived alkaloids and unique morphologically-defined fibrous skeleton of chitin origin have been found recently in marine demosponges of the order Verongiida. The sophisticated three-dimensional (3D) structure of skeletal chitinous scaffolds supported their use in biomedicine, tissue engineering as well as in diverse modern technologies. The goal of this study was the screening of new species of the order Verongiida to find another renewable source of naturally prefabricated 3D chitinous scaffolds. Special attention was paid to demosponge species, which could be farmed on large scale using marine aquaculture methods. In this study, the demosponge Pseudoceratina arabica collected in the coastal waters of the Egyptian Red Sea was examined as a potential source of chitin for the first time. Various bioanalytical tools including scanning electron microscopy (SEM), fluorescence microscopy, FTIR analysis, Calcofluor white staining, electrospray ionization mass spectrometry (ESI-MS), as well as a chitinase digestion assay were successfully used to confirm the discovery of α-chitin within the skeleton of P. arabica. The current finding should make an important contribution to the field of application of this verongiid sponge as a novel renewable source of biologically-active metabolites and chitin, which are important for development of the blue biotechnology especially in marine oriented biomedicine.
Collapse
Affiliation(s)
- Lamiaa A Shaala
- Natural Products Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt.
| | - Hani Z Asfour
- Department of Medical Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Diaa T A Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany.
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany.
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Konstantin Tabachnick
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden 01307, Germany.
| | - Lyubov V Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kiev 02094, Ukraine.
| | - Oleg B Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kiev 02094, Ukraine.
| | - Rajko Martinović
- Institute of Marine Biology, University of Montenegro, Kotor 85330, Montenegro.
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60965, Poland.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie-Freiberg, Freiberg 09599, Germany.
| |
Collapse
|
17
|
Wooster MK, Voigt O, Erpenbeck D, Wörheide G, Berumen ML. Sponges of the Red Sea. CORAL REEFS OF THE RED SEA 2019. [DOI: 10.1007/978-3-030-05802-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
18
|
Rahelivao MP, Lübken T, Gruner M, Kataeva O, Ralambondrahety R, Andriamanantoanina H, Checinski MP, Bauer I, Knölker HJ. Isolation and structure elucidation of natural products of three soft corals and a sponge from the coast of Madagascar. Org Biomol Chem 2018; 15:2593-2608. [PMID: 28267183 DOI: 10.1039/c7ob00191f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated the three soft corals Sarcophyton stellatum, Capnella fungiformis and Lobophytum crassum and the sponge Pseudoceratina arabica, which have been collected at the coast of Madagascar. In addition to previously known marine natural products, S. stellatum provided the new (+)-enantiomer of the cembranoid (1E,3E,11E)-7,8-epoxycembra-1,3,11,15-tetraene (2). Capnella fungiformis afforded three new natural products, ethyl 5-[(1E,5Z)-2,6-dimethylocta-1,5,7-trienyl]furan-3-carboxylate (6), ethyl 5-[(1E,5E)-2,6-dimethylocta-1,5,7-trienyl]furan-3-carboxylate (7) and the diepoxyguaiane sesquiterpene oxyfungiformin (9a). The extracts of all three soft corals exhibited moderate activities against the malarial parasite Plasmodium falciparum. Extracts of the sponge Pseudoceratina arabica proved to be very active against a series of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Tilo Lübken
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany.
| | - Margit Gruner
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany.
| | - Olga Kataeva
- A. M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | | | | | | | - Ingmar Bauer
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany.
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany.
| |
Collapse
|
19
|
Youssef DTA, Alahdal AM. Cytotoxic and Antimicrobial Compounds from the Marine-Derived Fungus, Penicillium Species. Molecules 2018; 23:E394. [PMID: 29439550 PMCID: PMC6017105 DOI: 10.3390/molecules23020394] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/22/2022] Open
Abstract
The organic extract of liquid cultures of the marine-derived Penicillium sp. was investigated. Fractionation of the extracts of the fungus led to the purification and identification of two new compounds, penicillatides A (1) and B (2), together with the previously reported cyclo(R-Pro-S-Phe) (3) and cyclo(R-Pro-R-Phe) (4). The structures of compounds 1-4 were assigned by extensive interpretation of their NMR and high-resolution mass spectrometry (HRMS). The antiproliferative and cytotoxic activities of the compounds against three human cancer cell lines as well as their antimicrobial activity against several pathogens were evaluated. Compounds 2-4 displayed variable cytotoxic and antimicrobial activities.
Collapse
Affiliation(s)
- Diaa T A Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Abdulrahman M Alahdal
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
20
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
21
|
Mioso R, Marante FJT, Bezerra RDS, Borges FVP, Santos BVDO, Laguna IHBD. Cytotoxic Compounds Derived from Marine Sponges. A Review (2010-2012). Molecules 2017; 22:E208. [PMID: 28134844 PMCID: PMC6155849 DOI: 10.3390/molecules22020208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Abstract: This extensive review covers research published between 2010 and 2012 regarding new compounds derived from marine sponges, including 62 species from 60 genera belonging to 33 families and 13 orders of the Demospongia class (Porifera). The emphasis is on the cytotoxic activity that bioactive metabolites from sponges may have on cancer cell lines. At least 197 novel chemical structures from 337 compounds isolated have been found to support this work. Details on the source and taxonomy of the sponges, their geographical occurrence, and a range of chemical structures are presented. The compounds discovered from the reviewed marine sponges fall into mainly four chemical classes: terpenoids (41.9%), alkaloids (26.2%), macrolides (8.9%) and peptides (6.3%) which, along with polyketides, sterols, and others show a range of biological activities. The key sponge orders studied in the reviewed research were Dictyoceratida, Haplosclerida, Tetractinellida, Poecilosclerida, and Agelasida. Petrosia, Haliclona (Haplosclerida), Rhabdastrella (Tetractinellida), Coscinoderma and Hyppospongia (Dictyioceratida), were found to be the most promising genera because of their capacity for producing new bioactive compounds. Several of the new compounds and their synthetic analogues have shown in vitro cytotoxic and pro-apoptotic activities against various tumor/cancer cell lines, and some of them will undergo further in vivo evaluation.
Collapse
Affiliation(s)
- Roberto Mioso
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Francisco J Toledo Marante
- Department of Chemistry, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain.
| | - Ranilson de Souza Bezerra
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Flávio Valadares Pereira Borges
- Post-Graduation Program in Natural Products and Synthetic Bioactives, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| | - Bárbara V de Oliveira Santos
- Post-Graduation Program in Development and Technological Innovation in Medicines, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Paraíba, Brazil.
| | | |
Collapse
|
22
|
Cytotoxic Compounds from the Saudi Red Sea Sponge Xestospongia testudinaria. Mar Drugs 2016; 14:md14050082. [PMID: 27128926 PMCID: PMC4882556 DOI: 10.3390/md14050082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 11/17/2022] Open
Abstract
Bioassay-guided fractionation of the organic extract of the Red Sea sponge Xestospongia testudinaria led to the isolation of 13 compounds including two new sterol esters, xestosterol palmitate (2) and xestosterol ester of l6′-bromo-(7′E,11′E,l5′E)-hexadeca-7′,11′,l5′-triene-5′,13′-diynoic acid (4), together with eleven known compounds: xestosterol (1), xestosterol ester of 18′-bromooctadeca-7′E,9′E-diene-7′,15′-diynoic acid (3), and the brominated acetylenic fatty acid derivatives, (5E,11E,15E,19E)-20-bromoeicosa-5,11,15,19-tetraene-9,17-diynoic acid (5), 18,18-dibromo-(9E)-octadeca-9,17-diene-5,7-diynoic acid (6), 18-bromooctadeca-(9E,17E)-diene-7,15-diynoic acid (7), 18-bromooctadeca-(9E,13E,17E)-triene-7,15-diynoic acid (8), l6-bromo (7E,11E,l5E)hexadeca-7,11,l5-triene-5,13-diynoic acid (9), 2-methylmaleimide-5-oxime (10), maleimide-5-oxime (11), tetillapyrone (12), and nortetillapyrone (13). The chemical structures of the isolated compounds were accomplished using one- and two-dimensional NMR, infrared and high-resolution electron impact mass spectroscopy (1D, 2D NMR, IR and HREIMS), and by comparison with the data of the known compounds. The total alcoholic and n-hexane extracts showed remarkable cytotoxic activity against human cervical cancer (HeLa), human hepatocellular carcinoma (HepG-2), and human medulloblastoma (Daoy) cancer cell lines. Interestingly, the dibrominated C18-acetylenic fatty acid (6) exhibited the most potent growth inhibitory activity against these cancer cell lines followed by Compounds 7 and 9. Apparently, the dibromination of the terminal olefinic moiety has an enhanced effect on the cytotoxic activity.
Collapse
|