1
|
Collins MD, Scott WJ. Thalidomide-induced limb malformations: an update and reevaluation. Arch Toxicol 2025; 99:1643-1747. [PMID: 40198353 DOI: 10.1007/s00204-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 04/10/2025]
Abstract
Historically, thalidomide-induced congenital malformations have served as an important example of the enhanced susceptibility of developing embryos to chemical perturbation. The compound produced a wide variety of congenital malformations in humans, which were initially detected by an association with a relatively rare limb defect labeled phocomelia. Although true phocomelia in the most severe form is a transverse defect with intercalary absence of limb regions, it is proposed that thalidomide produces a longitudinal limb phenotype in humans under usual circumstances that can become transverse in severe cases with a preferential sensitivity of forelimb over hindlimb, preaxial over postaxial, and left more impacted than the corresponding non-autopod limb bones on the right. The thalidomide-induced limb phenotype in humans is described and followed by a hierarchical comparison with various laboratory animal species. Mechanistic studies have been hampered by the fact that only non-human primates and rabbits have malformations that are anatomically similar to humans. Included in this review are unpublished data on limb malformations produced by thalidomide in rhesus monkeys from experiments performed more than 50 years ago. The critical period in gestation for the induction of phocomelia may initiate prior to the development of the embryonic limb bud, which contrasts with other chemical and physical agents that are known to produce this phenotype. The importance of toxicokinetic parameters is reviewed including dose, enantiomers, absorption, distribution, and both non-enzymatic and enzymatic biotransformations. The limb embryopathy mechanism that provides a partial explanation of the limb phenotype is that cereblon binds to thalidomide creating a protein complex that ubiquitinates protein substrates (CRL4CRBN) that are not targets for the complex in the absence of the thalidomide. One of these neosubstrates is SALL4 which when mutated causes a syndrome that phenocopies aspects of thalidomide embryopathy. Other candidate neosubstrates for the complex that have been found in non-human species may contribute to an understanding of the limb defect including PLZF, p63, and various zinc finger transcription factors. It is proposed that it is important to consider the species-specificity of the compound when considering potential mechanistic pathways and that some of the more traditional mechanisms for explaining the embryopathy, such as anti-angiogenesis and redox perturbation, may contribute to a full understanding of this teratogen.
Collapse
Affiliation(s)
- Michael D Collins
- Department of Environmental Health Sciences and Molecular Toxicology Interdisciplinary Program, UCLA School of Public Health, CHS 46-078, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - William J Scott
- Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
2
|
Bailey HJ, Eisert J, Kazi R, Gerhartz J, Pieńkowska DE, Dressel I, Vollrath J, Kondratov I, Matviyuk T, Tolmachova N, Shah VJ, Giuliani G, Mosler T, Geiger TM, Esteves AM, Santos SP, Sousa RL, Bandeiras TM, Leibrock EM, Bauer U, Leuthner B, Langer JD, Wegener AA, Nowak RP, Sorrell FJ, Dikic I. An engineered cereblon optimized for high-throughput screening and molecular glue discovery. Cell Chem Biol 2025; 32:363-376.e10. [PMID: 39610248 DOI: 10.1016/j.chembiol.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
The majority of clinical degraders utilize an immunomodulatory imide drug (IMiD)-based derivative that directs their target to the E3 ligase receptor cereblon (CRBN); however, identification of IMiD molecular glue substrates has remained underexplored. To tackle this, we design human CRBN constructs, which retain all features for ternary complex formation, while allowing generation of homogenous and cost-efficient expression in E. coli. Extensive profiling of the construct shows it to be the "best of both worlds" in terms of binding activity and ease of production. We next designed the "Enamine focused IMiD library" and demonstrated applicability of the construct to high-throughput screening, identifying binders with high potency, ligand efficiency, and specificity. Finally, we adapt our construct for proof of principle glue screening approaches enabling IMiD cellular interactome determination. Coupled with our IMiD binding landscape the methods described here should serve as valuable tools to assist discovery of next generation CRBN glues.
Collapse
Affiliation(s)
- Henry J Bailey
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany; Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60439 Frankfurt am Main, Germany
| | - Jonathan Eisert
- Merck Healthcare KGaA, Discovery and Development Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Rubina Kazi
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Jan Gerhartz
- Institute of Structural Biology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Dominika Ewa Pieńkowska
- Institute of Structural Biology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Ina Dressel
- Institute of Structural Biology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Joshua Vollrath
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany; Max Planck Institute of Biophysics, IMPRS on Cellular Biophysics, Max-von-Laue-Strasse 3, 60439 Frankfurt am Main, Germany; Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60439 Frankfurt am Main, Germany
| | - Ivan Kondratov
- Enamine Ltd., Winston Churchill Street 78, 02094 Kyiv, Ukraine; Enamine Germany GmbH, Industriepark Hoechst, G837, 65926 Frankfurt am Main, Germany; V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Akademik Kukhar Street 1, 02094 Kyiv, Ukraine
| | | | | | - Varun Jayeshkumar Shah
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Giulio Giuliani
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Thorsten Mosler
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Thomas M Geiger
- Institute of Structural Biology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Ana M Esteves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Sandra P Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Raquel L Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Eva-Maria Leibrock
- Merck Healthcare KGaA, Discovery and Development Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Ulrike Bauer
- Merck Healthcare KGaA, Discovery and Development Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Birgitta Leuthner
- Merck Healthcare KGaA, Discovery and Development Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Julian D Langer
- Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60439 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60439 Frankfurt am Main, Germany
| | - Ansgar A Wegener
- Merck Healthcare KGaA, Discovery and Development Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Radosław P Nowak
- Institute of Structural Biology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Fiona J Sorrell
- Merck Healthcare KGaA, Discovery and Development Technologies, Frankfurter Straße 250, 64293 Darmstadt, Germany.
| | - Ivan Dikic
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany; Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60439 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Holanda VN, Lima EMDA, da Silva WV, Maia RT, Medeiros RDL, Ghosh A, Lima VLDM, de Figueiredo RCBQ. Identification of 1,2,3-triazole-phthalimide derivatives as potential drugs against COVID-19: a virtual screening, docking and molecular dynamic study. J Biomol Struct Dyn 2022; 40:5462-5480. [PMID: 33459182 PMCID: PMC7832388 DOI: 10.1080/07391102.2020.1871073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/28/2020] [Indexed: 01/07/2023]
Abstract
In this work we aimed to perform an in silico predictive screening, docking and molecular dynamic study to identify 1,2,3-triazole-phthalimide derivatives as drug candidates against SARS-CoV-2. The in silico prediction of pharmacokinetic and toxicological properties of hundred one 1,2,3-triazole-phtalimide derivatives, obtained from SciFinder® library, were investigated. Compounds that did not show good gastrointestinal absorption, violated the Lipinski's rules, proved to be positive for the AMES test, and showed to be hepatotoxic or immunotoxic in our ADMET analysis, were filtered out of our study. The hit compounds were further subjected to molecular docking on SARS-CoV-2 target proteins. The ADMET analysis revealed that 43 derivatives violated the Lipinski's rules and 51 other compounds showed to be positive for the toxicity test. Seven 1,2,3-triazole-phthalimide derivatives (A7, A8, B05, E35, E38, E39, and E40) were selected for molecular docking and MFCC-ab initio analysis. The results of molecular docking pointed the derivative E40 as a promising compound interacting with multiple target proteins of SARS-CoV-2. The complex E40-Mpro was found to have minimum binding energy of -10.26 kcal/mol and a general energy balance, calculated by the quantum mechanical analysis, of -8.63 eV. MD simulation and MMGBSA calculations confirmed that the derivatives E38 and E40 have high binding energies of -63.47 ± 3 and -63.31 ± 7 kcal/mol against SARS-CoV-2 main protease. In addition, the derivative E40 exhibited excellent interaction values and inhibitory potential against SAR-Cov-2 main protease and viral nucleocapsid proteins, suggesting this derivative as a potent antiviral for the treatment and/or prophylaxis of COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vanderlan Nogueira Holanda
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Instituto Aggeu Magalhães – IAM/FIOCRUZ-PE, Recife, Pernambuco, Brazil
| | - Elton Marlon de Araújo Lima
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Instituto Aggeu Magalhães – IAM/FIOCRUZ-PE, Recife, Pernambuco, Brazil
- Laboratório de Polímeros Não-Convencionais, Departamento de Física, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Welson Vicente da Silva
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Instituto Aggeu Magalhães – IAM/FIOCRUZ-PE, Recife, Pernambuco, Brazil
| | - Rafael Trindade Maia
- Centro de Desenvolvimento Sustentável do Semiárido, Universidade Federal de Campina Grande, Sumé, Paraíba, Brazil
| | | | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídios e Aplicação de Biomoléculas em Doenças Prevalentes e Negligenciadas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Regina Celia Bressan Queiroz de Figueiredo
- Laboratório de Biologia Celular de Patógenos, Instituto Aggeu Magalhães, Departamento de Microbiologia, Instituto Aggeu Magalhães – IAM/FIOCRUZ-PE, Recife, Pernambuco, Brazil
| |
Collapse
|
4
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
7
|
Wurz RP, Dellamaggiore K, Dou H, Javier N, Lo MC, McCarter JD, Mohl D, Sastri C, Lipford JR, Cee VJ. A "Click Chemistry Platform" for the Rapid Synthesis of Bispecific Molecules for Inducing Protein Degradation. J Med Chem 2018; 61:453-461. [PMID: 28378579 DOI: 10.1021/acs.jmedchem.6b01781] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) are bispecific molecules containing a target protein binder and an ubiquitin ligase binder connected by a linker. By recruiting an ubiquitin ligase to a target protein, PROTACs promote ubiquitination and proteasomal degradation of the target protein. The generation of effective PROTACs depends on the nature of the protein/ligase ligand pair, linkage site, linker length, and linker composition, all of which have been difficult to address in a systematic way. Herein, we describe a "click chemistry" approach for the synthesis of PROTACs. We demonstrate the utility of this approach with the bromodomain and extraterminal domain-4 (BRD4) ligand JQ-1 (3) and ligase binders targeting cereblon (CRBN) and Von Hippel-Lindau (VHL) proteins. An AlphaScreen proximity assay was used to determine the ability of PROTACs to form the ternary ligase-PROTAC-target protein complex and a MSD assay to measure cellular degradation of the target protein promoted by PROTACs.
Collapse
Affiliation(s)
| | | | - Hannah Dou
- Department of Therapeutic Discovery-Discovery Technologies, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Noelle Javier
- Department of Therapeutic Discovery-Discovery Technologies, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Mei-Chu Lo
- Department of Therapeutic Discovery-Discovery Technologies, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | | | | | | | | | | |
Collapse
|