1
|
Gurke J, Carnicer-Lombarte A, Naegele TE, Hansen AK, Malliaras GG. In vivo photopharmacological inhibition of hippocampal activity via multimodal probes - perspective and opening steps on experimental and computational challenges. J Mater Chem B 2024; 12:9894-9904. [PMID: 39189156 PMCID: PMC11348833 DOI: 10.1039/d4tb01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Neurological conditions such as epilepsy can have a significant impact on people's lives. Here, we discuss a new perspective for the study/treatment of these conditions using photopharmacology. A multimodal, intracranial implant that incorporates fluidic channels for localised drug delivery, electrodes for recording and stimulation, and a light source for photoswitching is used for in vivo administration and deactivation of a photoresponsive AMPA antagonist. We review current advancements in the relevant disciplines and show experimentally that the inhibition of seizure-like events induced in the hippocampus by electrical stimulation can be altered upon switching the drug with light. We discuss the interconnection of the drug's photopharmacological properties with the design of the device by modelling light penetration into the rat brain with Monte Carlo simulations. This work delivers a new perspective, including initial experimental and computational efforts on in vivo photopharmacology to understand and eventually treat neurological conditions.
Collapse
Affiliation(s)
- Johannes Gurke
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
- Fraunhofer Institute of Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | | | - Tobias E Naegele
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| | - Anders K Hansen
- Technical University of Denmark, DTU Fotonik, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - George G Malliaras
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| |
Collapse
|
2
|
Geoffroy C, Berraud-Pache R, Chéron N, McCort-Tranchepain I, Doria J, Paoletti P, Mony L. Reversible Control of Native GluN2B-Containing NMDA Receptors with Visible Light. ACS Chem Neurosci 2024; 15:3321-3343. [PMID: 39242213 PMCID: PMC11413854 DOI: 10.1021/acschemneuro.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/09/2024] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels playing a central role in synaptic transmission and plasticity. NMDAR dysregulation is linked to various neuropsychiatric disorders. This is particularly true for GluN2B-containing NMDARs (GluN2B-NMDARs), which have major pro-cognitive, but also pro-excitotoxic roles, although their exact involvement in these processes remains debated. Traditional GluN2B-selective antagonists suffer from slow and irreversible effects, limiting their use in native tissues. We therefore developed OptoNAM-3, a photoswitchable negative allosteric modulator selective for GluN2B-NMDARs. OptoNAM-3 provided light-induced reversible inhibition of GluN2B-NMDAR activity with precise temporal control both in vitro and in vivo on the behavior of freely moving Xenopus tadpoles. When bound to GluN2B-NMDARs, OptoNAM-3 displayed remarkable red-shifting of its photoswitching properties allowing the use of blue light instead of UV light to turn-off its activity, which we attributed to geometric constraints imposed by the binding site onto the azobenzene moiety of the ligand. This study therefore highlights the importance of the binding site in shaping the photochemical properties of azobenzene-based photoswitches. In addition, by enabling selective, fast, and reversible photocontrol of native GluN2B-NMDARs with in vivo compatible photochemical properties (visible light), OptoNAM-3 should be a useful tool for the investigation of the GluN2B-NMDAR physiology in native tissues.
Collapse
Affiliation(s)
- Chloé Geoffroy
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| | - Romain Berraud-Pache
- Laboratoire
d’Archéologie Moléculaire et Structurale (LAMS),
CNRS UMR 8220, Sorbonne Université, Paris 75005, France
| | - Nicolas Chéron
- PASTEUR,
Département de chimie, École normale supérieure,
CNRS, Université PSL, Sorbonne Université, Paris 75005, France
| | - Isabelle McCort-Tranchepain
- Laboratoire
de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Cité, Paris 75006, France
| | - Julia Doria
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| | - Pierre Paoletti
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| | - Laetitia Mony
- Institut
de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole
Normale Supérieure, CNRS, INSERM, Université PSL, Paris F-75005, France
| |
Collapse
|
3
|
Nikolaev M, Tikhonov D. Light-Sensitive Open Channel Block of Ionotropic Glutamate Receptors by Quaternary Ammonium Azobenzene Derivatives. Int J Mol Sci 2023; 24:13773. [PMID: 37762075 PMCID: PMC10530362 DOI: 10.3390/ijms241813773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamate ionotropic receptors mediate fast excitation processes in the central nervous system of vertebrates and play an important role in synaptic plasticity, learning, and memory. Here, we describe the action of two azobenene-containing compounds, AAQ (acrylamide-azobenzene-quaternary ammonium) and QAQ (quaternary ammonium-azobenzene-quaternary ammonium), which produced rapid and fully reversible light-dependent inhibition of glutamate ionotropic receptors. The compounds demonstrated voltage-dependent inhibition with only minor voltage-independent allosteric action. Calcium-impermeable AMPA receptors had weaker sensitivity compared to NMDA and calcium-permeable AMPA receptors. We further revealed that the compounds bound to NMDA and calcium-permeable AMPA receptors in different modes. They were able to enter the wide selectivity filter of AMPA receptors, and strong negative voltages caused permeation into the cytoplasm. The narrow selectivity filter of the NMDA receptors did not allow the molecules to bypass them; therefore, QAQ and AAQ bound to the shallow channel site and prevented channel closure by a foot-in-the-door mechanism. Computer simulations employing available AMPA and NMDA receptor structures readily reproduced the experimental findings, allowing for the structure-based design of more potent and selective drugs in the future. Thus, our work creates a framework for the development of light-sensitive blockers of calcium-permeable AMPA receptors, which are desirable tools for neuroscience.
Collapse
Affiliation(s)
- Maxim Nikolaev
- I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia;
| | | |
Collapse
|
4
|
Nikolaev MV, Strashkov DM, Ryazantsev MN, Tikhonov DB. Development of a quaternary ammonium photoswitchable antagonist of NMDA receptors. Eur J Pharmacol 2023; 938:175448. [PMID: 36470444 DOI: 10.1016/j.ejphar.2022.175448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
NMDA receptors play critical roles in numerous physiological and pathological processes in CNS that requires development of modulating ligands. In particular, photoswitchable compounds that selectively target NMDA receptors would be particularly useful for analysis of receptor contributions to various processes. Recently, we identified a light-dependent anti-NMDA activity of the azobenzene-containing quaternary ammonium compounds DENAQ (diethylamine-azobenzene-quaternary ammonium) and DMNAQ (dimethylamine-azobenzene-quaternary ammonium). Here, we developed a series of light-sensitive compounds based on the DENAQ structure, and studied their action on glutamate receptors in rat brain neurons using patch-clamp method. We found that the activities of the compounds and the influence of illumination strongly depended on the structural details, as even minor structural modifications greatly altered the activity and sensitivity to illumination. The compound PyrAQ (pyrrolidine-azobenzene-quaternary ammonium) was the most active and produced fast and fully reversible inhibition of NMDA receptors. The IC50 values under ambient and monochromic light conditions were 2 and 14 μM, respectively. The anti-AMPA activity was much weaker. The action of PyrAQ did not depend on NMDA receptor activity, agonist concentration, or membrane voltage, making it a useful tool for photopharmacological studies.
Collapse
Affiliation(s)
- Maxim V Nikolaev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 194223, Saint Petersburg, Russia.
| | - Daniil M Strashkov
- Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021, Saint Petersburg, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 198504, Saint Petersburg, Russia; Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251, Saint Petersburg, Russia
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, 194223, Saint Petersburg, Russia
| |
Collapse
|
5
|
Klimochkin YN, Ivleva EA. Synthesis and Chemical Transformations of N-Adamantylated Amides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
A green and effective route leading to antiradical agents with 3-arylmethyl 4-hydroxyquinolin-2(1H)-one moiety. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Maltan L, Najjar H, Tiffner A, Derler I. Deciphering Molecular Mechanisms and Intervening in Physiological and Pathophysiological Processes of Ca 2+ Signaling Mechanisms Using Optogenetic Tools. Cells 2021; 10:3340. [PMID: 34943850 PMCID: PMC8699489 DOI: 10.3390/cells10123340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium ion channels are involved in numerous biological functions such as lymphocyte activation, muscle contraction, neurotransmission, excitation, hormone secretion, gene expression, cell migration, memory, and aging. Therefore, their dysfunction can lead to a wide range of cellular abnormalities and, subsequently, to diseases. To date various conventional techniques have provided valuable insights into the roles of Ca2+ signaling. However, their limited spatiotemporal resolution and lack of reversibility pose significant obstacles in the detailed understanding of the structure-function relationship of ion channels. These drawbacks could be partially overcome by the use of optogenetics, which allows for the remote and well-defined manipulation of Ca2+-signaling. Here, we review the various optogenetic tools that have been used to achieve precise control over different Ca2+-permeable ion channels and receptors and associated downstream signaling cascades. We highlight the achievements of optogenetics as well as the still-open questions regarding the resolution of ion channel working mechanisms. In addition, we summarize the successes of optogenetics in manipulating many Ca2+-dependent biological processes both in vitro and in vivo. In summary, optogenetics has significantly advanced our understanding of Ca2+ signaling proteins and the used tools provide an essential basis for potential future therapeutic application.
Collapse
Affiliation(s)
| | | | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (L.M.); (H.N.); (A.T.)
| |
Collapse
|
8
|
Nikolaev MV, Strashkov DM, Ryazantsev MN, Tikhonov DB. Optical Control of N-Methyl-d-aspartate Receptors by Azobenzene Quaternary Ammonium Compounds. ACS Chem Neurosci 2021; 12:3347-3357. [PMID: 34469111 DOI: 10.1021/acschemneuro.1c00310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Azobenzene-based quaternary ammonium compounds provide optical control of ion channels and are considered promising agents for regulation of neuronal excitability and for restoration of the photosensitivity of retinal cells. However, the selectivity of the action of these compounds remains insufficiently known. We studied the action of DENAQ (diethylamine-azobenzene-quaternary ammonium) and DMNAQ (dimethylamine-azobenzene-quaternary ammonium) on ionotropic glutamate receptors in rat brain neurons. In the dark, both compounds applied extracellularly caused fast and reversible inhibition of NMDA (N-methyl-d-aspartate) receptor-mediated currents with IC50 values of 10 and 5 μM, respectively. Light-induced transformation of DENAQ and DMNAQ to their cis forms caused the IC50 values to increase to 30 and 27 μM, respectively. Detailed analysis of this action revealed a complex nature consisting of fast inhibitory and slower potentiating effects. The AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors were only weakly affected independently on illumination. We conclude that, in addition to their long-lasting intracellular action, which persists after washout, azobenzene-based quaternary ammonium compounds should affect glutamatergic transmission and synaptic plasticity during treatment. Our findings also extend the list of soluble photoswitchable inhibitors of NMDA receptors. While the site(s) and mechanisms of action are unclear, the effect of DENAQ demonstrates strong pH dependence. At acidic pH values, DENAQ potentiates both NMDA and AMPA receptors.
Collapse
Affiliation(s)
- Maxim V. Nikolaev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Thorez pr. 44, 194223 Saint Petersburg, Russia
| | - Daniil M. Strashkov
- Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 8/3 Khlopina Street, 194021 Saint Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, 198504 Saint Petersburg, Russia
| | - Denis B. Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Thorez pr. 44, 194223 Saint Petersburg, Russia
| |
Collapse
|
9
|
Two-Photon Excitation of Azobenzene Photoswitches for Synthetic Optogenetics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic optogenetics is an emerging optical technique that enables users to photocontrol molecules, proteins, and cells in vitro and in vivo. This is achieved by use of synthetic chromophores—denoted photoswitches—that undergo light-dependent changes (e.g., isomerization), which are meticulously designed to interact with unique cellular targets, notably proteins. Following light illumination, the changes adopted by photoswitches are harnessed to affect the function of nearby proteins. In most instances, photoswitches absorb visible light, wavelengths of poor tissue penetration, and excessive scatter. These shortcomings impede their use in vivo. To overcome these challenges, photoswitches of red-shifted absorbance have been developed. Notably, this shift in absorbance also increases their compatibility with two-photon excitation (2PE) methods. Here, we provide an overview of recent efforts devoted towards optimizing azobenzene-based photoswitches for 2PE and their current applications.
Collapse
|
10
|
Trads JB, Hüll K, Matsuura BS, Laprell L, Fehrentz T, Görldt N, Kozek KA, Weaver CD, Klöcker N, Barber DM, Trauner D. Sign Inversion in Photopharmacology: Incorporation of Cyclic Azobenzenes in Photoswitchable Potassium Channel Blockers and Openers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Julie B. Trads
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
- Center for DNA Nanotechnology Department of Chemistry and iNANO Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Katharina Hüll
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
- Department of Chemistry New York University 100 Washington Square East New York NY 10003-6699 USA
| | - Bryan S. Matsuura
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
- Department of Chemistry New York University 100 Washington Square East New York NY 10003-6699 USA
| | - Laura Laprell
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Timm Fehrentz
- Institute of Neural and Sensory Physiology, Medical Faculty University of Düsseldorf Düsseldorf Germany
| | - Nicole Görldt
- Institute of Neural and Sensory Physiology, Medical Faculty University of Düsseldorf Düsseldorf Germany
| | - Krystian A. Kozek
- Department of Pharmacology Vanderbilt University School of Medicine Nashville TN USA
| | - C. David Weaver
- Departments of Pharmacology and Chemistry Institute of Chemical Biology Vanderbilt University School of Medicine Nashville TN USA
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty University of Düsseldorf Düsseldorf Germany
| | - David M. Barber
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) Ludwig Maximilian University Munich Butenandtstr. 5–13 81377 Munich Germany
- Department of Chemistry New York University 100 Washington Square East New York NY 10003-6699 USA
| |
Collapse
|
11
|
Trads JB, Hüll K, Matsuura BS, Laprell L, Fehrentz T, Görldt N, Kozek KA, Weaver CD, Klöcker N, Barber DM, Trauner D. Sign Inversion in Photopharmacology: Incorporation of Cyclic Azobenzenes in Photoswitchable Potassium Channel Blockers and Openers. Angew Chem Int Ed Engl 2019; 58:15421-15428. [PMID: 31441199 DOI: 10.1002/anie.201905790] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/30/2019] [Indexed: 01/22/2023]
Abstract
Photopharmacology relies on ligands that change their pharmacodynamics upon photoisomerization. Many of these ligands are azobenzenes that are thermodynamically more stable in their elongated trans-configuration. Often, they are biologically active in this form and lose activity upon irradiation and photoisomerization to their cis-isomer. Recently, cyclic azobenzenes, so-called diazocines, have emerged, which are thermodynamically more stable in their bent cis-form. Incorporation of these switches into a variety of photopharmaceuticals could convert dark-active ligands into dark-inactive ligands, which is preferred in most biological applications. This "pharmacological sign-inversion" is demonstrated for a photochromic blocker of voltage-gated potassium channels, termed CAL, and a photochromic opener of G protein-coupled inwardly rectifying potassium (GIRK) channels, termed CLOGO.
Collapse
Affiliation(s)
- Julie B Trads
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.,Center for DNA Nanotechnology, Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Katharina Hüll
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.,Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003-6699, USA
| | - Bryan S Matsuura
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.,Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003-6699, USA
| | - Laura Laprell
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Timm Fehrentz
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Nicole Görldt
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Krystian A Kozek
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C David Weaver
- Departments of Pharmacology and Chemistry, Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - David M Barber
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig Maximilian University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.,Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003-6699, USA
| |
Collapse
|
12
|
Roles of Glutamate Receptors in Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20184391. [PMID: 31500132 PMCID: PMC6769661 DOI: 10.3390/ijms20184391] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder resulting from the degeneration of pigmented dopaminergic neurons in the substantia nigra pars compacta. It induces a series of functional modifications in the circuitry of the basal ganglia nuclei and leads to severe motor disturbances. The amino acid glutamate, as an excitatory neurotransmitter, plays a key role in the disruption of normal basal ganglia function regulated through the interaction with its receptor proteins. It has been proven that glutamate receptors participate in the modulation of neuronal excitability, transmitter release, and long-term synaptic plasticity, in addition to being related to the altered neurotransmission in Parkinson's disease. Therefore, they are considered new targets for improving the therapeutic strategies used to treat Parkinson's disease. In this review, we discuss the biological characteristics of these receptors and demonstrate the receptor-mediated neuroprotection in Parkinson's disease. Pharmacological manipulation of these receptors during anti-Parkinsonian processes in both experimental studies and clinical trials are also summarized.
Collapse
|
13
|
Ramírez-Rave S, Bernad-Bernad MJ, Gracia-Mora J, Yatsimirsky AK. Recent Advances in Application of Azobenzenes Grafted on Mesoporous Silica Nanoparticles in Controlled Drug Delivery Systems Using Light as External Stimulus. Mini Rev Med Chem 2019; 20:1001-1016. [PMID: 31483228 DOI: 10.2174/1389557519666190904145355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Accepted: 06/23/2019] [Indexed: 01/01/2023]
Abstract
Hybrid materials based on Mesoporous Silica Nanoparticles (MSN) have attracted plentiful attention due to the versatility of their chemistry, and the field of Drug Delivery Systems (DDS) is not an exception. MSN present desirable biocompatibility, high surface area values, and a well-studied surface reactivity for tailoring a vast diversity of chemical moieties. Particularly important for DDS applications is the use of external stimuli for drug release. In this context, light is an exceptional alternative due to its high degree of spatiotemporal precision and non-invasive character, and a large number of promising DDS based on photoswitchable properties of azobenzenes have been recently reported. This review covers the recent advances in design of DDS using light as an external stimulus mostly based on literature published within last years with an emphasis on usually overlooked underlying chemistry, photophysical properties, and supramolecular complexation of azobenzenes.
Collapse
Affiliation(s)
- Sandra Ramírez-Rave
- Departamento de Quimica Inorganica y Nuclear, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Jesús Gracia-Mora
- Departamento de Quimica Inorganica y Nuclear, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Anatoly K Yatsimirsky
- Departamento de Quimica Inorganica y Nuclear, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
14
|
Cabré G, Garrido-Charles A, González-Lafont À, Moormann W, Langbehn D, Egea D, Lluch JM, Herges R, Alibés R, Busqué F, Gorostiza P, Hernando J. Synthetic Photoswitchable Neurotransmitters Based on Bridged Azobenzenes. Org Lett 2019; 21:3780-3784. [DOI: 10.1021/acs.orglett.9b01222] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gisela Cabré
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| | - Aida Garrido-Charles
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), UAB, Cerdanyola del Vallès 08193, Spain
| | - Widukind Moormann
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Kiel 24118, Germany
| | - Daniel Langbehn
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Kiel 24118, Germany
| | - David Egea
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| | - José M. Lluch
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), UAB, Cerdanyola del Vallès 08193, Spain
| | - Rainer Herges
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Kiel 24118, Germany
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| | - Pau Gorostiza
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza 50018, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
15
|
Gonda J, Fazekašová S, Martinková M, Mitríková T, Roman D, Pilátová MB. Synthesis and biological activity of sphingosines with integrated azobenzene switches. Org Biomol Chem 2019; 17:3361-3373. [DOI: 10.1039/c9ob00137a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of photochromic active sphingosine analogues and their antiproliferative activity against seven human cancer cell lines is reported.
Collapse
Affiliation(s)
- Jozef Gonda
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Simona Fazekašová
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Miroslava Martinková
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Tatiana Mitríková
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Dávid Roman
- Chemical Biology of Microbe-Host Interactions
- Leibniz Institute for Natural Product Research and Infection Biology e.V
- Hans-Knöll-Institute (HKI)
- 07745 Jena
- Germany
| | - Martina Bago Pilátová
- Institute of Pharmacology
- Faculty of Medicine
- P.J. Šafárik University
- 040 66 Košice
- Slovak Republic
| |
Collapse
|
16
|
Affiliation(s)
- Katharina Hüll
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Johannes Morstein
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| |
Collapse
|
17
|
Affiliation(s)
- Diego Alejandro Rodríguez-Soacha
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University of Würzburg; Würzburg 97074 Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University of Würzburg; Würzburg 97074 Germany
| |
Collapse
|
18
|
Eisel B, Hartrampf FWW, Meier T, Trauner D. Reversible optical control of F 1 F o -ATP synthase using photoswitchable inhibitors. FEBS Lett 2018; 592:343-355. [PMID: 29292505 PMCID: PMC6175411 DOI: 10.1002/1873-3468.12958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
F1 Fo -ATP synthase is one of the best studied macromolecular machines in nature. It can be inhibited by a range of small molecules, which include the polyphenols, resveratrol and piceatannol. Here, we introduce Photoswitchable Inhibitors of ATP Synthase, termed PIAS, which were synthetically derived from these polyphenols. They can be used to reversibly control the enzymatic activity of purified yeast Yarrowia lipolyticaATP synthase by light. Our experiments indicate that the PIAS bind to the same site in the ATP synthase F1 complex as the polyphenols in their trans form, but they do not bind in their cis form. The PIAS could be useful tools for the optical precision control of ATP synthase in a variety of biochemical and biotechnological applications.
Collapse
Affiliation(s)
- Bianca Eisel
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Department of Life Sciences, Imperial College London, UK
| | | | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Department of Life Sciences, Imperial College London, UK
| | - Dirk Trauner
- Department of Chemistry, University of Munich, Germany.,Department of Chemistry, New York University, NY, USA
| |
Collapse
|