1
|
Wang B, Wang Z, You X, Li Z, Yang J. One-Step Construction of 2-Methylquinazolin-4(3 H)-ones Using Solid Calcium Carbide as an Alternative to Gaseous Acetylene. J Org Chem 2025; 90:385-393. [PMID: 39693393 DOI: 10.1021/acs.joc.4c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
2-Methylquinazolin-4(3H)-ones were efficiently constructed using solid calcium carbide as an alkyne source, 2-aminobenzamides or 2-aminobenzohydrazides as substrates, and p-tolylsulfonyl azide as a mediator through simultaneous formation of two C-N bonds in one step. The salient features of this protocol are the use of an inexpensive, abundant and easy-to-use alkyne source as a substitute for flammable and explosive gaseous acetylene, low-cost catalyst, wide substrate scope, satisfactory yield, and simple manipulation. This method can also be extended to gram scale.
Collapse
Affiliation(s)
- Botao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xinjie You
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jinhui Yang
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| |
Collapse
|
2
|
Chen S, Ji YS, Choi Y, Youn SW. One-Pot Three-Component Reaction for the Synthesis of 3,4-Dihydroquinazolines and Quinazolin-4(3 H)-ones. J Org Chem 2024; 89:6428-6443. [PMID: 38608000 DOI: 10.1021/acs.joc.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
A highly efficient and straightforward one-pot synthesis of diversely substituted 3,4-dihydroquinazolines and quinazolin-4(3H)-ones has been achieved through a domino three-component assembly reaction of arenediazonium salts, nitriles, and bifunctional aniline derivatives. This new protocol involves three C-N bond formations through the initial formation of N-arylnitrilium intermediates from arenediazonium salts and nitriles, followed by the sequential nucleophilic addition and cyclization reactions with bifunctional anilines, leading to such N-heterocyclic compounds of biological and pharmacological importance. This method offers a simple, expedient, and robust approach with the use of amenable and easily accessible reactants/reagents under metal-free mild conditions, good functional group tolerance, and high efficiency. The synthetic applications were also demonstrated by derivatization of the products obtained from these processes and syntheses of a diverse range of valuable polycyclic N-heterocycles.
Collapse
Affiliation(s)
- Shiwei Chen
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yeong Shin Ji
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yuri Choi
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
3
|
N2,N6-Bis(6-iodo-2-methyl-4-oxoquinazolin-3(4H)-yl)pyridine-2,6-dicarboxamide. MOLBANK 2022. [DOI: 10.3390/m1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A green chemistry method was applied in the synthesis of N2,N6-bis(6-iodo-2-methyl-4-oxoquinazolin-3(4H)-yl)pyridine-2,6-dicarboxamide. The desired compound was synthesized mechanochemically, using a choline chloride-based deep eutectic solvent as a catalyst. The synthesis took 20 min and the new compound was characterized using different spectral methods.
Collapse
|
4
|
Hong YC, Ye JL, Huang PQ. One-Pot Synthesis of α-Amino Bisphosphonates from Nitriles via Tf 2O/HC(OR) 3-Mediated Interrupted Ritter-Type Reaction. J Org Chem 2022; 87:9044-9055. [PMID: 35748643 DOI: 10.1021/acs.joc.2c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile synthesis of α-amino bisphosphonates has been achieved through one-pot interrupted Ritter-type reaction under mild conditions. The reactive Ritter intermediate nitrilium is in situ generated by treatment of nitrile with readily accessible Tf2O/HC(OR1)3, which is trapped by phosphite ester to deliver the desired product. This protocol is efficient, scalable, and well compatible with a broad scope of substrates. In addition, plentiful characteristic JP-C couplings including unusual five-bond long-range 5JP-C and 3JP-C across quaternary carbon and hetero (N) atoms were observed in 13C NMR spectra.
Collapse
Affiliation(s)
- Ya-Cheng Hong
- Department of Chemical Biology and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jian-Liang Ye
- Department of Chemical Biology and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemical Biology and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
5
|
One-pot synthesis of polysubstituted quinazolin-4(3H)-ones via sequential oxidative Ugi/Staudinger/aza-Wittig reactions starting from tertiary amines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Sun M, Yu YL, Zhao L, Ding MW. One-pot and divergent synthesis of furo[3,2-c]quinolines and quinazolin-4(3H)-ones via sequential isocyanide-based three-component/Staudinger/aza-Wittig reaction. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Viji M, Vishwanath M, Sim J, Park Y, Jung C, Lee S, Lee H, Lee K, Jung JK. α-Hydroxy acid as an aldehyde surrogate: metal-free synthesis of pyrrolo[1,2- a]quinoxalines, quinazolinones, and other N-heterocycles via decarboxylative oxidative annulation reaction. RSC Adv 2020; 10:37202-37208. [PMID: 35521290 PMCID: PMC9057147 DOI: 10.1039/d0ra07093a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
A metal-free and efficient procedure for the synthesis of pyrrolo[1,2-a]quinoxalines, quinazolinones, and indolo[1,2-a]quinoxaline has been developed. The key features of our method include the in situ generation of aldehyde from α-hydroxy acid in the presence of TBHP (tert-butyl hydrogen peroxide), and further condensation with various amines, followed by intramolecular cyclization and subsequent oxidation to afford the corresponding quinoxalines, quinazolinones derivatives in moderate to high yields.
Collapse
Affiliation(s)
- Mayavan Viji
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Manjunatha Vishwanath
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Jaeuk Sim
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Yunjeong Park
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Chanhyun Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Seohu Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Heesoon Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Kiho Lee
- College of Pharmacy, Korea University Sejong 30019 Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| |
Collapse
|
8
|
El-Sayed AA, Ismail MF, Amr AEGE, Naglah AM. Synthesis, Antiproliferative, and Antioxidant Evaluation of 2-Pentylquinazolin-4(3 H)-one(thione) Derivatives with DFT Study. Molecules 2019; 24:molecules24203787. [PMID: 31640238 PMCID: PMC6832655 DOI: 10.3390/molecules24203787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 11/17/2022] Open
Abstract
The current study was chiefly designed to examine the antiproliferative and antioxidant activities of some novel quinazolinone(thione) derivatives 6–14. The present work focused on two main points; firstly, comparing between quinazolinone and quinazolinthione derivatives. Whereas, antiproliferative (against two cell lines namely, HepG2 and MCF-7) and antioxidant (by two methods; ABTS and DPPH) activities of the investigated compounds, the best quinazolinthione derivatives were 6 and 14, which exhibited excellent potencies comparable to quinazolinone derivatives 5 and 9, respectively. Secondly, we compared the activity of four series of Schiff bases which included the quinazolinone moiety (11a–d). In addition, the antiproliferative and antioxidant activities of the compounds with various aryl aldehyde hydrazone derivatives (11a–d) analogs were studied. The compounds exhibited potency that increased with increasing electron donating group in p-position (OH > OMe > Cl) due to extended conjugated systems. Noteworthy, most of antiproliferative and antioxidant activities results for the tested compounds are consistent with the DFT calculations.
Collapse
Affiliation(s)
- Amira A El-Sayed
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Abbassia, Cairo 11566, Egypt.
| | - Mahmoud F Ismail
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Abbassia, Cairo 11566, Egypt.
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, Cairo, Dokki 12622, Egypt.
| | - Ahmed M Naglah
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
9
|
Mamedov VA, Mamedova VL, Voloshina AD, Kushatov TA, Syakaev VV, Latypov SK, Gubaidullin AT, Korshin DE, Buzyurova DN, Rizvanov IK, Synyashin OG. Facile synthesis of 2-carboxanilido-3-arylquinazolin-4-ones from N1-(2-carboxyphenyl)-N2-(aryl)oxalamides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|