1
|
Lewandowski D, Hreczycho G. Cobalt-Catalyzed Reduction of Aldehydes to Alcohols via the Hydroboration Reaction. Int J Mol Sci 2024; 25:7894. [PMID: 39063136 PMCID: PMC11487440 DOI: 10.3390/ijms25147894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
A method for the reduction of aldehydes with pinacolborane catalyzed by pincer cobalt complexes based on a triazine backbone is developed in this paper. The presented methodology allows for the transformation of several aldehydes bearing a wide range of electron-withdrawing and electron-donating groups under mild conditions. The presented procedure allows for the direct one-step hydrolysis of the obtained intermediates to the corresponding primary alcohols. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznan, Poland;
| |
Collapse
|
2
|
Mandal C, Joshi S, Das S, Mishra S, Mukherjee D. 2-Anilidomethylpyridine-Derived Three-Coordinate Zinc Hydride: The Journey Unveils Anilide Backbone's Reactive Nature. Inorg Chem 2024; 63:739-751. [PMID: 38127496 DOI: 10.1021/acs.inorgchem.3c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Low-coordinate heteroleptic zinc hydrides are catalytically important but rare and synthetically challenging. We herein report three-coordinate monomeric zinc hydride on a 2-anilidomethylpyridine framework (NNL). The synthetic success comes through systematically screening a few different routes from different precursors. During the process, the ligand's anilide backbone interestingly appears to be more reactive than Zn's terminal site to electrophilic Lewis and Brønsted acids. The proligand NNLH reacts with [Zn{N(SiMe3)2}2] and ZnEt2 to give [(NNL)ZnA] (A = N(SiMe3)2 (1), Et(2)). Both are inert to PhSiH3 and H2 but react with HBpin only through the internal Zn-Nanilide bond to give the borylated ligand NNLBpin (3). The reactions of 1 and 2 with Ph3EOH (E = C, Si) afford a series of divergent compounds like [(NNLH)Zn(OSiPh3)2] (4), [Zn3(OSiPh3)4Et2] (5), and [EtZn(OCPh3)] (6). But in all cases, it is invariably the Zn-Nanilide bond protonated by the -OH with equal or higher preference than the terminal Zn-N or Zn-C bonds. A DFT analysis rationalizes the origin of such a reactivity pattern. Realizing that an acid-free route might be the key, reacting [(NNL)Li] with ZnBr2 gives [(NNL)Zn(μ-Br)]2 (7), which on successively treating with KOSiPh3 and PhSiH3 gives the desired [(NNL)ZnH] (8) as a three-coordinate monomer with a terminal Zn-H bond. Estimating the ligand steric in 8 shows the openness in Zn's coordination sphere, a desired criterion for efficient catalysis. This and a positive influence of the pyridyl sidearm is reflected in 8's superior activity in hydroborating PhC(O)Me by HBpin in comparison to Jones' two-coordinate anilido zinc hydride.
Collapse
Affiliation(s)
- Chhotan Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sanjay Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
3
|
Han HJ, Park SY, Jeon SE, Kwak JS, Lee JH, Jaladi AK, Hwang H, An DK. Grignard Reagent-Catalyzed Hydroboration of Esters, Nitriles, and Imines. Molecules 2023; 28:7090. [PMID: 37894569 PMCID: PMC10609653 DOI: 10.3390/molecules28207090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The reduction in esters, nitriles, and imines requires harsh conditions (highly reactive reagents, high temperatures, and pressures) or complex metal-ligand catalytic systems. Catalysts comprising earth-abundant and less toxic elements are desirable from the perspective of green chemistry. In this study, we developed a green hydroboration protocol for the reduction in esters, nitriles, and imines at room temperature (25 °C) using pinacolborane as the reducing agent and a commercially available Grignard reagent as the catalyst. Screening of various alkyl magnesium halides revealed MeMgCl as the optimal catalyst for the reduction. The hydroboration and subsequent hydrolysis of various esters yielded corresponding alcohols over a short reaction time (~0.5 h). The hydroboration of nitriles and imines produced various primary and secondary amines in excellent yields. Chemoselective reduction and density functional theory calculations are also performed. The proposed green hydroboration protocol eliminates the requirements for complex ligand systems and elevated temperatures, providing an effective method for the reduction in esters, nitriles, and imines at room temperature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Duk Keun An
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; (H.J.H.); (S.Y.P.); (S.E.J.); (J.S.K.); (J.H.L.); (A.K.J.); (H.H.)
| |
Collapse
|
4
|
Ni C, Pang Z, Qiao Y, Guo P, Ma X, Yang Z. Organoaluminum derived from Schiff bases: Synthesis, characterization and catalytic performance in hydroboration. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Assembly of a 3D Cobalt(II) Supramolecular Framework and Its Applications in Hydrofunctionalization of Ketones and Aldehydes. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A ditopic nitrogen ligand (E)-N′-(pyridin-4-ylmethylene)isonicotinohydrazide (L) containing both divergent pyridyl coordination sites and a hydrogen-bonding hydrazide–hydrazone moiety was synthesized. The Co(NCS)2-mediated self-assembly of L has resulted in the synthesis of a novel 3-dimensional (3D) supramolecular framework (1) that features both coordination and hydrogen bonding interactions. X-ray structural analysis reveals the formation and coordination mode of 1 in the solid state. The rational utilization of coordination bonds and hydrogen bonding interactions is confirmed and responsible for constructing the 3D materials. Catalytic studies using 1 in the presence of an activator are performed for the hydroboration and hydrosilylation reactions of ketones and aldehydes, and the results are compared with previously reported cobalt-based polymeric catalysts.
Collapse
|
6
|
Abstract
The addition of a B-H bond to an unsaturated bond (polarized or unpolarized) is a powerful and atom-economic tool for the synthesis of organoboranes. In recent years, s-block organometallics have appeared as alternative catalysts to transition-metal complexes, which traditionally catalyze the hydroboration of unsaturated bonds. Because of the recent and rapid development in the field of hydroboration of unsaturated bonds catalyzed by alkali (Li, Na, K) and alkaline earth (Mg, Ca, Sr, Ba) metals, we provide a detailed and updated comprehensive review that covers the synthesis, reactivity, and application of s-block metal catalysts in the hydroboration of polarized as well as unsaturated carbon-carbon bonds. Moreover, we describe the main reaction mechanisms, providing valuable insight into the reactivity of the s-block metal catalysts. Finally, we compare these s-block metal complexes with other redox-neutral catalytic systems based on p-block metals including aluminum complexes and f-block metal complexes of lanthanides and early actinides. In this review, we aim to provide a comprehensive, authoritative, and critical assessment of the state of the art within this highly interesting research area.
Collapse
Affiliation(s)
- Marc Magre
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marcin Szewczyk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Kumar R, Bhasin K, Dhau JS, Singh A. Synthesis and characterization of 3-pyridylchalcogen compounds. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
9
|
Ankur, Kannan R, Chambenahalli R, Banerjee S, Yang Y, Maron L, Venugopal A. [(Me
6
TREN)MgOCHPh
2
][B(C
6
F
5
)
4
]: A Model Complex to Explore the Catalytic Activity of Magnesium Alkoxides in Ketone Hydroboration. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ankur
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Ramkumar Kannan
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Raju Chambenahalli
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Sumanta Banerjee
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| | - Yan Yang
- LPCNO, UMR 5215, INSA, UPS Université de Toulouse-CNRS 31000 Toulouse France
| | - Laurent Maron
- LPCNO, UMR 5215, INSA, UPS Université de Toulouse-CNRS 31000 Toulouse France
| | - Ajay Venugopal
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram 695551 India
| |
Collapse
|
10
|
Palladium(II)-catalyzed direct annulation of 2-chloronicotinaldehyde with 2-bromothiophenol via novel C(formyl)-C(aryl) coupling strategy. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04536-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Margeson MJ, Seeberger F, Kelly JA, Leitl J, Coburger P, Szlosek R, Müller C, Wolf R. Expedient Hydrofunctionalisation of Carbonyls and Imines Initiated by Phosphacyclohexadienyl Anions. ChemCatChem 2021. [DOI: 10.1002/cctc.202100651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Matthew J. Margeson
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Felix Seeberger
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - John A. Kelly
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Julia Leitl
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Peter Coburger
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Robert Szlosek
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | - Christian Müller
- Freie Universität Berlin Institut für Chemie und Biochemie Fabeckstr. 34/36 14195 Berlin Germany
| | - Robert Wolf
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| |
Collapse
|
12
|
Banerjee I, Panda TK. Recent developments in the reduction of unsaturated bonds by magnesium precursors. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Indrani Banerjee
- Department of Chemistry Indian Institute of Technology Hyderabad Sangareddy India
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad Sangareddy India
| |
Collapse
|
13
|
Nowicki M, Kuciński K, Hreczycho G, Hoffmann M. Catalytic and non-catalytic hydroboration of carbonyls: quantum-chemical studies. Org Biomol Chem 2021; 19:3004-3015. [PMID: 33885554 DOI: 10.1039/d1ob00037c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of hydroboranes across several unsaturated moieties is a universal synthetic tool for the reduction or functionalization of unsaturated moieties. Given the sustainable nature of this process, the development of more environmentally-benign approaches (main-group catalysis or uncatalysed approaches) for hydroboration has gained considerable recent momentum. The present paper examines both catalyst-free and KF-mediated hydroboration of carbonyl compounds with the use of quantum-chemical methods. The results of computations for several potential reaction pathways are juxtaposed with experiment-based calculations, which leads to stepwise mechanisms and energy profiles for the reactions of pinacolborane with benzaldehyde and acetophenone (in the presence of KF). For each step of these reactions, we provide an accurate description of the geometric and electronic structures of corresponding stationary points. Five different levels of theory are employed to select the most applicable theoretical approach and develop a computational protocol for further research. Upon selection of the best-performing methods, larger molecular systems are studied to explore possible more complex pathways at the M06-2X/6-311++G(2d,p) and ωB97XD/6-311++G(2d,p) levels of theory, which brings up multi-pathway, overlapping catalytic cycles. The mechanism of solvent-free, catalyst-free hydroboration of aldehydes is also revisited through the prism of the elaborated methodology, which leads to a whole new perspective on the pathways of this and similar reactions, with a multimolecular cascade of hydride transfers being more energetically favoured than a four-membered transition state.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | | | | | | |
Collapse
|
14
|
Wang Z, Zhang Z, Li S, Zhang X, Xia M, Xia T, Wang M. Formation mechanisms and characterisation of the typical polymers in melanoidins from vinegar, coffee and model experiments. Food Chem 2021; 355:129444. [PMID: 33780797 DOI: 10.1016/j.foodchem.2021.129444] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
Melanoidins, are of increasing interest for their potential biological activities. However, little knowledge is available on their structure. In the present study, vinegar, coffee and model melanoidins were degraded by NaBH4, and the resultant reaction products were characterised by chromatography, mass spectrometry and spectrometry methods to elucidate the mechanism of formation of melanoidin skeleton molecules. The study identified a typical polymer with a molecular weight (MW) interval of 74 Da, which was polymerised by aldol condensation and reduced by NaBH4, followed by intermolecular dehydration. MW of the theoretically derived typical polymers matched the detected polymers, validating the speculated pathway involved in the formation of melanoidins skeleton molecules. The study also revealed that melanoidins from different sources contain polymers with the same MW and different binding preferences, contributing to the heterogeneity of melanoidins. Overall, these findings indicated that the identified polymers could be used as potential candidate biomarkers for melanoidins.
Collapse
Affiliation(s)
- Zhisong Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; College of Public Health, Zunyi Medical University, Zunyi 563000, China
| | - Zhujun Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shaopeng Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xianglong Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|