1
|
Du X, Lu G, Zhang T, Wang C, Wang Y, Wan X. Nucleophilic Substitution of Tertiary Sulfonamides: Construction of Sulfonate Esters. Org Lett 2025; 27:2268-2273. [PMID: 40013949 DOI: 10.1021/acs.orglett.5c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Under the combined action of trichloroisocyanuric acid (TCCA) and triflic acid (TfOH), tertiary sulfonamides are efficiently activated, leading to the in situ generation of electrophilic sulfonamide salts. These electrophilic salts subsequently undergo nucleophilic substitution by alcohols, resulting in the formation of sulfonate esters under mild conditions. Other advantages of this method include the absence of transition-metal catalysts, broad substrate applicability, and high functional-group tolerance.
Collapse
Affiliation(s)
- Xiangshuai Du
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guodan Lu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Tao Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Congzhou Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yong Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate. Angew Chem Int Ed Engl 2024; 63:e202405057. [PMID: 38830180 DOI: 10.1002/anie.202405057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse
Affiliation(s)
- Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Catherine L Lyall
- Research Facilities, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Chiara Faverio
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
3
|
Swaby C, Taylor A, Greaney MF. An NHC-Catalyzed Desulfonylative Smiles Rearrangement of Pyrrole and Indole Carboxaldehydes. J Org Chem 2023; 88:12821-12825. [PMID: 37589318 PMCID: PMC10476196 DOI: 10.1021/acs.joc.3c01089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/18/2023]
Abstract
The use of catalysis methods to enable Smiles rearrangement opens up new substrate classes for arylation under mild conditions. Here, we describe an N-heterocyclic carbene (NHC) catalysis system that accesses indole and pyrrole aldehyde substrates in a desulfonylative Smiles process. The reaction proceeds under mild, transition-metal-free conditions and captures acyl anion reactivity for the synthesis of a diverse array of 2-aroyl indoles and pyrroles from readily available sulfonamide starting materials.
Collapse
Affiliation(s)
| | | | - Michael F. Greaney
- Dept. of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| |
Collapse
|
4
|
Sang JW, Du P, Xia D, Zhang Y, Wang J, Zhang WD. EnT-Mediated Amino-Sulfonylation of Alkenes with Bifunctional Sulfonamides: Access to β-Amino Sulfone Derivatives. Chemistry 2023; 29:e202301392. [PMID: 37218305 DOI: 10.1002/chem.202301392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
β-Amino sulfones are commonly found structural motifs in biologically active compounds. Herein, we report a direct photocatalyzed amino-sulfonylation reaction of alkenes for the efficicient production of important compounds by simple hydrolysis without the need for additional oxidants and reductants. In this transformation, the sulfonamides worked as bifunctional reagents, simultaneously generating sulfonyl radicals and N-centered radicals which were added to alkene in a highly atom-economical fashion with high regioselectivity and diastereoselectivity. This approach showed high functional group tolerance and compatibility, facilitating the late-stage modification of some bioactive alkenes and sulfonamide molecules, thereby expanding the biologically relevant chemical space. Scaling up this reaction led to an efficient green synthesis of apremilast, one of the best-selling pharmceuticals, demonstrating the synthetic utility of the applied method. Moreover, mechanistic investigations suggest that an energy transfer (EnT) process was in operation.
Collapse
Affiliation(s)
- Ji-Wei Sang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Peiyu Du
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Dingding Xia
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai, University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wei-Dong Zhang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai, University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| |
Collapse
|
5
|
Singh DK, Kumar R. Clauson-Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach. Beilstein J Org Chem 2023; 19:928-955. [PMID: 37404802 PMCID: PMC10315892 DOI: 10.3762/bjoc.19.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Pyrrole is an important aromatic heterocyclic scaffold found in many natural products and predominantly used in pharmaceuticals. Continuous efforts are being made to design and synthesize various pyrrole derivatives using different synthetic procedures. Among them, the Clauson-Kaas reaction is a very old and well-known method for synthesizing a large number of N-substituted pyrroles. In recent years, due to global warming and environmental concern, research laboratories and pharmaceutical industries around the world are searching for more environmentally friendly reaction conditions for synthesizing compounds. As a result, this review describes the use of various eco-friendly greener protocols to synthesize N-substituted pyrroles. This synthesis involves the reaction of various aliphatic/aromatic primary amines, and sulfonyl primary amines with 2,5-dimethoxytetrahydrofuran in the presence of numerous acid catalysts and transition metal catalysts. The goal of this review is to summarize the synthesis of various N-substituted pyrrole derivatives using a modified Clauson-Kaas reaction under diverse conventional and greener reaction conditions.
Collapse
Affiliation(s)
- Dileep Kumar Singh
- Department of Chemistry, Bipin Bihari College, Affiliated to Bundelkhand University, Jhansi-284001, Uttar Pradesh, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R. D. S. College, B. R. A. Bihar University, Muzaffarpur-842002, Bihar, India
| |
Collapse
|
6
|
Moskalik MY. Sulfonamides with Heterocyclic Periphery as Antiviral Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010051. [PMID: 36615245 PMCID: PMC9822084 DOI: 10.3390/molecules28010051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Sulfonamides are the basic motifs for a whole generation of drugs from a large group of antibiotics. Currently, research in the field of the new sulfonamide synthesis has received a "second wind", due to the increase in the synthetic capabilities of organic chemistry and the study of their medical and biological properties of a wide spectrum of biological activity. New reagents and new reactions make it possible to significantly increase the number of compounds with a sulfonamide fragment in combination with other important pharmacophore groups, such as, for example, a wide class of N-containing heterocycles. The result of these synthetic possibilities is the extension of the activity spectrum-along with antibacterial activity, many of them exhibit other types of biological activity. Antiviral activity is also observed in a wide range of sulfonamide derivatives. This review provides examples of the synthesis of sulfonamide compounds with antiviral properties that can be used to develop drugs against coxsackievirus B, enteroviruses, encephalomyocarditis viruses, adenoviruses, human parainfluenza viruses, Ebola virus, Marburg virus, SARS-CoV-2, HIV and others. Since over the past three years, viral infections have become a special problem for public health throughout the world, the development of new broad-spectrum antiviral drugs is an extremely important task for synthetic organic and medicinal chemistry. Sulfonamides can be both sources of nitrogen for building a nitrogen-containing heterocyclic core and the side chain substituents of a biologically active substance. The formation of the sulfonamide group is often achieved by the reaction of the N-nucleophilic center in the substrate molecule with the corresponding sulfonylchloride. Another approach involves the use of sulfonamides as the reagents for building a nitrogen-containing framework.
Collapse
Affiliation(s)
- Mikhail Yu Moskalik
- Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|