1
|
Zhang YH, Deng LH, Tan DX, Han FS. Catalytic Asymmetric Total Synthesis of (+)-Chamaecydin and (+)-Isochamaecydin and their Stereoisomers. Angew Chem Int Ed Engl 2025; 64:e202423944. [PMID: 39786342 DOI: 10.1002/anie.202423944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C30 terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed. The 6-6 ring fragment and the five-membered ring fragment were unified via a metal-halogen exchange/intermolecular addition reaction. Subsequently, the central 6-5 bicyclic ring system was constructed through a Michael/aldol cascade. The successful establishment of these strategic transformations allowed for an efficient and rapid construction of spiroannulated 6-6-6-5-5 pentacarbocyclic core via a convergent manner. Finally, the total syntheses of naturally occurring (+)-chamaecydin and (+)-isochamaecydin and their corresponding 1',5'-stereoisomers have been achieved divergently by appropriately orchestrating the reaction sequence including isopropyl incorporation, oxidation state adjustment, and carbonyl group-directed regio- and stereoselective cyclopropanation at a late stage.
Collapse
Affiliation(s)
- Yuan-He Zhang
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Le-Hua Deng
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dong-Xing Tan
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
| | - Fu-She Han
- Jilin Province Key Lab of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Cherni O, Carballares D, Siar EH, Abellanas-Perez P, de Andrades D, de Moraes Polizeli MDLT, Rocha-Martin J, Bahri S, Fernandez-Lafuente R. Tuning almond lipase features by the buffer used during immobilization: The apparent biocatalysts stability depends on the immobilization and inactivation buffers and the substrate utilized. J Biotechnol 2024; 391:72-80. [PMID: 38876311 DOI: 10.1016/j.jbiotec.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The lipase from Prunus dulcis almonds was inactivated under different conditions. At pH 5 and 9, enzyme stability remained similar under the different studied buffers. However, when the inactivation was performed at pH 7, there were some clear differences on enzyme stability depending on the buffer used. The enzyme was more stable in Gly than when Tris was employed for inactivation. Then, the enzyme was immobilized on methacrylate beads coated with octadecyl groups at pH 7 in the presence of Gly, Tris, phosphate and HEPES. Its activity was assayed versus triacetin and S-methyl mandelate. The biocatalyst prepared in phosphate was more active versus S-methyl mandelate, while the other ones were more active versus triacetin. The immobilized enzyme stability at pH 7 depends on the buffer used for enzyme immobilization. The buffer used in the inactivation and the substrate used determined the activity. For example, glycine was the buffer that promoted the lowest or the highest stabilities depending on the substrate used to quantify the activities.
Collapse
Affiliation(s)
- Oumaima Cherni
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; LMPB (LR16ES05), Department of Biology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, 2092, Tunis, Tunisia
| | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain
| | - El Hocine Siar
- Agri-food Engineering Laboratory (GENIAAL), Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Algeria
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain
| | - Sellema Bahri
- LMPB (LR16ES05), Department of Biology, Faculty of Sciences of Tunis, University of Tunis-El-Manar, 2092, Tunis, Tunisia.
| | | |
Collapse
|
3
|
Nakamura K, Matsushima Y. Enantioselective total syntheses of (S)-phosphonothrixin and unexpected cyclic derivative (S)-cyclic phosphonothrixin via enzymatic resolution. Biosci Biotechnol Biochem 2023; 87:138-147. [PMID: 36398742 DOI: 10.1093/bbb/zbac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
(S)-Phosphonothrixin is a phosphonate natural product produced by Saccharothrix sp. ST-888 that exhibits herbicidal activity. The previously reported asymmetric synthesis of (S)-phosphonothrixin is laborious and difficult to reproduce. In this study, we developed a scalable and concise enantioselective total synthesis of (S)-phosphonothrixin via two different synthetic routes by the enzymatic resolution of a known racemic epoxy alcohol. The second-generation synthesis was more efficient in terms of the overall yield (15%) and the number of steps (7) and afforded a unique cyclic phosphonate (phostone) as the product of the C-P bond formation reaction, which was converted to (S)-cyclic phosphonothrixin. Both (S)-phosphonothrixin and (S)-cyclic phosphonothrixin induced chlorosis in the plant Arabidopsis thaliana. However, (S)-cyclic phosphonothrixin exhibited lower activity than (S)-phosphonothrixin owing to its fixed conformation, as evidenced by a structure-activity relationship study. This study paves the way for the elucidation of the detailed mode of action of (S)-phosphonothrixin.
Collapse
Affiliation(s)
- Koki Nakamura
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Yoshitaka Matsushima
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
4
|
Jiang B, Xie R, Tang K. Resolution of (R, S)-4-BrMA Catalyzed by Pseudomonas cepacia Lipase in an Organic Phase. Catal Letters 2022. [DOI: 10.1007/s10562-022-04157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Enhanced MOF-immobilized lipase CAL-A with polyethylene glycol for efficient stereoselective hydrolysis of aromatic acid esters. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
β-Cyclodextrin-ionic liquid functionalized chiral composite membrane for enantioseparation of drugs and molecular simulation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Heiligenthal L, van der Loh M, Polack M, Blaha ME, Moschütz S, Keim A, Sträter N, Belder D. Analysis of double-emulsion droplets with ESI mass spectrometry for monitoring lipase-catalyzed ester hydrolysis at nanoliter scale. Anal Bioanal Chem 2022; 414:6977-6987. [PMID: 35995875 PMCID: PMC9436884 DOI: 10.1007/s00216-022-04266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/11/2022]
Abstract
Microfluidic double-emulsion droplets allow the realization and study of biphasic chemical processes such as chemical reactions or extractions on the nanoliter scale. Double emulsions of the rare type (o1/w/o2) are used here to realize a lipase-catalyzed reaction in the non-polar phase. The surrounding aqueous phase induces the transfer of the hydrophilic product from the core oil phase, allowing on-the-fly MS analysis in single double droplets. A microfluidic two-step emulsification process is developed to generate the (o1/w/o2) double-emulsion droplets. In this first example of microfluidic double-emulsion MS coupling, we show in proof-of-concept experiments that the chemical composition of the water layer can be read online using ESI–MS. Double-emulsion droplets were further employed as two-phase micro-reactors for the hydrolysis of the lipophilic ester p-nitrophenyl palmitate catalyzed by the Candida antarctica lipase B (CalB). Finally, the formation of the hydrophilic reaction product p-nitrophenol within the double-emulsion droplet micro-reactors is verified by subjecting the double-emulsion droplets to online ESI–MS analysis.
Collapse
Affiliation(s)
- Laura Heiligenthal
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Marie van der Loh
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Maximilian E Blaha
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Susanne Moschütz
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Antje Keim
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
8
|
Placidi S, D'Intignano TM, Salvio R. Preparation of Chiral
DMAP
Derivatives and Investigation on Their Enantioselective Catalytic Activity in Benzazetidine Synthesis and Kinetic Resolutions of Alcohols. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simone Placidi
- Dipartimento di Chimica Sapienza Università di Roma, P.le Aldo Moro 5 Roma Italy
| | | | - Riccardo Salvio
- Dipartimento di Scienze e Tecnologie Chimiche Università “Tor Vergata”, Via della Ricerca Scientifica 1 Roma Italy
- ISB ‐ CNR Sezione Meccanismi di Reazione Università La Sapienza Roma
| |
Collapse
|
9
|
Production of Jet Biofuels by Catalytic Hydroprocessing of Esters and Fatty Acids: A Review. Catalysts 2022. [DOI: 10.3390/catal12020237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The transition from fossil to bio-based fuels is a requisite for reducing CO2 emissions in the aviation sector. Jet biofuels are alternative aviation fuels with similar chemical composition and performance of fossil jet fuels. In this context, the Hydroprocessing of Esters and Fatty Acids (HEFA) presents the most consolidated pathway for producing jet biofuels. The process for converting esters and/or fatty acids into hydrocarbons may involve hydrodeoxygenation, hydrocracking and hydroisomerization, depending on the chemical composition of the selected feedstock and the desired fuel properties. Furthermore, the HEFA process is usually performed under high H2 pressures and temperatures, with reactions mediated by a heterogeneous catalyst. In this framework, supported noble metals have been preferably employed in the HEFA process; however, some efforts were reported to utilize non-noble metals, achieving a similar performance of noble metals. Besides the metallic site, the acidic site of the catalyst is crucial for product selectivity. Bifunctional catalysts have been employed for the complete process of jet biofuel production with standardized properties, with a special remark for using zeolites as support. The proper design of heterogeneous catalysts may also reduce the consumption of hydrogen. Finally, the potential of enzymes as catalysts for intermediate products of the HEFA pathway is highlighted.
Collapse
|
10
|
Ezoe S, Ueda K, Matsuo H, Nagaoka H, Akakabe Y. A New Approach to Prepare Chiral Aroma: Asymmetric Oxidation of Ionols with a Heme Acquisition System A Derived from Symbiotic Fluorescent Bacteria. J Oleo Sci 2022; 71:1769-1775. [DOI: 10.5650/jos.ess22277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Shiro Ezoe
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| | - Kenji Ueda
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| | - Hirotake Matsuo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| | | | - Yoshihiko Akakabe
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University
| |
Collapse
|
11
|
Polymeric Nanoparticles Decorated with Monoclonal Antibodies: A New Immobilization Strategy for Increasing Lipase Activity. Catalysts 2021. [DOI: 10.3390/catal11060744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent advances in nanotechnology techniques enable the production of polymeric nanoparticles with specific morphologies and dimensions and, by tailoring their surfaces, one can manipulate their characteristics to suit specific applications. In this work we report an innovative approach for the immobilization of a commercial lipase from Candida rugosa (CRL) which employs nanostructured polymeric carriers conjugated with anti-lipase monoclonal antibodies (MoAbs). MoAbs were chemically conjugated on the surface of polymeric nanoparticles and used to selectively adsorb CRL molecules. Hydrolytic enzymatic assays evidenced that such immobilization technique afforded a significant enhancement of enzymatic activity in comparison to the free enzyme.
Collapse
|
12
|
Abstract
Rosy prospects of chiral membranes are proposed with novel and robust materials.
Collapse
Affiliation(s)
- Hongda Han
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Wei Liu
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Yin Xiao
- School of Chemical Engineering and Technology
- Tianjin Engineering Research Center of Functional Fine Chemicals
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xiaofei Ma
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Yong Wang
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| |
Collapse
|
13
|
Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. Catalysts 2020. [DOI: 10.3390/catal10101207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The lipases A and B from Candida antarctica (CALA and CALB), Thermomyces lanuginosus (TLL) or Rhizomucor miehei (RML), and the commercial and artificial phospholipase Lecitase ultra (LEU) may be co-immobilized on octyl agarose beads. However, LEU and RML became almost fully inactivated under conditions where CALA, CALB and TLL retained full activity. This means that, to have a five components co-immobilized combi-lipase, we should discard 3 fully active and immobilized enzymes when the other two enzymes are inactivated. To solve this situation, CALA, CALB and TLL have been co-immobilized on octyl-vinyl sulfone agarose beads, coated with polyethylenimine (PEI) and the least stable enzymes, RML and LEU have been co-immobilized over these immobilized enzymes. The coating with PEI is even favorable for the activity of the immobilized enzymes. It was checked that RML and LEU could be released from the enzyme-PEI coated biocatalyst, although this also produced some release of the PEI. That way, a protocol was developed to co-immobilize the five enzymes, in a way that the most stable could be reused after the inactivation of the least stable ones. After RML and LEU inactivation, the combi-biocatalysts were incubated in 0.5 M of ammonium sulfate to release the inactivated enzymes, incubated again with PEI and a new RML and LEU batch could be immobilized, maintaining the activity of the three most stable enzymes for at least five cycles of incubation at pH 7.0 and 60 °C for 3 h, incubation on ammonium sulfate, incubation in PEI and co-immobilization of new enzymes. The effect of the order of co-immobilization of the different enzymes on the co-immobilized biocatalyst activity was also investigated using different substrates, finding that when the most active enzyme versus one substrate was immobilized first (nearer to the surface of the particle), the activity was higher than when this enzyme was co-immobilized last (nearer to the particle core).
Collapse
|
14
|
Immobilization of Candida antarctica Lipase on Nanomaterials and Investigation of the Enzyme Activity and Enantioselectivity. Appl Biochem Biotechnol 2020; 193:430-445. [PMID: 33025565 DOI: 10.1007/s12010-020-03443-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/29/2020] [Indexed: 11/27/2022]
Abstract
This study defines the lipase immobilization protocol and enzymatic kinetic resolution of 1-phenyl ethanol with the use of immobilized lipases (LI) as a biocatalyst. Commercially available lipase Candida antarctica B (Cal-B) was immobilized onto graphene oxide (GO), iron oxide (Fe3O4) nanoparticles, and graphene oxide/iron oxide (GO/Fe3O4) nanocomposites. Characterization of pure and enzyme-loaded supports was carried out by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The influences of pH, temperature, immobilization time, crosslinker concentration, glutaraldehyde (GLA), epichlorohydrin (EPH), and surfactant concentrations (Tween 80 and Triton X-100) on the catalytic activity were evaluated for these three immobilized biocatalysts. The highest immobilized enzyme activities were 15.03 U/mg, 14.72 U/mg, and 13.56 U/mg for GO-GLA-CalB, Fe3O4-GLA-CalB, and GO/Fe3O4-GLA-CalB, respectively. Moreover, enantioselectivity and reusability of these immobilized lipases were compared for the kinetic resolution of 1-phenyl ethanol, using toluene as organic solvent and vinyl acetate as acyl donor. The highest values of enantiomeric excess (ees = 99%), enantioselectivity (E = 507.74), and conversion (c = 50.73%) were obtained by using lipase immobilized onto graphene oxide (GO-GLA-CalB). It was obtained that this enzymatic process may be repeated five times without important loss of enantioselectivity.
Collapse
|
15
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
16
|
Kaabel S, Friščić T, Auclair K. Mechanoenzymatic Transformations in the Absence of Bulk Water: A More Natural Way of Using Enzymes. Chembiochem 2019; 21:742-758. [PMID: 31651073 DOI: 10.1002/cbic.201900567] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sandra Kaabel
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Tomislav Friščić
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
17
|
|
18
|
Monteiro RRC, Neto DMA, Fechine PBA, Lopes AAS, Gonçalves LRB, dos Santos JCS, de Souza MCM, Fernandez-Lafuente R. Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from Candida antarctica Immobilized onto Magnetic Nanoparticles. Improvement of Biocatalysts' Performance under Ultrasonic Irradiation. Int J Mol Sci 2019; 20:ijms20225807. [PMID: 31752306 PMCID: PMC6888514 DOI: 10.3390/ijms20225807] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022] Open
Abstract
The synthesis of ethyl butyrate catalyzed by lipases A (CALA) or B (CALB) from Candida antarctica immobilized onto magnetic nanoparticles (MNP), CALA-MNP and CALB-MNP, respectively, is hereby reported. MNPs were prepared by co-precipitation, functionalized with 3-aminopropyltriethoxysilane, activated with glutaraldehyde, and then used as support to immobilize either CALA or CALB (immobilization yield: 100 ± 1.2% and 57.6 ± 3.8%; biocatalysts activities: 198.3 ± 2.7 Up-NPB/g and 52.9 ± 1.7 Up-NPB/g for CALA-MNP and CALB-MNP, respectively). X-ray diffraction and Raman spectroscopy analysis indicated the production of a magnetic nanomaterial with a diameter of 13.0 nm, whereas Fourier-transform infrared spectroscopy indicated functionalization, activation and enzyme immobilization. To determine the optimum conditions for the synthesis, a four-variable Central Composite Design (CCD) (biocatalyst content, molar ratio, temperature and time) was performed. Under optimized conditions (1:1, 45 °C and 6 h), it was possible to achieve 99.2 ± 0.3% of conversion for CALA-MNP (10 mg) and 97.5 ± 0.8% for CALB-MNP (12.5 mg), which retained approximately 80% of their activity after 10 consecutive cycles of esterification. Under ultrasonic irradiation, similar conversions were achieved but at 4 h of incubation, demonstrating the efficiency of ultrasound technology in the enzymatic synthesis of esters.
Collapse
Affiliation(s)
- Rodolpho R. C. Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (R.R.C.M.); (L.R.B.G.)
| | - Davino M. Andrade Neto
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (D.M.A.N.); (P.B.A.F.)
| | - Pierre B. A. Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (D.M.A.N.); (P.B.A.F.)
| | - Ada A. S. Lopes
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790970, Redenção 68550-000, CE, Brazil;
| | - Luciana R. B. Gonçalves
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (R.R.C.M.); (L.R.B.G.)
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790970, Redenção 68550-000, CE, Brazil;
- Correspondence: (J.C.S.d.S.); (M.C.M.d.S.); (R.F.-L.); Tel.: +55-85-3332-6109 (J.C.S.d.S. & M.C.M.d.S.); +34-915-854-941 (R.F.-L.)
| | - Maria C. M. de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790970, Redenção 68550-000, CE, Brazil;
- Correspondence: (J.C.S.d.S.); (M.C.M.d.S.); (R.F.-L.); Tel.: +55-85-3332-6109 (J.C.S.d.S. & M.C.M.d.S.); +34-915-854-941 (R.F.-L.)
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain
- Correspondence: (J.C.S.d.S.); (M.C.M.d.S.); (R.F.-L.); Tel.: +55-85-3332-6109 (J.C.S.d.S. & M.C.M.d.S.); +34-915-854-941 (R.F.-L.)
| |
Collapse
|
19
|
|
20
|
Zhang Z, Wang D, Xu Y. Soluble expression of mature Rhizopus chinensis lipase in Escherichia coli and enhancement of its ester synthesis activity. Protein Expr Purif 2019; 163:105443. [PMID: 31185288 DOI: 10.1016/j.pep.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/22/2019] [Accepted: 06/07/2019] [Indexed: 11/25/2022]
Abstract
The production of membrane-associated lipase from Rhizopus chinensis (RCL), which has a high ester synthesis activity and important potential applications, is difficult in heterologous expression system such as Escherichia coli and often leads to the formation of inclusion bodies. Here, we describe the soluble expression of mature RCL (mRCL) using maltose-binding protein (MBP) as a solubility-enhancing tag in the E. coli system. Although the MBP-mRCL fusion protein was soluble, mRCL was insoluble after removal of the MBP tag in E. coli BL21 (DE3). Using E. coli BL21 trxB (DE3) as an expression host, soluble mRCL was obtained and expression conditions were optimized. Furthermore, the ester synthesis activity of soluble mRCL was increased by detergent treatment and was found to be 3.5 and 1.5 times higher than those of the untreated enzyme and naturally occurring enzyme, respectively. Overall, this study provides a potential approach for producing active and soluble forms of eukaryotic lipases in a heterologous E. coli expression system.
Collapse
Affiliation(s)
- Zhang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Dong Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China; School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
21
|
Yuan X, Zhang P, Liu G, Xu W, Tang K. Lipase-catalyzed hydrolysis of 2-(4-hydroxyphenyl)propionic acid ethyl ester to (R)-(−)-2-(4-hydroxyphenyl)propanoic acid. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00796-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Reddy UC, Manheri MK. 1-Hydroxymethyl-7-oxabicyclo[2.2.1]hept-2-ene skeleton in enantiopure form through enzymatic kinetic resolution. Chirality 2019; 31:336-347. [PMID: 30753757 DOI: 10.1002/chir.23060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 11/11/2022]
|
23
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
24
|
Arana-Peña S, Lokha Y, Fernández-Lafuente R. Immobilization on octyl-agarose beads and some catalytic features of commercial preparations of lipase a from Candida antarctica (Novocor ADL): Comparison with immobilized lipase B from Candida antarctica. Biotechnol Prog 2018; 35:e2735. [PMID: 30341806 DOI: 10.1002/btpr.2735] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Lipase A from Candida antarctica (CALA, commercialized as Novocor ADL) was immobilized on octyl-agarose, which is a very useful support for lipase immobilization, and coated with polyethylenimine to improve the stability. The performance was compared to that of the form B of the enzyme (CALB) immobilized on the same support, as both enzymes are among the most popular ones used in biocatalysis. CALA immobilization produced a significant increase in enzyme activity vs. p-nitrophenyl butyrate (pNPB) (by a factor of seven), and the coating with PEI did not have a significant effect on enzyme activity. CALB reduced its activity slightly after enzyme immobilization. Octyl-CALA was less stable than octyl-CALB at pH 9 and more stable at pH 5 and, more clearly, at pH 7. PEI coating only increased octyl-CALA stability at pH 9. In organic solvents, CALB had much better stability in methanol and was similarly stable in acetonitrile or dioxane. In these systems, the PEI coating of octyl-CALA permitted some stabilization. While octyl-CALA was more active vs. pNPB, octyl-CALB was much more active vs. mandelic esters or triacetin. Thus, depending on the specific reaction and the conditions, CALA or CALB may offer different advantages and drawbacks. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2735, 2019.
Collapse
Affiliation(s)
- Sara Arana-Peña
- Dept. de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Yuliya Lokha
- Dept. de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | | |
Collapse
|
25
|
Dong Y, Yao P, Cui Y, Wu Q, Zhu D, Li G, Reetz MT. Manipulating the stereoselectivity of a thermostable alcohol dehydrogenase by directed evolution for efficient asymmetric synthesis of arylpropanols. Biol Chem 2018; 400:313-321. [DOI: 10.1515/hsz-2018-0299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/30/2018] [Indexed: 01/24/2023]
Abstract
Abstract
Chiral arylpropanols are valuable components in important pharmaceuticals and fragrances, which is the motivation for previous attempts to prepare these building blocks enantioselectively in asymmetric processes using either enzymes or transition metal catalysts. Thus far, enzymes used in kinetic resolution proved to be best, but several problems prevented ecologically and economically viable processes from being developed. In the present study, directed evolution was applied to the thermostable alcohol dehydrogenase TbSADH in the successful quest to obtain mutants that are effective in the dynamic reductive kinetic resolution (DYRKR) of racemic arylpropanals. Using rac-2-phenyl-1-propanal in a model reaction, (S)- and (R)-selective mutants were evolved which catalyzed DYRKR of this racemic substrate with formation of the respective (S)- and (R)-alcohols in essentially enantiomerically pure form. This was achieved on the basis of an unconventional form of iterative saturation mutagenesis (ISM) at randomization sites lining the binding pocket using a reduced amino acid alphabet. The best mutants were also effective in the DYRKR of several other structurally related racemic aldehydes.
Collapse
Affiliation(s)
- Yijie Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Peiyuan Yao
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100081 , China
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim , Germany
- Department of Chemistry , Philipps University , Hans-Meerwein-Strasse 4 , D-35032 Marburg , Germany
| | - Manfred T. Reetz
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , China
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , D-45470 Mülheim , Germany
- Department of Chemistry , Philipps University , Hans-Meerwein-Strasse 4 , D-35032 Marburg , Germany
| |
Collapse
|
26
|
Suzuki T. Recent Advances in the Desymmetrization of meso-Diols. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takeyuki Suzuki
- The Institute of Scientific and Industrial Research (ISIR), Osaka University
| |
Collapse
|
27
|
Recent examples of the use of biocatalysts with high accessibility and availability in natural product synthesis. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Synthesis and evaluation of enantio-selective l-histidine imprinted salicylic acid functionalized resin. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Zhang K, Pan Z, Diao Z, Liang S, Han S, Zheng S, Lin Y. Kinetic resolution of sec -alcohols catalysed by Candida antarctica lipase B displaying Pichia pastoris whole-cell biocatalyst. Enzyme Microb Technol 2018; 110:8-13. [DOI: 10.1016/j.enzmictec.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/05/2017] [Accepted: 11/13/2017] [Indexed: 11/30/2022]
|
30
|
Ribeiro MFP, Pais KC, de Jesus BSM, Fernandez-Lafuente R, Freire DMG, Manoel EA, Simas ABC. Lipase Regioselective O
-Acetylations of a myo
-Inositol Derivative: Efficient Desymmetrization of 1,3-Di-O
-benzyl-myo
-inositol. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcela F. P. Ribeiro
- Departamento de Bioquímica; Instituto de Química (IQ); Universidade Federal do Rio de Janeiro (UFRJ); CT, bloco A, 5 21941-909 Rio de Janeiro Brazil
| | - Karla C. Pais
- Instituto de Pesquisas de Produtos Naturais (IPPN); Universidade Federal do Rio de Janeiro (UFRJ); CCS, bloco H 21941-902 Rio de Janeiro Brazil
| | - Barbara S. M. de Jesus
- Instituto de Pesquisas de Produtos Naturais (IPPN); Universidade Federal do Rio de Janeiro (UFRJ); CCS, bloco H 21941-902 Rio de Janeiro Brazil
| | | | - Denise M. G. Freire
- Departamento de Bioquímica; Instituto de Química (IQ); Universidade Federal do Rio de Janeiro (UFRJ); CT, bloco A, 5 21941-909 Rio de Janeiro Brazil
| | - Evelin A. Manoel
- Departamento de Bioquímica; Instituto de Química (IQ); Universidade Federal do Rio de Janeiro (UFRJ); CT, bloco A, 5 21941-909 Rio de Janeiro Brazil
- Departamento de Biotecnologia Farmacêutica; Faculdade de Farmácia; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Alessandro B. C. Simas
- Instituto de Pesquisas de Produtos Naturais (IPPN); Universidade Federal do Rio de Janeiro (UFRJ); CCS, bloco H 21941-902 Rio de Janeiro Brazil
| |
Collapse
|
31
|
Immobilized Burkholderia cepacia Lipase on pH-Responsive Pullulan Derivatives with Improved Enantioselectivity in Chiral Resolution. Catalysts 2018. [DOI: 10.3390/catal8010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
32
|
Barrera Valderrama DI, Doerr M, Daza Espinosa MC. Función de los confórmeros de ataque cercano en la acilación enantioselectiva del (R,S)-propranolol catalizada por lipasa B de Candida antarctica. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2018. [DOI: 10.15446/rev.colomb.biote.v20n1.73652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
La lipasa B de Candida antarctica (CalB) se ha utilizado en la acilación quimio- y enantioselectiva del racemato (R,S)-propranolol. CalB tiene enantioselectividad moderada (E=63) por el R-propranolol. La enantioselectividad, se origina en la reacción de transferencia del grupo acilo desde la serina catalítica, acilada, al propranolol. La fase inicial de esta reacción involucra la formación de complejos de Michaelis y posteriormente conformaciones de ataque cercano. El análisis de las conformaciones de ataque cercano ha permitido en varios casos explicar el origen de la catálisis o reproducir el efecto catalítico. En este trabajo se profundiza en la comprensión la función de las conformaciones de ataque cercano en la enantioselectividad de la acilación del (R,S)-propranolol catalizada por CalB. Para lo anterior se realizó un estudio detallado de los complejos de Michaelis y de las conformaciones de ataque cercano del paso enantioselectivo de la reacción de acilación del (R,S)-propranolol utilizando un protocolo de dinámica molecular QM/MM (SCCDFTB/CHARMM) utilizando 6 distribuciones de velocidades iniciales y simulaciones de 2,5 ns. Se estudiaron 7 complejos CalB-propranolol. Los enlaces de hidrógeno del sitio activo de CalB acilada relevantes para la actividad catalítica fueron estables en todas las simulaciones. Las poblaciones de los complejos de Michaelis y de las conformaciones de ataque cercano son dependientes de la distribución de las velocidades iniciales de la dinámica molecular. La enantioselectividad moderada de CalB acilada, encontrada experimentalmente, puede ser parcialmente atribuida a la alta población de conformaciones de ataque cercano observada para el S-propranolol.
Collapse
|
33
|
Gao B, Jiang S, Wang L, Zhang L, Wei D. Energy and conformation determine the enantioselectivity of enzyme. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Yoshimatsu S, Yamada A, Nakata K. Silylative Kinetic Resolution of Racemic 1-Indanol Derivatives Catalyzed by Chiral Guanidine. J Org Chem 2017; 83:452-458. [DOI: 10.1021/acs.joc.7b02493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shuhei Yoshimatsu
- Department of Material Science,
Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu Matsue, Shimane 690-8504, Japan
| | - Akira Yamada
- Department of Material Science,
Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu Matsue, Shimane 690-8504, Japan
| | - Kenya Nakata
- Department of Material Science,
Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu Matsue, Shimane 690-8504, Japan
| |
Collapse
|
35
|
Ortega-Rojas MA, Rivera-Ramírez JD, Ávila-Ortiz CG, Juaristi E, González-Muñoz F, Castillo E, Escalante J. One-Pot Lipase-Catalyzed Enantioselective Synthesis of (R)-(-)-N-Benzyl-3-(benzylamino)butanamide: The Effect of Solvent Polarity on Enantioselectivity. Molecules 2017; 22:molecules22122189. [PMID: 29232840 PMCID: PMC6149857 DOI: 10.3390/molecules22122189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 11/25/2022] Open
Abstract
The use of the solvent engineering has been applied for controlling the resolution of lipase-catalyzed synthesis of β-aminoacids via Michael addition reactions. The strategy consisted of the thermodynamic control of products at equilibrium using the lipase CalB as a catalyst. The enzymatic chemo- and enantioselective synthesis of (R)-(−)-N-benzyl-3-(benzylamino)butanamide is reported, showing the influence of the solvent on the chemoselectivity of the aza-Michael addition and the subsequent kinetic resolution of the Michael adduct; both processes are catalyzed by CalB and both are influenced by the nature of the solvent medium. This approach allowed us to propose a novel one-pot strategy for the enzymatic synthesis of enantiomerically enriched β-aminoesters and β-aminoacids.
Collapse
Affiliation(s)
- Marina A Ortega-Rojas
- The Center for Chemical Research, Autonomous University of Morelos State, Avenida Universidad 1001, Chamilpa, Cuernavaca 62210, Mexico.
| | - José Domingo Rivera-Ramírez
- The Center for Chemical Research, Autonomous University of Morelos State, Avenida Universidad 1001, Chamilpa, Cuernavaca 62210, Mexico.
| | - C Gabriela Ávila-Ortiz
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida I.P.N. 2508, Ciudad de México 07360, Mexico.
| | - Eusebio Juaristi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida I.P.N. 2508, Ciudad de México 07360, Mexico.
- El Colegio Nacional, Luis Gonzáles Obregón 23, Centro Histórico, Ciudad de México 06020, Mexico.
| | - Fernando González-Muñoz
- Department of Cell Engineering and Biocatalysis, Institute of Biotechnology, UNAM, Apartado Postal 510-3, Cuernavaca C.P. 62271, Mexico.
| | - Edmundo Castillo
- Department of Cell Engineering and Biocatalysis, Institute of Biotechnology, UNAM, Apartado Postal 510-3, Cuernavaca C.P. 62271, Mexico.
| | - Jaime Escalante
- The Center for Chemical Research, Autonomous University of Morelos State, Avenida Universidad 1001, Chamilpa, Cuernavaca 62210, Mexico.
| |
Collapse
|
36
|
|
37
|
Varga Z, Kmecz I, Szécsényi Á, Székely E. Neat lipase-catalysed kinetic resolution of racemic 1-phenylethanol and a straightforward modelling of the reaction. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1360292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zsófia Varga
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ildikó Kmecz
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ágnes Szécsényi
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edit Székely
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
38
|
Agustian J, Kamaruddin AH, Aboul-Enein HY. Factors screening to statistical experimental design of racemic atenolol kinetic resolution via transesterification reaction in organic solvent using free Pseudomonas fluorescens
lipase. Chirality 2017; 29:376-385. [DOI: 10.1002/chir.22702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 02/07/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Joni Agustian
- Department of Chemical Engineering; Universitas Lampung; Bandar Lampung Lampung Indonesia
| | - Azlina Harun Kamaruddin
- School of Chemical Engineering; Universiti Sains Malaysia; Seberang Perai Selatan Pulau Pinang Malaysia
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division; National Research Centre; Cairo Egypt
| |
Collapse
|
39
|
Acylative kinetic resolution of racemic aromatic β-hydroxy esters catalyzed by chiral nucleophilic N -(1-arylethyl)benzoguanidines. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Fernandez-Lopez L, Pedrero SG, Lopez-Carrobles N, Virgen-Ortíz JJ, Gorines BC, Otero C, Fernandez-Lafuente R. Physical crosslinking of lipase from Rhizomucor miehei immobilized on octyl agarose via coating with ionic polymers. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Zhang P, Xie X, Tang K, Xu W, Xiong B, Liu Y. Optimizing two-phase system by experiment and simulation for high-speed counter-current chromatographic separation of 2-phenylbutyric acid enantiomer. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1283329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Panliang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Xiaojuan Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| |
Collapse
|
42
|
Xu Y, Wang M, Feng B, Li Z, Li Y, Li H, Li H. Dynamic kinetic resolution of aromatic sec-alcohols by using a heterogeneous palladium racemization catalyst and lipase. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01954h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel recyclable chemoenzymatic catalyst combination has been designed, which successfully converted sec-alcohols to chiral acetates under microwave irradiation.
Collapse
Affiliation(s)
- Yuanfeng Xu
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai
- China
| | - Meng Wang
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai
- China
| | - Bo Feng
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai
- China
| | - Ziyang Li
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai
- China
| | - Yuanhua Li
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai
- China
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai
- China
| | - Hui Li
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai
- China
| |
Collapse
|
43
|
Escorcia AM, Sen K, Daza MC, Doerr M, Thiel W. Quantum Mechanics/Molecular Mechanics Insights into the Enantioselectivity of the O-Acetylation of (R,S)-Propranolol Catalyzed by Candida antarctica Lipase B. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02310] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Andrés M. Escorcia
- Grupo
de Bioquímica Teórica, Universidad Industrial de Santander, Cra 27 Calle 9, Bucaramanga, Colombia
| | - Kakali Sen
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| | - Martha C. Daza
- Grupo
de Bioquímica Teórica, Universidad Industrial de Santander, Cra 27 Calle 9, Bucaramanga, Colombia
| | - Markus Doerr
- Grupo
de Bioquímica Teórica, Universidad Industrial de Santander, Cra 27 Calle 9, Bucaramanga, Colombia
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| |
Collapse
|
44
|
Kuroda Y, Harada S, Oonishi A, Kiyama H, Yamaoka Y, Yamada KI, Takasu K. Use of a Catalytic Chiral Leaving Group for Asymmetric Substitutions at sp3
-Hybridized Carbon Atoms: Kinetic Resolution of β-Amino Alcohols by p
-Methoxybenzylation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Kuroda
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Akinori Oonishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Hiroki Kiyama
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Ken-ichi Yamada
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Graduate School of Pharmaceutical Sciences; Tokushima University; Shomachi Tokushima 770-8505 Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
45
|
Kuroda Y, Harada S, Oonishi A, Kiyama H, Yamaoka Y, Yamada KI, Takasu K. Use of a Catalytic Chiral Leaving Group for Asymmetric Substitutions at sp3
-Hybridized Carbon Atoms: Kinetic Resolution of β-Amino Alcohols by p
-Methoxybenzylation. Angew Chem Int Ed Engl 2016; 55:13137-13141. [DOI: 10.1002/anie.201607208] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/16/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Yusuke Kuroda
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Akinori Oonishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Hiroki Kiyama
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Ken-ichi Yamada
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Graduate School of Pharmaceutical Sciences; Tokushima University; Shomachi Tokushima 770-8505 Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences; Kyoto University; Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
46
|
Yamada A, Nakata K. (R)-(+)-N-Methylbenzoguanidine ((R)-NMBG) catalyzed acylative kinetic resolution of racemic 3-hydroxy-3-aryl-propanoates. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Büyükadalı NN, Aslan N, Gümüş S, Gümüş A. Stereoselective synthesis of benzofuran and benzothiophene substituted dihydropyran derivatives via ring closing metathesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
El-Sepelgy O, Alandini N, Rueping M. Kombinierte Eisen- und Biokatalyse - Eisencarbonylkomplexe als effiziente Wasserstoff-Autotransferkatalysatoren für die dynamische kinetische Racematspaltung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Osama El-Sepelgy
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - Nurtalya Alandini
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
| | - Magnus Rueping
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Deutschland
- King Abdullah University of Science and Technology (KAUST); KAUST Catalysis Center (KCC); Thuwal 23955-6900 Saudi-Arabien
| |
Collapse
|
49
|
El-Sepelgy O, Alandini N, Rueping M. Merging Iron Catalysis and Biocatalysis-Iron Carbonyl Complexes as Efficient Hydrogen Autotransfer Catalysts in Dynamic Kinetic Resolutions. Angew Chem Int Ed Engl 2016; 55:13602-13605. [DOI: 10.1002/anie.201606197] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Osama El-Sepelgy
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Nurtalya Alandini
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Magnus Rueping
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
- King Abdullah University of Science and Technology (KAUST); KAUST Catalysis Center (KCC); Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
50
|
Thakur NS, Bhaumik J, Sooram B, Banoth L, Banerjee UC. Synthesis of Enantiopure Drugs and Drug Intermediates UsingIn SilicoGenerated Archetype Biocatalyst: A Case Study Using Alprenolol as a Model Drug. ChemistrySelect 2016. [DOI: 10.1002/slct.201600043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Neeraj S. Thakur
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Reaserch; Sector 67, S. A. S. Nagar- 160062 Punjab India, Extn 2142
| | - Jayeeta Bhaumik
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Reaserch; Sector 67, S. A. S. Nagar- 160062 Punjab India, Extn 2142
| | - Banesh Sooram
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Reaserch; Sector 67, S. A. S. Nagar- 160062 Punjab India, Extn 2142
| | - Linga Banoth
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Reaserch; Sector 67, S. A. S. Nagar- 160062 Punjab India, Extn 2142
| | - Uttam C. Banerjee
- Department of Pharmaceutical Technology (Biotechnology); National Institute of Pharmaceutical Education and Reaserch; Sector 67, S. A. S. Nagar- 160062 Punjab India, Extn 2142
| |
Collapse
|