1
|
Chen C, Li S, Zhang H, Zhang L, Ling P, Cheng H, Fang J. 2,2-Dichloro-1,3-benzodioxole as a Hydroxyl Protection Reagent for Carbohydrate Compounds. Org Lett 2025. [PMID: 39912578 DOI: 10.1021/acs.orglett.4c04838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The application of 2,2-dichloro-1,3-benzodioxole (DCBZ) as a versatile hydroxyl protection reagent in carbohydrate chemistry has been demonstrated. DCBZ exhibited high reactivity with diverse vicinal and remote dihydroxyl groups in furanoses and pyranoses to form benzodioxole (BZDO)-protected products. The BZDO group showed remarkable stability under basic, redox, and glycosylation conditions and can be efficiently removed under acid conditions in the presence of a diol, highlighting its utility in the orthogonal synthesis of complex glycans.
Collapse
Affiliation(s)
- Changsheng Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, People's Republic of China
| | - Shuang Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, People's Republic of China
| | - Henan Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, People's Republic of China
| | - Lijun Zhang
- Department of Undergraduate Education, School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518000, People's Republic of China
| | - Peixue Ling
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, People's Republic of China
| | - Hanchao Cheng
- Department of Undergraduate Education, School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518000, People's Republic of China
| | - Junqiang Fang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
2
|
Dorokhova VS, Komarova BS, Previato JO, Mendonça Previato L, Krylov VB, Nifantiev NE. Synthesis of branched and linear galactooligosaccharides related to glucuronoxylomannogalactan of Cryptococcus neoformans. Front Chem 2024; 12:1501766. [PMID: 39611096 PMCID: PMC11602299 DOI: 10.3389/fchem.2024.1501766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
This study focuses on the synthesis of a series of oligo-α-(1→6)-D-galactopyranosides bearing β-D-galactofuranosyl residues at O-2 and/or O-3, which relate structurally to fragments of glucuronoxylomannogalactan (GXMGal) from the fungal pathogen Cryptococcus neoformans that causes severe diseases in immunocompromised patients. The preparation of target compounds is based on the use of a selectively O-protected N-phenyltrifluoroacetimidoyl galactopyranoside donor with an allyl group at O-2, levulinoyl group (Lev) at O-3, pentafluorobenzoyl (PFB) group at O-4, and fluorenylmethoxycarbonyl (Fmoc) group at O-6. The choice of protecting groups for this donor ensures the stereospecific formation of α-(1→6)-glycosidic bonds due to the stereodirecting effect of acyls at O-3, O-4, and O-6. At the same time, this combination of O-substituents permits the selective recovery of free OH groups at O-2, O-3, and O-6 for chain elongation via the introduction of β-D-galactofuranosyl and α-D-galactopyranosyl residues. The reported compounds are obtained as aminopropyl glycosides, which are transformed into biotinylated conjugates for further use as coating antigens in immunological studies. The obtained oligosaccharides were subjected to detailed 13C NMR analysis to show the spatial similarity of the obtained hexasaccharide with the corresponding fragment in the GXMGal chain, making this compound suitable for further immunological studies of C. neoformans.
Collapse
Affiliation(s)
- Vera S. Dorokhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Bozhena S. Komarova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - José O. Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lúcia Mendonça Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Pooladian F, Das A, Wise JW, Demchenko AV. Synthesis of regioselectively protected building blocks of benzyl β-d-glucopyranoside. Carbohydr Res 2024; 544:109250. [PMID: 39214041 PMCID: PMC11391699 DOI: 10.1016/j.carres.2024.109250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Reported herein is the synthesis of benzyl β-d-glucopyranoside and its derivatives that provide straightforward access to 3,4-branched glycans. Modes to diversify the synthetic intermediates via introduction of various temporary protecting groups have been demonstrated.
Collapse
Affiliation(s)
- Faranak Pooladian
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Anupama Das
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Joseph W Wise
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri, 63103, USA.
| |
Collapse
|
4
|
Kumar Villuri B, Desai UR. Synthesis and Reactivity of Masked Organic Sulfates. Chemistry 2024; 30:e202402268. [PMID: 39024030 DOI: 10.1002/chem.202402268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Nature offers a variety of structurally unique, sulfated endobiotics including sulfated glycosaminoglycans, sulfated tyrosine peptides, sulfated steroids/bile acids/catecholamines. Sulfated molecules display a large number of biological activities including antithrombotic, antimicrobial, anticancer, anti-inflammatory, and others, which arise from modulation of intracellular signaling and enhanced in vivo retention of certain hormones. These characteristics position sulfated molecules very favorably as drug-like agents. However, few have reached the clinic. Major hurdles exist in realizing sulfated molecules as drugs. This state-of-the-art has been transformed through recent works on the development of sulfate masking technologies for both alkyl (sulfated carbohydrates, sulfated steroids) and aryl (sTyr-bearing peptides/proteins, sulfated flavonoids) sulfates. This review compiles the literature on different strategies implemented for different types of sulfate groups. Starting from early efforts in protection of sulfate groups to the design of newer SuFEx, trichloroethyl, and gem-dimethyl-based protection technologies, this review presents the evolution and application of concepts in realizing highly diverse, sulfated molecules as candidate drugs and/or prodrugs. Overall, the newer strategies for sulfate masking and demasking are likely to greatly enhance the design and development of sulfated molecules as non-toxic drugs of the future.
Collapse
Affiliation(s)
- Bharath Kumar Villuri
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| |
Collapse
|
5
|
Liu G, Feng Y, Zhang Q, Chai Y. Orthogonal Deprotection of Photolabile Protecting Groups and Its Application in Oligosaccharide Synthesis. Org Lett 2024; 26:5746-5751. [PMID: 38953872 DOI: 10.1021/acs.orglett.4c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We herein report for the first time the inter- and intramolecular orthogonal cleavage of two ortho-nitrobenzyl (NB) analogues. It is shown that the nitroveratryl (NV) group can be photolyzed with high priority when NV and ortho-nitrobenzyl carbonate (oNBC) are used together as the protecting groups of glycans. Notably, the photolytic products could be used directly in the subsequent glycosylation without further purification. With the above-mentioned orthogonal photolabile protecting group strategy in hand, a Mycobacterium tuberculosis tetrasaccharide and a derivative of glucosyl glycerol were rapidly prepared.
Collapse
Affiliation(s)
- Guoqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yingle Feng
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
6
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
7
|
Forsythe NP, Mize ER, Kashiwagi GA, Demchenko AV. Expedient Synthesis of Superarmed Glycosyl Donors via Oxidative Thioglycosidation of Glycals. SYNTHESIS-STUTTGART 2024; 56:1147-1156. [PMID: 38655286 PMCID: PMC11034933 DOI: 10.1055/a-2183-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Superarmed glycosyl donors have higher reactivity compared to their perbenzylated armed counterparts. Generally, the 2-O- benzoyl-3,4,6-tri-O-benzyl protecting group pattern gives rise to increased reactivity due to an O-2/O-5 cooperative effect. Despite having a high reactivity profile and applicability in many expeditious strategies for glycan synthesis, regioselective introduction of the superarming protecting group pattern is tedious for most sugar series. Reported herein is a streamlined synthetic route to yield superarmed glycosyl donors of the d-gluco and d-galacto series equipped with an ethylthio, phenylthio, p-tolylthio, benzoxazol-2-ylthio, O-allyl, or O-pentenyl anomeric leaving group. This streamlined approach was made possible due to the refinement of the oxidative thioglycosylation reaction of the respective glucal and galactal precursors. The applicability of this approach to the direct formation of disaccharides is also showcased.
Collapse
Affiliation(s)
- Nicholas P Forsythe
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| | - Emma R Mize
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| | - Gustavo A Kashiwagi
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, MO 63103, USA
| |
Collapse
|
8
|
Liu Y, Yan M, Wang M, Luo S, Wang S, Luo Y, Xu Z, Ma W, Wen L, Li T. Stereoconvergent and Chemoenzymatic Synthesis of Tumor-Associated Glycolipid Disialosyl Globopentaosylceramide for Probing the Binding Affinity of Siglec-7. ACS CENTRAL SCIENCE 2024; 10:417-425. [PMID: 38435515 PMCID: PMC10906248 DOI: 10.1021/acscentsci.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 03/05/2024]
Abstract
Disialosyl globopentaosylceramide (DSGb5) is a tumor-associated complex glycosphingolipid. However, the accessibility of structurally well-defined DSGb5 for precise biological functional studies remains challenging. Herein, we describe the first total synthesis of DSGb5 glycolipid by an efficient chemoenzymatic approach. A Gb5 pentasaccharide-sphingosine was chemically synthesized by a convergent and stereocontrolled [2 + 3] method using an oxazoline disaccharide donor to exclusively form β-anomeric linkage. After investigating the substrate specificity of different sialyltransferases, regio- and stereoselective installment of two sialic acids was achieved by two sequential enzyme-catalyzed reactions using α2,3-sialyltransferase Cst-I and α2,6-sialyltransferase ST6GalNAc5. A unique aspect of the approach is that methyl-β-cyclodextrin-assisted enzymatic α2,6-sialylation of glycolipid substrate enables installment of the challenging internal α2,6-linked sialoside to synthesize DSGb5 glycosphingolipid. Surface plasmon resonance studies indicate that DSGb5 glycolipid exhibits better binding affinity for Siglec-7 than the oligosaccharide moiety of DSGb5. The binding results suggest that the ceramide moiety of DSGb5 facilitates its binding by presenting multivalent interactions of glycan epitope for the recognition of Siglec-7.
Collapse
Affiliation(s)
- Yating Liu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Mengkun Yan
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiwei Luo
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Shasha Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yawen Luo
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojia Xu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Ma
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqing Wen
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Vašíček T, Arensmeyer B, Monti A, Zamyatina A. Versatile approach towards fully desymmetrized trehalose with a novel set of orthogonal protecting groups. Front Chem 2024; 11:1332837. [PMID: 38274896 PMCID: PMC10808579 DOI: 10.3389/fchem.2023.1332837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Trehalose-containing glycans play an essential role in bacterial pathogenesis, host-pathogen interaction, and cell signaling. The investigation of trehalose uptake and metabolism in Mycobacteria using synthetic desymmetrized trehalose probes is an important approach for the development of diagnostic tools and potential therapeutics for tuberculosis. Trehalose-derived mycobacterial glycolipids activate the innate immune response through recognition by the C-type lectin Mincle, justifying efforts to develop novel trehalose-based Mincle-dependent adjuvants. The chemical synthesis of trehalose-based glycoconjugates, glycolipids, and small-molecule trehalose probes requires the challenging chemical desymmetrization of eight hydroxyl groups in a C 2-symmetric disaccharide αGlc(1↔1)αGlc. Using a novel set of orthogonal protecting groups, we developed a flexible multiscale synthetic approach to a collection of differently and variably protected fully desymmetrized trehalose derivatives, ready for final chemical modification with relevant functional or reporter groups. Using a regioselective and site-specific protecting group strategy, we performed multiple symmetry-breaking operations, resulting in a library of trehalose-derived orthogonally protected building blocks as a versatile source for the synthesis of complex trehalose-containing glycans.
Collapse
Affiliation(s)
| | | | | | - Alla Zamyatina
- Department of Chemistry, Institute of Organic Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
Luo S, Liu Y, Hao T, Ma W, Luo Y, Wang S, Xu Z, Hu C, Wen L, Li T. Chemoenzymatic Total Synthesis of Haemophilus ducreyi Lipooligosaccharide Core Octasaccharides Containing Natural and Unnatural Sialic Acids. Org Lett 2023; 25:2312-2317. [PMID: 36972419 DOI: 10.1021/acs.orglett.3c00657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The first total synthesis of Haemophilus ducreyi lipooligosaccharide core octasaccharides containing natural and unnatural sialic acids has been achieved by an efficient chemoenzymatic approach. A highly convergent [3 + 3] coupling strategy was developed to chemically assemble a unique hexasaccharide bearing multiple rare higher-carbon sugars d-glycero-d-manno-heptose (d,d-Hep), l-glycero-d-manno-heptose (l,d-Hep), and 3-deoxy-α-d-manno-oct-2-ulosonic acid (Kdo). Key features include sequential one-pot glycosylations for oligosaccharide assembly and the construction of the challenging α-(1 → 5)-linked Hep-Kdo glycosidic bond by gold-catalyzed glycosylation with a glycosyl ortho-alkynylbenzoate donor. Furthermore, the sequential enzyme-catalyzed regio- and stereoselective introduction of a galactose residue using β-1,4-galactosyltransferase and different sialic acids using a one-pot multienzyme sialylation system was efficiently accomplished to provide the target octasaccharides.
Collapse
Affiliation(s)
- Shiwei Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yating Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Tianhui Hao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawen Luo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shasha Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chaoyu Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Nishikawa Y, Mori D, Toyoda M, Amano Y, Hosoi M, Ando M, Hara O. Chelating Picolinaldehyde Hydrazone Amides as Protecting Groups for Carboxylic Acids: Orthogonal Reactivities of Hydrazone Amides and Esters in Hydrolysis. Org Lett 2023; 25:895-900. [PMID: 36511633 DOI: 10.1021/acs.orglett.2c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a chelating hydrazone amide as a protecting group for carboxylic acids. Unlike most esters, 2-picolinaldehyde hydrazone amides are stable under acidic or basic hydrolytic conditions. However, hydrazone amides can be easily converted to the corresponding carboxylic acids via Ni-mediated hydrolysis. Orthogonal reactivities of the hydrazone amides and representative protecting groups were verified by control experiments and peptide synthesis, demonstrating that chelating hydrazone amides are highly useful protecting groups.
Collapse
Affiliation(s)
- Yasuhiro Nishikawa
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Daiki Mori
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Mayuko Toyoda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Yukiho Amano
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Midori Hosoi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Momoka Ando
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Osamu Hara
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| |
Collapse
|
12
|
Zhang L, Liu Y, Xu Z, Hao T, Wang PG, Zhao W, Li T. Design and Synthesis of Neutralizable Fondaparinux. JACS AU 2022; 2:2791-2799. [PMID: 36590263 PMCID: PMC9795572 DOI: 10.1021/jacsau.2c00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Fondaparinux, a clinically approved anticoagulant pentasaccharide for the treatment of thrombotic diseases, displays better efficacy and biosafety than other heparin-based anticoagulant drugs. However, there is no suitable antidote available for fondaparinux to efficiently manage its potential bleeding risks, thereby precluding its widespread use. Herein, we describe a convergent and stereocontrolled approach to efficiently synthesize an aminopentyl-functionalized pentasaccharide, which is further used to prepare fondaparinux-based biotin conjugates and clusters. Biological activity evaluation demonstrates that the anticoagulant activity of the fondaparinux-based biotin conjugate and trimer is, respectively, neutralized by avidin and protamine as effective antidotes. This work suggests that our synthetic biotin conjugate and trimer have potential for the development of neutralizable and safe anticoagulant drugs.
Collapse
Affiliation(s)
- Liangwei Zhang
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Yating Liu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Zhuojia Xu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhui Hao
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng George Wang
- School
of Medicine, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Wei Zhao
- College
of Pharmacy, Nankai University, Tianjin 300353, China
| | - Tiehai Li
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory
of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Naini A, Bartetzko MP, Sanapala SR, Broecker F, Wirtz V, Lisboa MP, Parameswarappa SG, Knopp D, Przygodda J, Hakelberg M, Pan R, Patel A, Chorro L, Illenberger A, Ponce C, Kodali S, Lypowy J, Anderson AS, Donald RGK, von Bonin A, Pereira CL. Semisynthetic Glycoconjugate Vaccine Candidates against Escherichia coli O25B Induce Functional IgG Antibodies in Mice. JACS AU 2022; 2:2135-2151. [PMID: 36186572 PMCID: PMC9516715 DOI: 10.1021/jacsau.2c00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a major health concern due to emerging antibiotic resistance. Along with O1A, O2, and O6A, E. coli O25B is a major serotype within the ExPEC group, which expresses a unique O-antigen. Clinical studies with a glycoconjugate vaccine of the above-mentioned O-types revealed O25B as the least immunogenic component, inducing relatively weak IgG titers. To evaluate the immunological properties of semisynthetic glycoconjugate vaccine candidates against E. coli O25B, we here report the chemical synthesis of an initial set of five O25B glycan antigens differing in length, from one to three repeat units, and frameshifts of the repeat unit. The oligosaccharide antigens were conjugated to the carrier protein CRM197. The resulting semisynthetic glycoconjugates induced functional IgG antibodies in mice with opsonophagocytic activity against E. coli O25B. Three of the oligosaccharide-CRM197 conjugates elicited functional IgGs in the same order of magnitude as a conventional CRM197 glycoconjugate prepared with native O25B O-antigen and therefore represent promising vaccine candidates for further investigation. Binding studies with two monoclonal antibodies (mAbs) revealed nanomolar anti-O25B IgG responses with nanomolar K D values and with varying binding epitopes. The immunogenicity and mAb binding data now allow for the rational design of additional synthetic antigens for future preclinical studies, with expected further improvements in the functional antibody responses. Moreover, acetylation of a rhamnose residue was shown to be likely dispensable for immunogenicity, as a deacylated antigen was able to elicit strong functional IgG responses. Our findings strongly support the feasibility of a semisynthetic glycoconjugate vaccine against E. coli O25B.
Collapse
Affiliation(s)
- Arun Naini
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Max Peter Bartetzko
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Someswara Rao Sanapala
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Felix Broecker
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Victoria Wirtz
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Marilda P. Lisboa
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | | | - Daniel Knopp
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Jessica Przygodda
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Matthias Hakelberg
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Rosalind Pan
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Axay Patel
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Laurent Chorro
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Arthur Illenberger
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Christopher Ponce
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Srinivas Kodali
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Jacqueline Lypowy
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | | | - Robert G. K. Donald
- Pfizer
Vaccine Research and Development, Pearl River, New York 10965, United States
| | - Arne von Bonin
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| | - Claney L. Pereira
- Vaxxilon
Deutschland GmbH, Part of Idorsia Pharmaceuticals Ltd., Magnusstr. 11, 12489 Berlin, Germany
| |
Collapse
|
14
|
Novakova M, Das A, Alex C, Demchenko AV. Synthesis and glycosidation of building blocks of D-altrosamine. Front Chem 2022; 10:945779. [PMID: 36226114 PMCID: PMC9548543 DOI: 10.3389/fchem.2022.945779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Presented herein is a streamlined synthesis of building blocks of a rare sugar D-altrosamine. Also investigated was the glycosylation of different glycosyl acceptors with differentially protected altrosamine donors. High facial stereoselectivity was achieved with 3-O-picoloyl donors and reactive glycosyl acceptors via the H-bond-mediated aglycone delivery (HAD) pathway. In contrast, glycosidations of the altrosamine donor equipped with the 3-O-benzoyl group were poorly stereoselective.
Collapse
Affiliation(s)
- Mariya Novakova
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States
| | - Anupama Das
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States
| | - Catherine Alex
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, MO, United States
| | - Alexei V. Demchenko
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, MO, United States
| |
Collapse
|
15
|
Dhara D, Dhara A, Murphy PV, Mulard LA. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022; 521:108644. [PMID: 36030632 DOI: 10.1016/j.carres.2022.108644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France
| |
Collapse
|
16
|
Hu C, Wu S, He F, Cai D, Xu Z, Ma W, Liu Y, Wei B, Li T, Ding K. Convergent Synthesis and Anti-Pancreatic Cancer Cell Growth Activity of a Highly Branched Heptadecasaccharide from Carthamus tinctorius. Angew Chem Int Ed Engl 2022; 61:e202202554. [PMID: 35641432 DOI: 10.1002/anie.202202554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/11/2022]
Abstract
Bioactive polysaccharides from natural resources target various biological processes and are increasingly used as potential target molecules for drug development. However, the accessibility of branched and long complex polysaccharide active domains with well-defined structures remains a major challenge. Herein we describe an efficient first total synthesis of a highly branched heptadecasaccharide moiety of the native bioactive galectin-3-targeting polysaccharide from Carthamus tinctorius L. as well as shorter fragments of the heptadecasaccharide. The key feature of the approach is that a photo-assisted convergent [6+4+7] one-pot coupling strategy enables rapid assembly of the heptadecasaccharide, whereby a photoremovable o-nitrobenzyl protecting group is used to generate the corresponding acceptor for glycosylation in situ upon ultraviolet radiation. Biological activity tests suggest that the heptadecasaccharide can target galectin-3 and inhibit pancreatic cancer cell growth.
Collapse
Affiliation(s)
- Chaoyu Hu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.,Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shengjie Wu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fei He
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Deqin Cai
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhuojia Xu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenjing Ma
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yating Liu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bangguo Wei
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Tiehai Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| |
Collapse
|
17
|
Debenzylation of Benzyl-Protected Methylcellulose. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methyl cellulose and its derivatives are widely used in the food industry, cosmetics, and as construction materials. The properties of methyl celluloses (MC) strongly depend on their degrees and positions of substitution. In order to generate MCs with uncommon blocky substitution, we apply fully protected O-benzyl-O-methyl celluloses (BnMC). Such complex polysaccharide derivatives could not be deprotected completely and without shift of the composition by methods usually applied to mono- and oligosaccharides. Therefore, a facile debenzylation method was developed based on photo-initiated free-radical bromination in the presence of hydrobromic acid scavengers followed by alkaline treatment. The reaction proceeds under homogeneous conditions and without the aid of any catalyst. There is no need for expensive equipment, materials, anhydrous reagents, or running the reaction under anhydrous conditions. Reaction parameters were investigated and optimized for successful debenzylation of completely protected BnMC with degrees of methyl substitution (DSMe) around 1.9 (and DSBn around 1.1). Side-product-free and almost complete debenzylation was achieved when 1,2-epoxybutane (0.5 eq./eq. N-bromosuccinimide) and 2,6-di-tert-butylpyridine (0.5 eq./eq. N-bromosuccinimide) were used in the reaction. Furthermore, ATR-IR and 1H NMR spectroscopy confirmed the successful removal of benzyl ether groups. The method was developed to monitor the transglycosylation reaction of the BnMC with permethylated cellulose, for which the deprotection of many small samples in parallel is required. This comprises the determination of the methyl pattern in the glucosyl units by gas-liquid chromatography (GLC), as well as oligosaccharide analysis by liquid chromatography mass spectrometry (LC-MS) after perdeuteromethylation and partial hydrolysis to determine the methyl pattern in the chains. The unavoidable partial chain degradation during debenzylation does not interfere with this analytical application, but, most importantly, the DS and the methyl pattern were almost congruent for the debenzylated product and the original MC, indicating the full success of this approach The presented method provides an unprecedented opportunity for high throughput and parallel debenzylation of complicated glucans, such as BnMC (as a model compound), for analytical purposes. For comparison, debenzylation using Na/NH3 was applied to BnMC and resulted in a completely debenzylated product with a remarkably high recovery yield of 99 mol% and is, thus, the method of choice for synthetic applications, e.g., for the transglycosylation product prepared under the selected conditions in a preparative scale.
Collapse
|
18
|
Hu C, Wu S, He F, Cai D, Xu Z, Ma W, Liu Y, Wei B, Li T, Ding K. Convergent Synthesis and Anti‐Pancreatic Cancer Cell Growth Activity of a Highly Branched Heptadecasaccharide from Carthamus tinctorius. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaoyu Hu
- Fudan University Department of Medicinal Chemistry, School of Pharmacy CHINA
| | - Shengjie Wu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Fei He
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Deqin Cai
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Wenjing Ma
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Yating Liu
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Bangguo Wei
- Fudan University Department of Medicinal Chemistry, School of Pharmacy CHINA
| | - Tiehai Li
- Shanghai Institute of Materia Medica CAS: Shanghai Institute of Materia Medica Chinese Academy of Sciences Carbohydrate-Based Drug Research Center CHINA
| | - Kan Ding
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Glycochemistry and Glycobiology Lab 555 Zu Chong Zhi Road 201203 Shanghai CHINA
| |
Collapse
|
19
|
Molla MR, Thakur R. Cyanomethyl (CNMe) ether: an orthogonal protecting group for saccharides. Org Biomol Chem 2022; 20:4030-4037. [PMID: 35506910 DOI: 10.1039/d2ob00338d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Logical manipulation of protecting groups is one of the vital strategies involved in the synthesis of complex oligosachharides. As opposed to the robust permanent protecting groups, the chemoselective protection-deprotection processes on orthogonal protecting groups have facilitated the synthesis of the target molecules with higher effeciency. While the derivatives of benzyl ethers are the most popular orthogonal ether based protecting groups for hydroxyls, the exploration of methyl ethers for similar synthetic application is much limited. We herein report cyanomethyl (CNMe) ether as a readily synthesized orthogonal protecting group for saccharides. The ether moiety was rapidly removed under Na-naphthalenide conditions in good to excellent yields and was found to be compatible with other well-known benzyl/methyl/silyl ether and acetal protecting groups. Additionally, the CNMe group was observed to be tolerant to standard reagents used for the deprotection of ether, ester and acetal protecting groups. The protection and deprotection steps remained unaffected by the position of hydroxyl, the configuration of monosaccharides or the presence of olefins in the skeleton.
Collapse
Affiliation(s)
| | - Rima Thakur
- National Institute of Technology Patna, Ashok Rajpath, Patna 800005, India.
| |
Collapse
|
20
|
Gupta S, Sharma A, Mondal D, Bera S. Advancement of the Cleavage Methods of Carbohydrate-derived Isopropylidene and Cyclohexylidene Ketals. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220426104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Carbohydrates, amino acids, and nucleosides, the fundamental building blocks of complex biomolecules in nature, are essential starting materials for the fabrication of natural and unnatural structural entities, which necessitate the masking and demasking of various functional groups with the utmost chemoselectivity, mildness, and efficiency to avoid unintended bond breaking and formation, as well as associated reactions. Ketals, benzylidene, methoxymethyl, p-methoxybenzyl, silyl ethers, trityl, tert-butyl carbamate, and other functional groups are widely used in modern organic synthesis. In carbohydrate chemistry, the commonly used protecting functionality of isopropylidene and cyclohexylidene ketals necessitates effective methods for selective cleavage. This review summarises different methods for deblocking isopropylidene and cyclohexylidene ketals using inorganic acids, Lewis acid, silica-supported inorganic acids, Amberlite-120 (H+) resin, phosphotungstic acid, Nafion-H, NaBArF4.2H2O, montmorillonite clay, Dowex 50W-X8, camphorsulphonic acid (CSA), ceric ammonium nitrate, molecular iodine, ionic liquids, zeolites and so on.
Collapse
Affiliation(s)
- Shilpi Gupta
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Anjali Sharma
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Dhananjoy Mondal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Smritilekha Bera
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| |
Collapse
|
21
|
Judeh ZMA, Ong LL, Wong K, Devaraj S, Khong Duc T, Parthasarathi P, Santoso M. Orthogonal Approach for the Precise Synthesis of Phenylpropanoid Sucrose Esters. NEW J CHEM 2022. [DOI: 10.1039/d2nj00881e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenylpropanoid sucrose esters (PSEs) are plant-derived metabolites that exist widely in medicinal plants and possess important bioactivities. Their precise synthesis is challenging due to the distinct and diverse substitution patterns...
Collapse
|
22
|
Rahaman Molla M, Thakur R. C2‐(1
N
/2
N
‐Methyl‐tetrazole)methyl Ether (MeTetMe) as a Stereodirecting Group for 1,2‐
trans
‐β‐
O
‐Glycosylation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mosidur Rahaman Molla
- Department of Chemistry National Institute of Technology Patna Ashok Rajpath Patna 800 005 Bihar
| | - Rima Thakur
- Department of Chemistry National Institute of Technology Patna Ashok Rajpath Patna 800 005 Bihar
| |
Collapse
|
23
|
Weldu WD, Wang CC. Selective Acetylation of Non-anomeric Groups of per- O-Trimethylsilylated Sugars. J Org Chem 2021; 86:5336-5344. [PMID: 33634698 DOI: 10.1021/acs.joc.0c02813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective modification of the hydroxyl groups of sugars has been a long-standing challenge due to their proximate relative reactivity. Herein, we report a TMSOTf-catalyzed selective acetylation of the non-anomeric hydroxyl groups of several per-O-TMS-protected sugar substrates while leaving their anomeric group unaffected. In addition to standing versatile by itself, the anomeric O-TMS group left intact can be functionalized to afford key sugar precursors such as imidate donors, which could otherwise be synthesized via a stepwise anomeric deprotection-functionalization procedure.
Collapse
Affiliation(s)
- Welday Desta Weldu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
24
|
Muru K, Gauthier C. Glycosylation and Protecting Group Strategies Towards the Synthesis of Saponins and Bacterial Oligosaccharides: A Personal Account. CHEM REC 2021; 21:2990-3004. [DOI: 10.1002/tcr.202000181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Kevin Muru
- Centre Armand-Frappier Santé Biotechnologie Institut national de la recherche scientifique (INRS) 531, boulevard des Prairies Laval Québec Canada H7V 1B7
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie Institut national de la recherche scientifique (INRS) 531, boulevard des Prairies Laval Québec Canada H7V 1B7
| |
Collapse
|
25
|
Abstract
The importance of post-translational glycosylation in protein structure and function has gained significant clinical relevance recently. The latest developments in glycobiology, glycochemistry, and glycoproteomics have made the field more manageable and relevant to disease progression and immune-response signaling. Here, we summarize the current progress in glycoscience, including the new methodologies that have led to the introduction of programmable and automatic as well as large-scale enzymatic synthesis, and the development of glycan array, glycosylation probes, and inhibitors of carbohydrate-associated enzymes or receptors. These novel methodologies and tools have facilitated our understanding of the significance of glycosylation and development of carbohydrate-derived medicines that bring the field to the next level of scientific and medical significance.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
26
|
Molla MR, Das P, Guleria K, Subramanian R, Kumar A, Thakur R. Cyanomethyl Ether as an Orthogonal Participating Group for Stereoselective Synthesis of 1,2- trans-β- O-Glycosides. J Org Chem 2020; 85:9955-9968. [PMID: 32600042 DOI: 10.1021/acs.joc.0c01249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stereoselective formation of glycosidic linkages has been the prime focus for contemporary carbohydrate chemistry. Herein, we report cyanomethyl (CNMe) ether as an efficient and effective participating orthogonal protecting group for the stereoselective synthesis of 1,2-trans-β-O-glycosides. The participating group facilitated good to high β-selective glycosylation with a broad range of electron-rich and electron-deficient glycosyl acceptors. Detailed experimental and theoretical studies reveal the involvement of CNMe ether in the formation of a six-membered imine-type cyclic intermediate for the observed stereoselectivity. Rapid incorporation and selective removal of the CNMe ether group in the presence of benzyl ether and isopropylidene acetal protection have also been reported here. The nitrile group provided an opportunity for the glycodiversification through further derivatizations.
Collapse
Affiliation(s)
- Mosidur Rahaman Molla
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar 800005, India
| | - Pradip Das
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar 800005, India
| | - Kanika Guleria
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801103, India
| | - Ranga Subramanian
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801103, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801103, India
| | - Rima Thakur
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar 800005, India
| |
Collapse
|
27
|
Geringer SA, Mannino MP, Bandara MD, Demchenko AV. Picoloyl protecting group in synthesis: focus on a highly chemoselective catalytic removal. Org Biomol Chem 2020; 18:4863-4871. [PMID: 32608450 DOI: 10.1039/d0ob00803f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The picoloyl ester (Pico) has proven to be a versatile protecting group in carbohydrate chemistry. It can be used for the purpose of stereocontrolling glycosylations via an H-bond-mediated Aglycone Delivery (HAD) method. It can also be used as a temporary protecting group that can be efficiently introduced and chemoselectively cleaved in the presence of practically all other common protecting groups used in synthesis. Herein, we will describe a new method for rapid, catalytic, and highly chemoselective removal of the picoloyl group using inexpensive copper(ii) or iron(iii) salts.
Collapse
Affiliation(s)
- Scott A Geringer
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, MO 63121, USA.
| | - Michael P Mannino
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, MO 63121, USA.
| | - Mithila D Bandara
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, MO 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, MO 63121, USA.
| |
Collapse
|
28
|
Chen CW, Wang CC, Li XR, Witek H, Mong KKT. Sub-stoichiometric reductive etherification of carbohydrate substrates and one-pot protecting group manipulation. Org Biomol Chem 2020; 18:3135-3141. [PMID: 32255139 DOI: 10.1039/d0ob00252f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, we report a new reductive etherification procedure for protection of carbohydrate substrates and its application for one-pot preparation of glycosyl building blocks. The reported procedure features the use of polymethylhydrosiloxane (PMHS) as a sub-stoichiometric reducing agent, which prevents the transilylation side reaction and improves the efficiency of the reductive etherification method. Application of the PMHS reductive etherification procedure for one-pot protecting group manipulation are described.
Collapse
Affiliation(s)
- Chiao Wen Chen
- Applied Chemistry Department, National Chiao Tung University, 1001, University Road, Hsinchu City, Taiwan.
| | - Ching Chi Wang
- Applied Chemistry Department, National Chiao Tung University, 1001, University Road, Hsinchu City, Taiwan.
| | - Xin Ru Li
- Applied Chemistry Department, National Chiao Tung University, 1001, University Road, Hsinchu City, Taiwan.
| | - Henryk Witek
- Applied Chemistry Department, National Chiao Tung University, 1001, University Road, Hsinchu City, Taiwan.
| | - Kwok-Kong Tony Mong
- Applied Chemistry Department, National Chiao Tung University, 1001, University Road, Hsinchu City, Taiwan.
| |
Collapse
|
29
|
Ghosh B, Kulkarni SS. Advances in Protecting Groups for Oligosaccharide Synthesis. Chem Asian J 2020; 15:450-462. [DOI: 10.1002/asia.201901621] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/27/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Bhaswati Ghosh
- Department of ChemistryIndian Institute of Technology Bombay Mumbai 400076 India
| | - Suvarn S. Kulkarni
- Department of ChemistryIndian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
30
|
Alex C, Visansirikul S, Zhang Y, Yasomanee JP, Codee J, Demchenko AV. Synthesis of 2-azido-2-deoxy- and 2-acetamido-2-deoxy-D-manno derivatives as versatile building blocks. Carbohydr Res 2019; 488:107900. [PMID: 31901454 DOI: 10.1016/j.carres.2019.107900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022]
Abstract
Reported herein is the synthesis of a number of building blocks of 2-amino-2-deoxy-d-mannose from common d-glucose precursors.
Collapse
Affiliation(s)
- Catherine Alex
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Satsawat Visansirikul
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuddhaya Road, Rajathevee, Bangkok, 10400, Thailand
| | - Yongzhen Zhang
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Jagodige P Yasomanee
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA
| | - Jeroen Codee
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, 63121, USA.
| |
Collapse
|
31
|
Yang Y, Lu Z, Xu X. Phenacyl Xanthates: A Photoremovable Protecting Group for Alcohols under Visible Light. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yong‐Qing Yang
- School of PharmacyJiangsu University No. 301 Xuefu Road Zhenjiang, Jiangsu Province 212013 China
| | - Zheng Lu
- School of PharmacyJiangsu University No. 301 Xuefu Road Zhenjiang, Jiangsu Province 212013 China
| | - Ximing Xu
- School of PharmacyJiangsu University No. 301 Xuefu Road Zhenjiang, Jiangsu Province 212013 China
| |
Collapse
|
32
|
Ikeuchi K, Murasawa K, Ohara K, Yamada H. p-Methylbenzyl Group: Oxidative Removal and Orthogonal Alcohol Deprotection. Org Lett 2019; 21:6638-6642. [PMID: 31437002 DOI: 10.1021/acs.orglett.9b02144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We describe the practical removal of p-methylbenzyl (MBn) protections of alcohols by treatment with 2,3-dichloro-5,6-dicyano-p-benzoquinone. When a molecule bears benzyl and MBn groups, the oxidant selectively removes the latter groups. Further, the MBn groups tolerate ceric ammonium nitrate, resulting in chemoselective removal of the p-methoxybenzyl group in the presence of the MBn groups. These orthogonal alcohol deprotections would provide novel synthetic strategies of organic compounds.
Collapse
Affiliation(s)
- Kazutada Ikeuchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kentaro Murasawa
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Kenya Ohara
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Hidetoshi Yamada
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| |
Collapse
|
33
|
Wang T, Demchenko AV. Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies. Org Biomol Chem 2019; 17:4934-4950. [PMID: 31044205 DOI: 10.1039/c9ob00573k] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discussed herein is the synthesis of partially protected carbohydrates by manipulating only one type of a protecting group for a given substrate. The first focus of this review is the uniform protection of an unprotected starting material in a way that only one (or two) hydroxyl group remains unprotected. The second focus involves regioselective partial deprotection of uniformly protected compounds in a way that only one (or two) hydroxyl group becomes liberated.
Collapse
Affiliation(s)
- Tinghua Wang
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St Louis, One University Boulevard, St Louis, Missouri 63121, USA.
| |
Collapse
|
34
|
Gavel M, Courant T, Joosten AYP, Lecourt T. Regio- and Chemoselective Deprotection of Primary Acetates by Zirconium Hydrides. Org Lett 2019; 21:1948-1952. [DOI: 10.1021/acs.orglett.8b03947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marine Gavel
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| | - Thibaut Courant
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| | | | - Thomas Lecourt
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
| |
Collapse
|
35
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
36
|
Lizza JR, Bremerich M, McCabe SR, Wipf P. 2,2,6,6-Tetramethylpiperidin-1-yloxycarbonyl: A Protecting Group for Primary, Secondary, and Heterocyclic Amines. Org Lett 2018; 20:6760-6764. [DOI: 10.1021/acs.orglett.8b02874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Joseph R. Lizza
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | - Stephanie R. McCabe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
37
|
A review of chemical methods for the selective sulfation and desulfation of polysaccharides. Carbohydr Polym 2017; 174:1224-1239. [DOI: 10.1016/j.carbpol.2017.07.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/22/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022]
|
38
|
Traboni S, Bedini E, Iadonisi A. Solvent-Free One-Pot Diversified Protection of Saccharide Polyols Via Regioselective Tritylations. ChemistrySelect 2017. [DOI: 10.1002/slct.201701033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 I-80126 Naples Italy
| | - Emiliano Bedini
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 I-80126 Naples Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences; University of Naples Federico II; Via Cinthia 4 I-80126 Naples Italy
| |
Collapse
|
39
|
Traboni S, Bedini E, Iadonisi A. Orthogonal protection of saccharide polyols through solvent-free one-pot sequences based on regioselective silylations. Beilstein J Org Chem 2016; 12:2748-2756. [PMID: 28144345 PMCID: PMC5238545 DOI: 10.3762/bjoc.12.271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/30/2016] [Indexed: 11/23/2022] Open
Abstract
tert-Butyldimethylsilyl (TBDMS) and tert-butyldiphenylsilyl (TBDPS) are alcohol protecting groups widely employed in organic synthesis in view of their compatibility with a wide range of conditions. Their regioselective installation on polyols generally requires lengthy reactions and the use of high boiling solvents. In the first part of this paper we demonstrate that regioselective silylation of sugar polyols can be conducted in short times with the requisite silyl chloride and a very limited excess of pyridine (2-3 equivalents). Under these conditions, that can be regarded as solvent-free conditions in view of the insolubility of the polyol substrates, the reactions are faster than in most examples reported in the literature, and can even be further accelerated with a catalytic amount of tetrabutylammonium bromide (TBAB). The strategy proved also useful for either the selective TBDMS protection of secondary alcohols or the fast per-O-trimethylsilylation of saccharide polyols. In the second part of the paper the scope of the silylation approach was significantly extended with the development of unprecedented "one-pot" and "solvent-free" sequences allowing the regioselective silylation/alkylation (or the reverse sequence) of saccharide polyols in short times. The developed methodologies represent a very useful and experimentally simple tool for the straightforward access to saccharide building-blocks useful in organic synthesis.
Collapse
Affiliation(s)
- Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| |
Collapse
|