1
|
Ferreira JCC, Gonçalves MST, Preto A, Sousa MJ. Anticancer Activity of Benzo[ a]phenoxazine Compounds Promoting Lysosomal Dysfunction. Cells 2024; 13:1385. [PMID: 39195273 PMCID: PMC11352945 DOI: 10.3390/cells13161385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Specific cancer therapy remains a problem to be solved. Breast and colorectal cancer are among the cancers with the highest prevalence and mortality rates. Although there are some therapeutic options, there are still few effective agents for those cancers, which constitutes a clinical problem that requires further research efforts. Lysosomes play an important role in cancer cells' survival, and targeting lysosomes has gained increased interest. In recent years, our team has been synthetizing and testing novel benzo[a]phenoxazine derivatives, as they have been shown to possess potent pharmacological activities. Here, we investigated the anticancer activity of three of the most potent derivatives from our library, C9, A36, and A42, on colorectal- and breast-cancer-derived cell lines, and compared this with the effect on non-neoplastic cell lines. We observed that the three compounds were selective for the cancer cells, namely the RKO colorectal cancer cell line and the MCF7 breast cancer cell line. In both models, the compounds reduced cell proliferation, cell survival, and cell migration, accumulated on the lysosome, and induced cell death accompanied by lysosomal membrane permeabilization (LMP), increasing the intracellular pH and ROS accumulation. Our results demonstrated that these compounds specifically target lysosomes from cancer cells, making them promising candidates as LMP inducers for cancer therapy.
Collapse
Affiliation(s)
- João Carlos Canossa Ferreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.P.); (M.J.S.)
- IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.P.); (M.J.S.)
- IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.P.); (M.J.S.)
- IBS-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Ferreira JCC, Sousa RPCL, Preto A, Sousa MJ, Gonçalves MST. Novel Benzo[ a]phenoxazinium Chlorides Functionalized with Sulfonamide Groups as NIR Fluorescent Probes for Vacuole, Endoplasmic Reticulum, and Plasma Membrane Staining. Int J Mol Sci 2023; 24:3006. [PMID: 36769330 PMCID: PMC9918004 DOI: 10.3390/ijms24033006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The demand for new fluorophores for different biological target imaging is increasing. Benzo[a]phenoxazine derivatives are fluorochromophores that show promising optical properties for bioimaging, namely fluorescent emission at the NIR of the visible region, where biological samples have minimal fluorescence emission. In this study, six new benzo[a]phenoxazinium chlorides possessing sulfonamide groups at 5-amino-positions were synthesized and their optical and biological properties were tested. Compared with previous probes evaluated using fluorescence microscopy, using different S. cerevisiae strains, these probes, with sulfonamide groups, stained the vacuole membrane and/or the perinuclear membrane of the endoplasmic reticulum with great specificity, with some fluorochromophores capable of even staining the plasma membrane. Thus, the addition of a sulfonamide group to the benzo[a]phenoxazinium core increases their specificity and attributes for the fluorescent labeling of cell applications and fractions, highlighting them as quite valid alternatives to commercially available dyes.
Collapse
Affiliation(s)
- João C. C. Ferreira
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Rui P. C. L. Sousa
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - A. Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IBS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry (CQUM), Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Jenni S, Renault K, Dejouy G, Debieu S, Laly M, Romieu A. In Situ Synthesis of Phenoxazine Dyes in Water: Application for "Turn‐On" Fluorogenic and Chromogenic Detection of Nitric Oxide. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sébastien Jenni
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Kévin Renault
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Garance Dejouy
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Sylvain Debieu
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Myriam Laly
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Anthony Romieu
- University of Burgundy Franche-Comté ICMUB - UMR CNRS 6302 Faculté des Sciences Mirande9, avenue Alain SavaryBP 47870 21078 Dijon FRANCE
| |
Collapse
|
4
|
Zorrilla JG, Rial C, Cabrera D, Molinillo JMG, Varela RM, Macías FA. Pharmacological Activities of Aminophenoxazinones. Molecules 2021; 26:3453. [PMID: 34200139 PMCID: PMC8201375 DOI: 10.3390/molecules26113453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/21/2023] Open
Abstract
Aminophenoxazinones are degradation products resulting from the metabolism of different plant species, which comprise a family of natural products well known for their pharmacological activities. This review provides an overview of the pharmacological properties and applications proved by these compounds and their structural derivatives during 2000-2021. The bibliography was selected according to our purpose from the references obtained in a SciFinder database search for the Phx-3 structure (the base molecule of the aminophenoxazinones). Compounds Phx-1 and Phx-3 are among the most studied, especially as anticancer drugs for the treatment of gastric and colon cancer, glioblastoma and melanoma, among others types of relevant cancers. The main information available in the literature about their mechanisms is also described. Similarly, antibacterial, antifungal, antiviral and antiparasitic activities are presented, including species related directly or indirectly to significant diseases. Therefore, we present diverse compounds based on aminophenoxazinones with high potential as drugs, considering their levels of activity and few adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco A. Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus CEIA3, School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain; (J.G.Z.); (C.R.); (D.C.); (J.M.G.M.); (R.M.V.)
| |
Collapse
|
5
|
Sousa RPCL, Ferreira JCC, Sousa MJ, Gonçalves MST. N-(5-Amino-9 H-benzo[ a]phenoxazin-9-ylidene)propan-1-aminium chlorides as antifungal agents and NIR fluorescent probes. NEW J CHEM 2021. [DOI: 10.1039/d1nj00879j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
New benzo[a]phenoxazinium chlorides (λemi ≤ 683 nm, ΦF ≤ 0.24, at pH = 7.4), best MIC 6.25 μM in Saccharomyces cerevisiae, stain vacuolar/perinuclear membranes of cells.
Collapse
Affiliation(s)
- Rui P. C. L. Sousa
- Centre of Chemistry
- Department of Chemistry
- University of Minho
- 4710-057 Braga
- Portugal
| | - João C. C. Ferreira
- Centre of Chemistry
- Department of Chemistry
- University of Minho
- 4710-057 Braga
- Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology
- Department of Biology
- University of Minho
- 4710-057 Braga
- Portugal
| | | |
Collapse
|
6
|
Leitão MIPS, Rama Raju B, Cerqueira NMFSA, Sousa MJ, Gonçalves MST. Benzo[a]phenoxazinium chlorides: Synthesis, antifungal activity, in silico studies and evaluation as fluorescent probes. Bioorg Chem 2020; 98:103730. [PMID: 32199304 DOI: 10.1016/j.bioorg.2020.103730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Four new benzo[a]phenoxazinium chlorides with combinations of chloride, ethyl ester and methyl as terminals of the amino substituents were synthesized. These compounds were characterized and their optical properties were studied in absolute dry ethanol and water. Their antiproliferative activity was tested against Saccharomyces cerevisiae in a broth microdilution assay, along with an array of 36 other benzo[a]phenoxazinium chlorides. Minimum Inhibitory Concentration (MIC) values between 1.56 and >200 µM were observed. Fluorescence microscopy studies, used to assess the intracellular distribution of the dyes, showed that these benzo[a]phenoxazinium chlorides function as efficient and site specific probes for the detection of the vacuole membrane. The added advantage of some of the compounds, that displayed the lower MIC values, was the simultaneous staining of both the vacuole membrane and the perinuclear membrane of endoplasmic reticulum (ER). Molecular docking studies were performed on the human membrane protein oxidosqualene cyclase (OSC), using the crystal structure available on PDB (code 1W6K). The results showed that these most active compounds accommodated better in the active sites of ER enzyme OSC suggesting this enzyme as a potential target. As a whole, the results demonstrate that the benzo[a]phenoxazinium chlorides are interesting alternatives to the available commercial dyes. Changes in the substituents of these compounds can tailor both their staining specificity and antimicrobial activity.
Collapse
Affiliation(s)
- Maria Inês P S Leitão
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre of Molecular and Environmental Biology/Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - B Rama Raju
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno M F S A Cerqueira
- REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology/Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M Sameiro T Gonçalves
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
7
|
Guney O, Gonçalves MST, Fonseca AM, Soares OSGP, Pereira MFR, Neves IC. Encapsulation and characterisation of cationic benzo[a]phenoxazines in zeolite HY. NEW J CHEM 2019. [DOI: 10.1039/c9nj03756j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Encapsulated benzo[a]phenoxazinium derivatives were synthesized inside of zeolite HY and exhibit excellent fluorescence emission behavior.
Collapse
Affiliation(s)
- Orhan Guney
- Department of Chemistry
- Istanbul Technical University
- Maslak
- Istanbul 34469
- Turkey
| | | | - António M. Fonseca
- Centre of Chemistry
- Chemistry Department
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| | - Olívia S. G. P. Soares
- Laboratory of Catalysis and Materials – Associate Laboratory LSRE/LCM
- Faculty of Engineering
- University of Porto
- 4200-465, Porto
- Portugal
| | - Manuel F. R. Pereira
- Laboratory of Catalysis and Materials – Associate Laboratory LSRE/LCM
- Faculty of Engineering
- University of Porto
- 4200-465, Porto
- Portugal
| | - Isabel C. Neves
- Centre of Chemistry
- Chemistry Department
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| |
Collapse
|
8
|
Carella A, Roviello V, Iannitti R, Palumbo R, La Manna S, Marasco D, Trifuoggi M, Diana R, Roviello GN. Evaluating the biological properties of synthetic 4-nitrophenyl functionalized benzofuran derivatives with telomeric DNA binding and antiproliferative activities. Int J Biol Macromol 2018; 121:77-88. [PMID: 30261256 DOI: 10.1016/j.ijbiomac.2018.09.153] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022]
Abstract
Four 4-nitrophenyl-functionalized benzofuran (BF1, BF2) and benzodifuran (BDF1, BDF2) compounds were synthesized by a convenient route based on the Craven reaction. All the compounds underwent a detailed chemical-physical characterization to evaluate their structural, thermal and optical properties. An investigation on the therapeutic potential of the reported compounds was performed by analyzing their antiproliferative activity on prostatic tumour cells (PC-3). In both classes of compounds, anticancer potential is in direct correlation with the lipophilicity. From our study it emerged that antiproliferative activity was higher for benzofuran derivatives as compared to benzodifuran systems. Moreover, we report a mechanistic study relative to the most promising molecule, i.e. the apolar benzofuran BF1, that relates the antiproliferative properties found in our investigation to its ability to bind telomeric DNA (proven by CD and fluorescence techniques on tel22 G4 DNA), and highlights its unexpected impact on cell cycle progression.
Collapse
Affiliation(s)
- Antonio Carella
- University of Naples Federico II, Department of Chemical Sciences, Via Cintia 21, I-80126 Naples, Italy
| | - Valentina Roviello
- Analytical Chemistry for the Environment and CeSMA (Advanced Metrologic Service Center), University of Naples Federico II, Corso N. Protopisani, 80146 Naples, Italy
| | - Roberta Iannitti
- CNR, Institute of Biostructure and Bioimaging - (Via Mezzocannone Site and Headquarters), 80134 Naples, Italy
| | - Rosanna Palumbo
- CNR, Institute of Biostructure and Bioimaging - (Via Mezzocannone Site and Headquarters), 80134 Naples, Italy
| | - Sara La Manna
- University of Naples Federico II, Department of Pharmacy, Via Mezzocannone 16, 80134 Naples, Italy
| | - Daniela Marasco
- CNR, Institute of Biostructure and Bioimaging - (Via Mezzocannone Site and Headquarters), 80134 Naples, Italy; University of Naples Federico II, Department of Pharmacy, Via Mezzocannone 16, 80134 Naples, Italy
| | - Marco Trifuoggi
- University of Naples Federico II, Department of Chemical Sciences, Via Cintia 21, I-80126 Naples, Italy
| | - Rosita Diana
- University of Naples Federico II, Department of Chemical Sciences, Via Cintia 21, I-80126 Naples, Italy
| | - Giovanni N Roviello
- CNR, Institute of Biostructure and Bioimaging - (Via Mezzocannone Site and Headquarters), 80134 Naples, Italy.
| |
Collapse
|
9
|
Raju BR, Gonçalves MST, Coutinho PJG. Fluorescent probes based on side-chain chlorinated benzo[a]phenoxazinium chlorides: Studies of interaction with DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:1-9. [PMID: 27450866 DOI: 10.1016/j.saa.2016.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/09/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
The interaction of DNA with six water soluble benzo[a]phenoxazinium chlorides mono- or di-substituted with 3-chloropropyl groups at the O and N of 2- and 9-positions, along with methyl, hydroxyl and amine terminal groups at 5-positions, was investigated by photophysical techniques. The results indicated that almost all compounds intercalated in DNA base pairs at phosphate to dye ratio higher than 5. At lower values of this ratio, electrostatic binding mode with DNA was observed. Groove binding was detected mainly for the benzo[a]phenoxazinium dye with NH2·HBr terminal. The set of six benzo[a]phenoxazinium chlorides proved successful to label the migrating DNA in agarose gel electrophoresis assays. These finding proves the ability of these benzo[a]phenoxazinium dyes to strongly interact with DNA.
Collapse
Affiliation(s)
- B Rama Raju
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M Sameiro T Gonçalves
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Paulo J G Coutinho
- Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
10
|
Matsuoka Y, Ohkubo K, Yamasaki T, Yamato M, Ohtabu H, Shirouzu T, Fukuzumi S, Yamada KI. A profluorescent nitroxide probe for ascorbic acid detection and its application to quantitative analysis of diabetic rat plasma. RSC Adv 2016. [DOI: 10.1039/c6ra07693a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
15-((9-(Ethylimino)-10-methyl-9Hbenzo[a]phenoxazin-5-yl)amino)-3,11-dioxa-7-azadispiro[5.1.58.36]hexadecan-7-yloxyl, (Nile-DiPy) has been synthesized and examined as an off–on profluorescent nitroxide probe for measuring ascorbic acid in plasma.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Bio-functional Science
- Faculty of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Kei Ohkubo
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- ALCA and SENTAN
- Japan Science and Technology Agency (JST)
| | - Toshihide Yamasaki
- Department of Bio-functional Science
- Faculty of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Hiroshi Ohtabu
- Department of Bio-functional Science
- Faculty of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Tomonori Shirouzu
- Department of Bio-functional Science
- Faculty of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
- Faculty of Science and Technology
| | - Ken-ichi Yamada
- Department of Bio-functional Science
- Faculty of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| |
Collapse
|
11
|
Application of benzo[a]phenoxazinium chlorides in antimicrobial photodynamic therapy of Candida albicans biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:93-9. [DOI: 10.1016/j.jphotobiol.2014.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 12/24/2022]
|
12
|
Raju BR, Sampaio DMF, Silva MM, Coutinho PJG, Gonçalves MST. Ultrasound promoted synthesis of Nile Blue derivatives. ULTRASONICS SONOCHEMISTRY 2014; 21:360-366. [PMID: 23769749 DOI: 10.1016/j.ultsonch.2013.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/17/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Ultrasound irradiation was used for the first time towards the synthesis of new Nile Blue related benzo[a]phenoxazinium chlorides possessing isopentylamino, (2-cyclohexylethyl)amino and phenethylamino groups at 5-position of the heterocyclic system. The efficacy of sonochemistry was investigated with some of our earlier reported synthesis of benzo[a]phenoxazinium chlorides. This newer protocol proved competent in terms of reaction times and enhanced yields. Photophysical studies carried out in ethanol, water and simulated physiological conditions, revealed that emission maxima occurred in the range 644-656 nm, with high fluorescent quantum yields. Other attractive feature exhibited by these materials includes good thermal stability. These properties might be useful in the development of fluorescent probes for biotechnology.
Collapse
Affiliation(s)
- B Rama Raju
- Centre of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
13
|
Synthesis and photophysical properties of side-chain chlorinated benzo[a]phenoxazinium chlorides. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Firmino ADG, Raju BR, Gonçalves MST. Microwave Synthesis of Water-Soluble 2-, 5- and 9-Substituted Benzo[a]phenoxazinium Chlorides in Comparison with Conventional Heating. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
|
16
|
Naik S, Alves CMA, Coutinho PJG, Gonçalves MST. N-(Di)icosyl-Substituted Benzo[a]phenoxazinium Chlorides: Synthesis and Evaluation as Near-Infrared Membrane Probes. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001579] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|