1
|
Rajendran V, Erulappan J, Thomas KRJ. Strategies for Enabling RGB Emission in Fused Carbazole Derivatives. Chem Asian J 2025:e202500254. [PMID: 40308172 DOI: 10.1002/asia.202500254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
The development of organic light-emitting diodes (OLEDs) has witnessed remarkable progress in material design and device architecture. Recent advancements, particularly in the fourth generation of OLEDs, have introduced groundbreaking innovations such as hyperfluorescence and multiresonance (MR) thermally activated delayed fluorescence (MRTADF) emitters. Carbazole has emerged as a versatile scaffold, playing a pivotal role in conventional fluorescence, TADF, roomtemperature phosphorescence (RTP), and MRTADF systems. In recent years, fused carbazole derivatives have gained significant attention as both emitting and host materials in OLEDs. The fusion of carbazole units enhances molecular rigidity and extends the πconjugation, enabling precise tuning of optoelectronic properties across a wide color gamut, including blue, green, orange, yellow, and red emissions. This review systematically explores the application of various fused carbazole systems such as indolocarbazole, thienocarbazole, furocarbazole, indenocarbazole, triazatruxene, acridinecarbazole, chromenocarbazole, pyrenocarbazole, helicene carbazole, and carbazolefused boron/carbonyl MRTADF emitters in OLEDs. The discussion is organized into three sections based on their application in blue, green, and red OLEDs, providing a comprehensive understanding of structure-property relationships. Additionally, other color-emitting OLEDs are discussed where relevant, offering a holistic perspective on the potential of fused carbazole derivatives in next-generation OLED technologies.
Collapse
Affiliation(s)
- Vignesh Rajendran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Jeyasurya Erulappan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - K R Justin Thomas
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
2
|
Ramón JM, Sánchez JG, Más-Montoya M, Li W, Martínez-Ferrero E, Palomares E, Curiel D. Revealing the Role of Spacer Length and Methoxy Substitution of Dipodal Indolocarbazole-based SAMs on the Performance of Inverted Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500067. [PMID: 40270211 DOI: 10.1002/smll.202500067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/24/2025] [Indexed: 04/25/2025]
Abstract
The application of self-assembled molecules (SAMs) as selective charge transport layers in inverted perovskite solar cells (iPSCs) has attracted significant interest because of their ability to provide high-efficiency and stable devices. In this work, four dipodal SAMs are reported based on π-expanded indolo[2,3-a]carbazole, incorporated as hole-selective contacts in iPSCs. The presence of methoxy substituents and the spacer length in SAMs are modified to assess their influence on the device performance. For that, the ITO/SAM and ITO/SAM/PSCs interfaces are characterized in detail, including theoretical studies and analysis of the complete device performance. These results demonstrate the multifactorial effect that SAMs have on the growth of crystalline perovskite and the charge dynamics in the devices. The resulting iPSCs show power conversion efficiency (PCE) between 19.76% and 22.20% with fill factors exceeding 82% in all cases and good stability under continuous illumination. Notably, SAM combining unsubstituted indolocarbazole and longer pentyl spacer (5CPICZ) shows the highest PCE of 22.20%. In contrast, analogous SAMs with propyl spacers (3CPICZ) achiev a PCE of 22.01%. The experimental results reveal that the improved PCE reached with unsubstituted indolocarbazole SAMs is attributed to reduced charge recombination and longer carrier lifetime owing to effective perovskite surface passivation.
Collapse
Affiliation(s)
- José Manuel Ramón
- Department of Organic Chemistry - Faculty of Chemistry, University of Murcia, Murcia, 30100, Spain
| | - José G Sánchez
- Institute of Chemical Research of Catalonia (ICIQ-iCERCA-BIST), Avda. Països Catalans, 16, Tarragona, E-43007, Spain
| | - Miriam Más-Montoya
- Department of Organic Chemistry - Faculty of Chemistry, University of Murcia, Murcia, 30100, Spain
| | - Wenhui Li
- Institute of Chemical Research of Catalonia (ICIQ-iCERCA-BIST), Avda. Països Catalans, 16, Tarragona, E-43007, Spain
| | - Eugenia Martínez-Ferrero
- Institute of Chemical Research of Catalonia (ICIQ-iCERCA-BIST), Avda. Països Catalans, 16, Tarragona, E-43007, Spain
| | - Emilio Palomares
- Institute of Chemical Research of Catalonia (ICIQ-iCERCA-BIST), Avda. Països Catalans, 16, Tarragona, E-43007, Spain
- ICREA, Passeig Lluis Companys, 23, Barcelona, E-08010, Spain
| | - David Curiel
- Department of Organic Chemistry - Faculty of Chemistry, University of Murcia, Murcia, 30100, Spain
| |
Collapse
|
3
|
Lombana A, Chaunchaiyakul S, Chuzel O, Hagebaum-Reignier D, Parrain JL, Bocquet F, Nony L, Loppacher C, Bondino F, Magnano E, Imada H, Kazuma E, Kim Y, Giovanelli L, Clair S. Competing pathways to aromaticity governed by amine dehydrogenation and metal-organic complexation in on-surface synthesis. Chem Sci 2025; 16:3198-3210. [PMID: 39840291 PMCID: PMC11744327 DOI: 10.1039/d4sc07550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
We investigated the reactivity of a gem-dichlorovinyl-carbazole precursor in the on-surface synthesis approach. Our findings reveal that, on the Au(111) surface, the thermally-induced dehalogenation reaction led to the formation of cumulene dimers. Contrastingly, the more reactive Cu(111) surface promoted the formation of a polyheterocyclic compound exhibiting extended aromaticity. The latter was found to be related to the dehydrogenation of the amine groups, which did not occur on Au(111), thus promoting the different reactivity observed. At higher annealing temperature, selective C-H activation led to the formation of well-defined organometallic chains. In addition, we found that the amine complexation with metal adatom on Cu(111) was an inhibiting factor for the dimerization reaction, a challenge that could be overcome through proper control of the deposition conditions.
Collapse
Affiliation(s)
- Andrés Lombana
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Songpol Chaunchaiyakul
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Olivier Chuzel
- Aix Marseille Univ., CNRS, Centrale Med., ISM2 Marseille France
| | | | | | - Franck Bocquet
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Laurent Nony
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Christian Loppacher
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Federica Bondino
- CNR - Istituto Officina dei Materiali (IOM) AREA Science Park, Basovizza 34149 Trieste Italy
| | - Elena Magnano
- CNR - Istituto Officina dei Materiali (IOM) AREA Science Park, Basovizza 34149 Trieste Italy
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney Camperdown 2006 Australia
| | - Hiroshi Imada
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Emiko Kazuma
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Luca Giovanelli
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Sylvain Clair
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| |
Collapse
|
4
|
Bayda-Smykaj M, Burdzinski G, Koput J, Grzelak M, Hug GL, Marciniak B. Laser Flash Photolysis of Carbazole in Solution: Cation Radical as a Source of Carbazolyl Radical. J Phys Chem B 2025; 129:1614-1625. [PMID: 39813593 DOI: 10.1021/acs.jpcb.4c04401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In the course of 266 nm nanosecond laser flash photolysis of carbazole (CBL) in acetonitrile, we discovered a new transient absorption band centered at 360 nm that has been heretofore unreported despite numerous reports on similar topics. To put some limits on possible transients responsible for this absorption band and thus to solve the mechanism of CBL photolysis, we employed the strategy of selectively blocking the CBL active sites by various modifications in the structure. This strategy was supported by the use of the solvent effect and triplet quenching by molecular oxygen. As a result, the mechanism of carbazole photolysis has been elucidated, part of which was our new discovery that the carbazolyl radical can be formed by the deprotonation of the cation radical. The proposed mechanism has been supported by the reaction with TEMPO, theoretical calculations, and also LC-MS/UV analysis of the stable photoproducts. Given the high impact of CBL-based compounds as one of the key compounds in material science (e.g., OLEDs, TADF, and other light-emitting materials), the understanding of the observed radical-driven processes that occur in the photolysis of carbazole seems to be of great interest.
Collapse
Affiliation(s)
- Malgorzata Bayda-Smykaj
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Gotard Burdzinski
- Faculty of Physics and Astronomy, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - Jacek Koput
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Magdalena Grzelak
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Gordon L Hug
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bronislaw Marciniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
5
|
Singh S, Dadhe RB, Pabbaraja S, Mehta G. Benzannulation of Functionally Enhanced Indole-3-carbaldehydes with Ynones and Alkynoates: A Domino Approach to Bioactive Carbazoles─Synthesis of Clauolenzole A, Calothrixin A & B, Methyl Carbazole-3-carboxylate, and Quinocarbazole. J Org Chem 2025. [PMID: 39907578 DOI: 10.1021/acs.joc.4c03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A flexible, regioselective, benzannulation strategy toward multifunctional carbazoles from 2-(2-oxo-2-arylethyl)indole-3-carbaldehydes, employing either ynones or alkynoates as reaction partners, has been envisaged and implemented. This enabling access to variegated carbazoles in one-flask operation leads to strategic substituent diversification via reaction partner variation. The efficacy and applications of this methodology are demonstrated through 23 examples and concise syntheses of bioactive clauolenzole A, calothrixin A & B, methyl carbazole-3-carboxylate, and pharmacophoric quinocarbazole.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Rahul Balu Dadhe
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
6
|
G S, Devadiga D, B M S, T N A. Synthetic Strategies for 3,6-Substituted Carbazole-based Polymers and Their Opto-Electronic Applications-A Review. J Fluoresc 2025; 35:583-605. [PMID: 38252218 DOI: 10.1007/s10895-023-03535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024]
Abstract
The use of conducting polymers in devices makes them desirable due to their allowance for the fabrication of flexible, lightweight, and potentially inexpensive devices. This review explores the synthetic strategies and characterizations of 3,6-substituted carbazole-based polymers, emphasizing the influence of these modifications on their electronic structure and absorption properties. Polymers containing carbazole substituents are widely studied due to their unique optical and electronic properties, high electron-donating ability, and photoconductivity. The structural adaptability of the carbazole with the 3,6-substitution makes it as an outstanding candidate for their integration into polymers and also possesses improved stability and triplet energy. The role of intramolecular charge transfer (ICT) was highlighted by donor-acceptor architectures with tailoring energy levels to extract their advantageous physicochemical characteristics and optimized performances. Collectively, this comprehensive review delves into the burgeoning field of 3,6-substituted carbazole-based polymers and their crucial role in advancing optoelectronic applications. By amalgamating materials design, synthetic strategies, and application-driven insights, the review serves as a valuable resource for researchers to understand the structure-property relationships and foster innovative solutions for next-generation opto-electronic applications.
Collapse
Affiliation(s)
- Srikanth G
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - Deepak Devadiga
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - Samrudhi B M
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112
| | - Ahipa T N
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India, 562112.
| |
Collapse
|
7
|
Nitisha, Sahu S, Parthasarathy V. Pentagon-embedded N-doped coumarinacenes: tandem synthesis and tunable photophysical attributes for biomolecular probing. Org Biomol Chem 2025; 23:873-883. [PMID: 39633247 DOI: 10.1039/d4ob01048e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We have synthesized a novel series of nitrogen-doped pentagon-embedded coumarinacenes, namely carbazole-coumarins, via a tandem 1,4-elimination Diels-Alder aromatization reaction. These planar, N-substituted carbazole-coumarins exhibit excellent functionalizability, enhanced photostability and solvent polarity-tunable absorption and blue-to-red emission with notably high fluorescence quantum yields, attesting to their remarkable photophysical properties. These attributes highlight the carbazole-coumarins' potential as robust and efficient fluorescent materials for diverse applications in various fields, including as probes for studying biomolecular systems and dynamics.
Collapse
Affiliation(s)
- Nitisha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600 036, Tamil Nadu, India.
| | - Sonali Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600 036, Tamil Nadu, India.
| | | |
Collapse
|
8
|
Ibrayeva A, Abibulla U, Imanbekova Z, Baptayev B, O’Reilly RJ, Balanay MP. Advancements in Carbazole-Based Sensitizers and Hole-Transport Materials for Enhanced Photovoltaic Performance. Molecules 2024; 29:5035. [PMID: 39519676 PMCID: PMC11547213 DOI: 10.3390/molecules29215035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Carbazole-based molecules play a significant role in dye-sensitized solar cells (DSSCs) due to their advantageous properties. Carbazole derivatives are known for their thermal stability, high hole-transport capability, electron-rich (p-type) characteristics, elevated photoconductivity, excellent chemical stability, and commercial availability. This review focuses on DSSCs, including their structures, working principles, device characterization, and the photovoltaic performance of carbazole-based derivatives. Specifically, it covers compounds such as 2,7-carbazole and indolo[3,2-b]carbazole, which are combined with various acceptors like benzothiadiazole, thiazolothiazole, diketopyrrolopyrrole, and quinoxaline, as reported over the past decade. The review will also outline the relationship between molecular structure and power-conversion efficiencies. Its goal is to summarize recent research and advancements in carbazole-based dyes featuring a D-π-A architecture for DSSCs. Additionally, this review addresses the evolution of carbazole-based hole-transport materials (HTMs), which present a promising alternative to the costly spiro-OMeTAD. We explore the development of novel HTMs that leverage the unique properties of carbazole derivatives to enhance charge transport, stability, and overall device performance. By examining recent innovations and emerging trends in carbazole-based HTMs, we provide insights into their potential to reduce costs and improve the efficiency of DSSCs.
Collapse
Affiliation(s)
- Ayagoz Ibrayeva
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan (B.B.)
- Department of Chemistry, L.N. Gumilyov Eurasian National University, 2 Satpayev St., Astana 010008, Kazakhstan
| | - Urker Abibulla
- Chemistry Department, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Zulfiya Imanbekova
- Chemistry Department, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Bakhytzhan Baptayev
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan (B.B.)
| | - Robert J. O’Reilly
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Mannix P. Balanay
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan (B.B.)
- Chemistry Department, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| |
Collapse
|
9
|
Kunz S, Barnå F, Urrutia MP, Ingner FJL, Martínez-Topete A, Orthaber A, Gates PJ, Pilarski LT, Dyrager C. Derivatization of 2,1,3-Benzothiadiazole via Regioselective C-H Functionalization and Aryne Reactivity. J Org Chem 2024; 89:6138-6148. [PMID: 38648018 PMCID: PMC11077497 DOI: 10.1021/acs.joc.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Despite growing interest in 2,1,3-benzothiadiazole (BTD) as an integral component of many functional molecules, methods for the functionalization of its benzenoid ring have remained limited, and many even simply decorated BTDs have required de novo synthesis. We show that regioselective Ir-catalyzed C-H borylation allows access to versatile 5-boryl or 4,6-diboryl BTD building blocks, which undergo functionalization at the C4, C5, C6, and C7 positions. The optimization and regioselectivity of C-H borylation are discussed. A broad reaction scope is presented, encompassing ipso substitution at the C-B bond, the first examples of ortho-directed C-H functionalization of BTD, ring closing reactions to generate fused ring systems, as well as the generation and capture reactions of novel BTD-based heteroarynes. The regioselectivity of the latter is discussed with reference to the Aryne Distortion Model.
Collapse
Affiliation(s)
- Susanna Kunz
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Fredrik Barnå
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | | | | | | | - Andreas Orthaber
- Department
of Chemistry—Ångström, Uppsala University, Box 523, Uppsala 75120, Sweden
| | - Paul J. Gates
- School
of Chemistry, University of Bristol, Cantock’s Close, Clifton, Bristol BS8 1TS, U.K.
| | - Lukasz T. Pilarski
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Christine Dyrager
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| |
Collapse
|
10
|
Puerto Galvis CE, González Ruiz DA, Martínez-Ferrero E, Palomares E. Challenges in the design and synthesis of self-assembling molecules as selective contacts in perovskite solar cells. Chem Sci 2024; 15:1534-1556. [PMID: 38303950 PMCID: PMC10829004 DOI: 10.1039/d3sc04668k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 02/03/2024] Open
Abstract
Self-assembling molecules (SAMs), as selective contacts, play an important role in perovskite solar cells (PSCs), determining the performance and stability of these photovoltaic devices. These materials offer many advantages over other traditional materials used as hole-selective contacts, as they can be easily deposited on a large area of metal oxides, can modify the work function of these substrates, and reduce optical and electric losses with low material consumption. However, the most interesting thing about SAMs is that by modifying the chemical structure of the small molecules used, the energy levels, molecular dipoles, and surface properties of this assembled monolayer can be modulated to fine-tune the desired interactions between the substrate and the active layer. Due to the important role of organic chemistry in the field of photovoltaics, in this review, we will cover the current challenges for the design and synthesis of SAMs PSCs. Discussing, the structural features that define a SAM, (ii) disclosing how commercial molecules inspired the synthesis of new SAMs; and (iii) detailing the pros- and cons- of the reported synthetic protocols that have been employed for the synthesis of molecules for SAMs, helping synthetic chemists to develop novel structures and promoting the fast industrialization of PSCs.
Collapse
Affiliation(s)
- Carlos E Puerto Galvis
- Institute of Chemical Research of Catalonia (ICIQ) Avda. Països Catalans, 16 Tarragona Spain
| | - Dora A González Ruiz
- Institute of Chemical Research of Catalonia (ICIQ) Avda. Països Catalans, 16 Tarragona Spain
- Departament d'Enginyeria Electrònica, Elèctrica i Automàtica., Universitat Rovira i Virgili Avda. Països Catalans, 26 Tarragona Spain
| | | | - Emilio Palomares
- Institute of Chemical Research of Catalonia (ICIQ) Avda. Països Catalans, 16 Tarragona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys, 23 Barcelona Spain
| |
Collapse
|
11
|
Aztatzi-Mendoza MA, Porras-Núñez EL, Rivas-Galindo VM, Carranza-Rosales P, Carranza-Torres IE, García-Vielma C, Hernández Ahuactzi IF, López-Cortina S, López I, Hernández-Fernández E. Green synthesis of ethyl cinnamates under microwave irradiation: photophysical properties, cytotoxicity, and cell bioimaging. RSC Adv 2024; 14:2391-2401. [PMID: 38213976 PMCID: PMC10783162 DOI: 10.1039/d3ra06443c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
A simple and green method for the synthesis of six ethyl cinnamates was performed via Horner-Wadsworth-Emmons reaction under microwave irradiation. The photoluminescent properties of all compounds in ethyl acetate solutions were evaluated demonstrating that all compounds exhibit fluorescence. Five compounds exhibited blue emissions in the 369-442 nm range, and another compound exhibited blue-green emission at 504 nm. This last compound showed the largest Stokes shift (134 nm), and the highest quantum yield (17.8%). Two compounds showed extinction coefficient values (ε) higher than 30 000 M-1 cm-1, which are appropriate for cell bioimaging applications. In this sense, cytotoxicity assays were performed using Vero cells at different concentrations; the results showed that these compounds were not cytotoxic at the highest concentration tested (20 μg mL-1). Finally, the analysis by fluorescence microscopy for localization and cellular staining using Vero cells demonstrated that the compounds stained the cytoplasm and the nuclei in a selective way.
Collapse
Affiliation(s)
- Miguel Angel Aztatzi-Mendoza
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas Pedro de Alba s/n, Ciudad Universitaria 66450 San Nicolás de los Garza Nuevo León Mexico +52-81-83294000 +52-81-83294000 ext. 6293
| | - Edgar Leonel Porras-Núñez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas Pedro de Alba s/n, Ciudad Universitaria 66450 San Nicolás de los Garza Nuevo León Mexico +52-81-83294000 +52-81-83294000 ext. 6293
| | - Verónica M Rivas-Galindo
- Universidad Autónoma de Nuevo León, UANL, Facultad de Medicina Fco. I. Madero s/n, Mitras Centro 64460 Monterrey Nuevo León Mexico
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social Monterrey 64720 Nuevo León Mexico
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social Monterrey 64720 Nuevo León Mexico
| | - Catalina García-Vielma
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social Monterrey 64720 Nuevo León Mexico
| | - Iran F Hernández Ahuactzi
- Centro Universitario de Tonalá, Universidad de Guadalajara Av. Nuevo Periférico 555, Ejido San José Tatepozco Tonalá 45425 Jalisco Mexico
| | - Susana López-Cortina
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas Pedro de Alba s/n, Ciudad Universitaria 66450 San Nicolás de los Garza Nuevo León Mexico +52-81-83294000 +52-81-83294000 ext. 6293
| | - Israel López
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Centro de Investigación en Biotecnología y Nanotecnología, Laboratorio de Nanociencias y Nanotecnología Autopista al Aeropuerto Internacional Mariano Escobedo Km. 10, Parque de Investigación e Innovación Tecnológica 66629 Apodaca Nuevo León Mexico +52-81-83294000 +52-81-83294000 ext. 4202
| | - Eugenio Hernández-Fernández
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas Pedro de Alba s/n, Ciudad Universitaria 66450 San Nicolás de los Garza Nuevo León Mexico +52-81-83294000 +52-81-83294000 ext. 6293
| |
Collapse
|
12
|
Abstract
The interest of scientists in the carbazole core has risen steadily over the last 30 years, particularly over the last decade given its presence in several active pharmaceutical ingredients, functional materials and a wide range of biologically active natural products. The continuous development of more efficient, more (regio-)selective and "greener" methodologies to access the carbazole core is thus imperative. This review compares and evaluates synthetic strategies towards the carbazole core that have been reported since 2013, with a focus on their applicability towards the total synthesis of carbazole-containing natural products.
Collapse
Affiliation(s)
- Lewis A T Allen
- CheMastery, Paper Yard, 11a Quebec Way, London, SE16 7LG, UK
| | - Philipp Natho
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
13
|
Lin L, Chiu WH, Cao ML, Lee KM, Yu WL, Liu CY. New Molecular Design, Step-Saving Synthesis, and Applications of Indolocarbazole Core-Based Oligo(hetero)arenes. Chem Asian J 2023; 18:e202300681. [PMID: 37694942 DOI: 10.1002/asia.202300681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
In this work, we have successfully synthesized 15 new examples (LLA01-06; LinLi01-10) of small-molecule hole-transporting materials (HTM) using the less explored indolocarbazole (ICbz) as core moiety. Different from previously reported ICbz HTMs, LinLi01-10 exhibit new molecular designs in which 3,4-ethylenedioxythiophene (EDOT) units are inserted as crucial π-spacers and fluorine atoms are introdcued into end-group molecules. These substantially improve the materials solubility and device power conversion efficiencies (PCEs) while fabricated in perovskite solar cells (PSC). More importantly, LinLi01-10 are generated by a sustainable synthetic approach involving the use of straightforward C-H/C-Br couplings as key transformations, thus avoiding additional synthetic transformations including halogenation and borylation reactions called substrate prefunctionalizations usually required in Suzuki reactions. Most HTM molecules can be purified simply by reprecipitations instead of conducting column chromatography. In contrast to LLA01-06 without additional EDOT moieties, PSC devices using LinLi01-10 as hole-transport layers display promising PCEs of up to 17.5 %. Interestingly, PSC devices employing seven of the LinLi01-10 as hole-transport molecules, respectively, are all able to show an immediate >10 % PCE (t=0) without any device oxidation/aging process that is necessary for the commercial spiro-OMeTAD based PSCs.
Collapse
Affiliation(s)
- Li Lin
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Wei-Hao Chiu
- Department of Chemical and Materials Engineering & Center for Green Technology & Division of Neonatology, Department of Pediatrics, Chang Gung University & Chang Gung Memorial Hospital, Guishan District and Linkou, Taoyuan City, 333, Taiwan
| | - Ming-Ling Cao
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Kun-Mu Lee
- Department of Chemical and Materials Engineering & Center for Green Technology & Division of Neonatology, Department of Pediatrics, Chang Gung University & Chang Gung Memorial Hospital, Guishan District and Linkou, Taoyuan City, 333, Taiwan
- College of Environment and Resources, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| | - Wei-Lun Yu
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| | - Ching-Yuan Liu
- Department of Chemical and Materials Engineering, National Central University, Jhongli District, Taoyuan City, 320, Taiwan
| |
Collapse
|
14
|
Zhang YR, Yuan DF, Qian CH, Zhu GZ, Wang LS. Role of Polarization Interactions in the Formation of Dipole-Bound States. J Am Chem Soc 2023. [PMID: 37368495 DOI: 10.1021/jacs.3c04740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Even though there is a critical dipole moment required to support a dipole-bound state (DBS), how molecular polarizability may influence the formation of DBSs is not well understood. Pyrrolide, indolide, and carbazolide provide an ideal set of anions to systematically examine the role of polarization interactions in the formation of DBSs. Here, we report an investigation of carbazolide using cryogenic photodetachment spectroscopy and high-resolution photoelectron spectroscopy (PES). A polarization-assisted DBS is observed at 20 cm-1 below the detachment threshold for carbazolide, even though the carbazolyl neutral core has a dipole moment (2.2 D) smaller than the empirical critical value (2.5 D) to support a dipole-bound state. Photodetachment spectroscopy reveals nine vibrational Feshbach resonances of the DBS, as well as three intense and broad shape resonances. The electron affinity of carbazolyl is measured accurately to be 2.5653 ± 0.0004 eV (20,691 ± 3 cm-1). The combination of photodetachment spectroscopy and resonant PES allows fundamental frequencies for 14 vibrational modes of carbazolyl to be measured. The three shape resonances are due to above-threshold excitation to the three low-lying electronic states (S1-S3) of carbazolide. Resonant PES of the shape resonances is dominated by autodetachment processes. Ultrafast relaxation from the S2 and S3 states to S1 is observed, resulting in constant kinetic energy features in the resonant PES. The current study provides decisive information about the role that polarization plays in the formation of DBSs, as well as rich spectroscopic information about the carbazolide anion and the carbazolyl radical.
Collapse
Affiliation(s)
- Yue-Rou Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chen-Hui Qian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Guo-Zhu Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
15
|
Matsubara R, Kuang H, Yabuta T, Xie W, Hayashi M, Sakuda E. Photophysical and electrochemical properties of 9-naphthyl-3,6-diaminocarbazole derivatives and their application as photosensitizers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
16
|
Lee S, Lee Y, Lee K, Lee S, Wang KK, Han WS. Effect of bulkiness on the triplet state of carbazole-benzophenone-based dyad systems. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Paukov M, Kramberger C, Begichev I, Kharlamova M, Burdanova M. Functionalized Fullerenes and Their Applications in Electrochemistry, Solar Cells, and Nanoelectronics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1276. [PMID: 36770286 PMCID: PMC9919315 DOI: 10.3390/ma16031276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Carbon-based nanomaterials have rapidly advanced over the last few decades. Fullerenes, carbon nanotubes, graphene and its derivatives, graphene oxide, nanodiamonds, and carbon-based quantum dots have been developed and intensively studied. Among them, fullerenes have attracted increasing research attention due to their unique chemical and physical properties, which have great potential in a wide range of applications. In this article, we offer a comprehensive review of recent progress in the synthesis and the chemical and physical properties of fullerenes and related composites. The review begins with the introduction of various methods for the synthesis of functionalized fullerenes. A discussion then follows on their chemical and physical properties. Thereafter, various intriguing applications, such as using carbon nanotubes as nanoreactors for fullerene chemical reactions, are highlighted. Finally, this review concludes with a summary of future research, major challenges to be met, and possible solutions.
Collapse
Affiliation(s)
- Maksim Paukov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| | - Ilia Begichev
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Marianna Kharlamova
- Centre for Advanced Material Application (CEMEA), Slovak Academy of Sciences, Dúbravská cesta 5807/9, 854 11 Bratislava, Slovakia
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9-BC-2, 1060 Vienna, Austria
- Laboratory of Nanobiotechnologies, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia
| | - Maria Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700 Dolgoprudny, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| |
Collapse
|
18
|
Dobrikov GM, Nikolova Y, Slavchev I, Dangalov M, Deneva V, Antonov L, Vassilev NG. Structure and Conformational Mobility of OLED-Relevant 1,3,5-Triazine Derivatives. Molecules 2023; 28:molecules28031248. [PMID: 36770913 PMCID: PMC9921695 DOI: 10.3390/molecules28031248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
A series of OLED-relevant compounds, consisting of 1,3,5-triazine core linked to various aromatic arms by amino group, has been synthesized and characterized. The studied compounds exist in solution as a mixture of two conformers, a symmetric propeller and asymmetric conformer, in which one of the aromatic arms is rotated around the C-N bond. At temperatures below -40 °C, the VT NMR spectra in DMF-d7 are in a slow exchange regime, and the signals of two conformers can be elucidated. At temperatures above 100 °C, the VT NMR spectra in DMSO-d6 are in a fast exchange regime, and the averaged spectra can be measured. The ratio of symmetric and asymmetric conformers in DMF-d7 varies from 14:86 to 50:50 depending on the substituents. The rotational barriers of symmetric and asymmetric conformers in DMF-d7 were measured for all compounds and are in the interval from 11.7 to 14.7 kcal/mol. The ground-state energy landscapes of the studied compounds, obtained by DFT calculations, show good agreement with the experimental rotational barriers. The DFT calculations reveal that the observed chemical exchange occurs by the rotation around the C(1,3,5-triazine)-N bond. Although some of the compounds are potentially tautomeric, the measured absorption and emission spectra do not indicate proton transfer neither in the ground nor in the excited state.
Collapse
Affiliation(s)
- Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Yana Nikolova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Vera Deneva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Nikolay G. Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
19
|
Sathiyan G, Dasi G, Ramasamy SK, Kar P, Sathishkumar P, Thangaraju K, Sakthivel P. Stilbene-containing carbazole-based fullerene derivatives as alternative electron acceptor for efficient organic solar cells. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Al-Marhabi AR, El-Shishtawy RM, Bouzzine SM, Hamidi M, Al-Ghamdi HA, Al-Footy KO. D-D-π-A-π-A-based quinoxaline dyes incorporating phenothiazine, phenoxazine and carbazole as electron donors: Synthesis, photophysical, electrochemical, and computational investigation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Britel O, Fitri A, Touimi Benjelloun A, Slimi A, Benzakour M, Mcharfi M. Theoretical design of new carbazole based organic dyes for DSSCs applications. A DFT/TD-DFT insight. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Correa RS, Santos BPS, Ribeiro AC, da Silva LAF, Péan EV, Davies ML, Marques MDFV, Rocco MLM. Spectroscopic study of D 1-A-D 2-A terpolymer films for optoelectronic applications. Phys Chem Chem Phys 2022; 24:17852-17861. [PMID: 35851795 DOI: 10.1039/d2cp01474b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several strategies have been considered in search of more efficient organic materials for charge transfer in photovoltaic devices. Among them, the integration of donor-acceptor (D-A) functional units on a conjugated copolymer has been widely applied. In this framework, we evaluated four terpolymers made up of donor moieties derived from 9,9-dioctylfluorene and 9-(heptadecan-9-yl)-9H-carbazole combined with 2,1,3-benzothiadiazole, the acceptor moiety, in different monomer ratios and polymerization routes (block and random microstructures). The preferred molecular orientation and charge transfer dynamics of the polymeric films were assessed by near edge X-ray absorption fine structure spectroscopy (NEXAFS) and resonant Auger electron spectroscopy (RAES) around the sulfur K-edge. Charge transfer times (τCT) were estimated by the Core-Hole Clock (CHC) method. Films with a high degree of organization were identified for the block terpolymer and random terpolymers with uneven amounts of donor units, showing a preferred orientation of the benzothiadiazole (BT) molecular plane parallel to the substrate surface. The values of τCT measured for all terpolymers were higher than those for typical polymers used in photovoltaic devices, which is not desirable for this type of optoelectronic application, but this may be correlated to the strong acceptor character of BT, the unit probed. To investigate the effect of film formation on the excited state behavior, steady-state and time-resolved photoluminescence measurements were also conducted. X-ray photoelectron spectroscopy (XPS) was employed to characterize the surface chemical composition of the terpolymer films. Based on the spectroscopic data the block copolymer appears to be the most suitable for the desired application.
Collapse
Affiliation(s)
- Roger S Correa
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-909, Rio de Janeiro, Brazil.
| | - Bianca P S Santos
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-598, Rio de Janeiro, Brazil
| | - Arthur C Ribeiro
- Centro de Pesquisas de Energia Elétrica (Cepel), Cidade Universitária, 21941-911, Rio de Janeiro, Brazil
| | - Luiz Alberto F da Silva
- Centro de Pesquisas de Energia Elétrica (Cepel), Cidade Universitária, 21941-911, Rio de Janeiro, Brazil
| | - Emmanuel V Péan
- SPECIFIC IKC, Materials Research Centre, College of Engineering, Swansea University, UK
| | - Matthew L Davies
- SPECIFIC IKC, Materials Research Centre, College of Engineering, Swansea University, UK.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Maria de Fátima V Marques
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-598, Rio de Janeiro, Brazil
| | - Maria Luiza M Rocco
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-909, Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Kaur R, Banga S, Babu SA. Construction of carbazole-based unnatural amino acid scaffolds via Pd(II)-catalyzed C(sp 3)-H functionalization. Org Biomol Chem 2022; 20:4391-4414. [PMID: 35583129 DOI: 10.1039/d2ob00658h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of carbazole-based unnatural α-amino acid and non-α-amino acid derivatives via a Pd(II)-catalyzed bidentate directing group 8-aminoquinoline-aided β-C(sp3)-H activation/functionalization method. Various N-phthaloyl, DL-, L- and D-carboxamides derived from their corresponding α-amino acids, non-α-amino acids and aliphatic carboxamides were subjected to the β-C(sp3)-H functionalization with 3-iodocarbazoles in the presence of a Pd(II) catalyst to afford the corresponding carbazole moiety installed unnatural amino acid derivatives and aliphatic carboxamides. Carbazole motif-containing racemic (DL) and enantiopure (L and D) amino acid derivatives including phenylalanine, norvaline, leucine, norleucine and 2-aminooctanoic acid with anti-stereochemistry and various non-α-amino acid derivatives including GABA have been synthesized. Removal of the 8-aminoquinoline directing group, deprotection of the phthalimide moiety and the preparation of carbazole amino acid derivatives containing free amino- and carboxylate groups are shown. The carbazole motif is prevalent in alkaloids and biologically active molecules and functional materials. Thus, this work on the synthesis of carbazole-based unnatural amino acid derivatives would enrich the libraries of unnatural amino acid derivatives and carbazoles.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Shefali Banga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
24
|
Konidena RK, Justin Thomas KR, Park JW. Recent Advances in the Design of Multi‐Substituted Carbazoles for Optoelectronics: Synthesis and Structure‐Property Outlook. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - K R Justin Thomas
- Indian Institute of Technology Roorkee Department of Chemistry Haridwar Road 247667 Roorkee INDIA
| | - Jong Wook Park
- Kyunghee University College of Engineering Chemical Engineering INDIA
| |
Collapse
|
25
|
Gnida P, Amin MF, Pająk AK, Jarząbek B. Polymers in High-Efficiency Solar Cells: The Latest Reports. Polymers (Basel) 2022; 14:1946. [PMID: 35631829 PMCID: PMC9143377 DOI: 10.3390/polym14101946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Third-generation solar cells, including dye-sensitized solar cells, bulk-heterojunction solar cells, and perovskite solar cells, are being intensively researched to obtain high efficiencies in converting solar energy into electricity. However, it is also important to note their stability over time and the devices' thermal or operating temperature range. Today's widely used polymeric materials are also used at various stages of the preparation of the complete device-it is worth mentioning that in dye-sensitized solar cells, suitable polymers can be used as flexible substrates counter-electrodes, gel electrolytes, and even dyes. In the case of bulk-heterojunction solar cells, they are used primarily as donor materials; however, there are reports in the literature of their use as acceptors. In perovskite devices, they are used as additives to improve the morphology of the perovskite, mainly as hole transport materials and also as additives to electron transport layers. Polymers, thanks to their numerous advantages, such as the possibility of practically any modification of their chemical structure and thus their physical and chemical properties, are increasingly used in devices that convert solar radiation into electrical energy, which is presented in this paper.
Collapse
Affiliation(s)
- Paweł Gnida
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
| | - Muhammad Faisal Amin
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
| | | | - Bożena Jarząbek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
| |
Collapse
|
26
|
Effect of Thiophene Insertion on X-Shaped Anthracene-Based Hole-Transporting Materials in Perovskite Solar Cells. Polymers (Basel) 2022; 14:polym14081580. [PMID: 35458333 PMCID: PMC9024987 DOI: 10.3390/polym14081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this work, two novel tetra-substituted X-shaped molecules X1 and X2 that were constructed with anthracene as the central core and arylamine as the donor groups have been synthesized. The HTMs X1 and X2 were synthesized in two steps from industrially accessible and moderately reasonable beginning reagents. These new HTMs are described in terms of utilization of light absorption, energy level, thermal properties, hole mobility (µh), and film-forming property. The photovoltaic performances of these HTMs were effectively assessed in perovskite solar cells (PSCs). The devices based on these HTMs accomplished an overall efficiency of 16.10% for X1 and 10.25% for X2 under standard conditions (AM 1.5 G and 100 mW cm−2). This precise investigation provides another perspective on the use of HTMs in PSCs with various device configurations.
Collapse
|
27
|
Effect of random copolymerization on the optical properties of selenophene and thieno[3,4-c]pyrrole-4,6-dione conjugated polymers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Ramadan DR, Ferretti F, Ragaini F. Catalytic Reductive Cyclization of 2-Nitrobiphenyls Using Phenyl formate as CO Surrogate: a Robust Synthesis of 9H-Carbazoles. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Madrid-Úsuga D, Ortiz A, Reina JH. Photophysical Properties of BODIPY Derivatives for the Implementation of Organic Solar Cells: A Computational Approach. ACS OMEGA 2022; 7:3963-3977. [PMID: 35155892 PMCID: PMC8829925 DOI: 10.1021/acsomega.1c04598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Solar cells based on organic compounds are a proven emergent alternative to conventional electrical energy generation. Here, we provide a computational study of power conversion efficiency optimization of boron dipyrromethene (BODIPY) derivatives by means of their associated open-circuit voltage, short-circuit density, and fill factor. In doing so, we compute for the derivatives' geometrical structures, energy levels of frontier molecular orbitals, absorption spectra, light collection efficiencies, and exciton binding energies via density functional theory (DFT) and time-dependent (TD)-DFT calculations. We fully characterize four D-π-A (BODIPY) molecular systems of high efficiency and improved J sc that are well suited for integration into bulk heterojunction (BHJ) organic solar cells as electron-donor materials in the active layer. Our results are twofold: we found that molecular complexes with a structural isoxazoline ring exhibit a higher power conversion efficiency (PCE), a useful result for improving the BHJ current, and, on the other hand, by considering the molecular systems as electron-acceptor materials, with P3HT as the electron donor in the active layer, we found a high PCE compound favorability with a pyrrolidine ring in its structure, in contrast to the molecular systems built with an isoxazoline ring. The theoretical characterization of the electronic properties of the BODIPY derivatives provided here, computed with a combination of ab initio methods and quantum models, can be readily applied to other sets of molecular complexes to hierarchize optimal power conversion efficiency.
Collapse
Affiliation(s)
- Duvalier Madrid-Úsuga
- Centre
for Bioinformatics and Photonics—CIBioFi, Universidad del Valle, Calle 13 No. 100-00, Edificio E20 No. 1069, 760032 Cali, Colombia
- Quantum
Technologies, Information and Complexity Group—QuanTIC, Departamento
de Física, Universidad del Valle, 760032 Cali, Colombia
| | - Alejandro Ortiz
- Centre
for Bioinformatics and Photonics—CIBioFi, Universidad del Valle, Calle 13 No. 100-00, Edificio E20 No. 1069, 760032 Cali, Colombia
- Heterocyclic
Compounds Research Group—GICH, Departamento de Química, Universidad del Valle, 760032 Cali, Colombia
| | - John H. Reina
- Centre
for Bioinformatics and Photonics—CIBioFi, Universidad del Valle, Calle 13 No. 100-00, Edificio E20 No. 1069, 760032 Cali, Colombia
- Quantum
Technologies, Information and Complexity Group—QuanTIC, Departamento
de Física, Universidad del Valle, 760032 Cali, Colombia
| |
Collapse
|
30
|
Hammoud F, Hijazi A, Duval S, Lalevée J, Dumur F. 5,12-Dihydroindolo[3,2-a]carbazole: A promising scaffold for the design of visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110880] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Shaya J, Correia G, Heinrich B, Ribierre JC, Polychronopoulou K, Mager L, Méry S. Functionalization of Biphenylcarbazole (CBP) with Siloxane-Hybrid Chains for Solvent-Free Liquid Materials. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010089. [PMID: 35011322 PMCID: PMC8746609 DOI: 10.3390/molecules27010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
We report herein the synthesis of siloxane-functionalized CBP molecules (4,4′-bis(carbazole)-1,1′-biphenyl) for liquid optoelectronic applications. The room-temperature liquid state is obtained through a convenient functionalization of the molecules with heptamethyltrisiloxane chains via hydrosilylation of alkenyl spacers. The synthesis comprises screening of metal-catalyzed methodologies to introduce alkenyl linkers into carbazoles (Stille and Suzuki Miyaura cross-couplings), incorporate the alkenylcarbazoles to dihalobiphenyls (Ullmann coupling), and finally introduce the siloxane chains. The used conditions allowed the synthesis of the target compounds, despite the high reactivity of the alkenyl moieties bound to π-conjugated systems toward undesired side reactions such as polymerization, isomerization, and hydrogenation. The features of these solvent-free liquid CBP derivatives make them potentially interesting for fluidic optoelectronic applications.
Collapse
Affiliation(s)
- Janah Shaya
- IPCMS, CNRS-Strasbourg University, UMR7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; (G.C.); (B.H.); (L.M.)
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: (J.S.); (S.M.)
| | - Gabriel Correia
- IPCMS, CNRS-Strasbourg University, UMR7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; (G.C.); (B.H.); (L.M.)
| | - Benoît Heinrich
- IPCMS, CNRS-Strasbourg University, UMR7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; (G.C.); (B.H.); (L.M.)
| | - Jean-Charles Ribierre
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan;
| | - Kyriaki Polychronopoulou
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Center for Catalysis and Separation, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Loïc Mager
- IPCMS, CNRS-Strasbourg University, UMR7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; (G.C.); (B.H.); (L.M.)
| | - Stéphane Méry
- IPCMS, CNRS-Strasbourg University, UMR7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; (G.C.); (B.H.); (L.M.)
- Correspondence: (J.S.); (S.M.)
| |
Collapse
|
32
|
Mkoma SL, Msambwa Y, Jacob FR, Kiruri LW, Kinunda GA, Mlowe S, Deogratias G. Optical and electronic properties of para-functionalized triphenylamine-based dyes: a theoretical study. Struct Chem 2021. [DOI: 10.1007/s11224-021-01837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Chen J, Zhao X, Tang X, Ning Y, Wu F, Chen X, Zhu H, Xiong Z. An unprecedented spike of the electroluminescence turn-on transience from guest-doped OLEDs with strong electron-donating abilities of host carbazole groups. MATERIALS HORIZONS 2021; 8:2785-2796. [PMID: 34605830 DOI: 10.1039/d1mh00941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An unreported unprecedented spike of ∼μs line-width, followed by an overshoot, was discovered at the rising edge of transient electroluminescence (TEL) from guest-doped organic light-emitting diodes with strong electron-donating abilities from the host carbazole groups. By changing the device structures and TEL measurement parameters, a series of experimental results demonstrate that this TEL spike is not related to exciton interactions such as singlet-triplet and triplet-triplet annihilations but originated from the radiative recombination of pre-stored electrons with injected holes. Surprisingly, these pre-stored guest electrons do not come from the energy-level traps in the host-guest systems; instead, the guest molecules receive the electrons transferred from the host carbazole groups due to their strong electron-donating abilities. Moreover, the observed spikes show rich and extraordinary temperature dependences. Based on the detailed understanding of the spike formation mechanism, we have proposed the requirements for the occurrence of spike and realized the artificial adjustments of the spike intensity. For instance, the instantaneous luminescent intensity of this spike can reach over 80 times the magnitude of the TEL plateau. Accordingly, this work deepens the physical understanding of this novel spike in TEL and paves the way for fabricating an electro-optic sensor to detect instantaneous weak current signals.
Collapse
Affiliation(s)
- Jing Chen
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China.
| | - Xi Zhao
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China.
| | - Xiantong Tang
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China.
| | - Yaru Ning
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China.
| | - Fengjiao Wu
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China.
| | - Xiaoli Chen
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China.
| | - Hongqiang Zhu
- Chongqing Key Laboratory of Photo-Electric Functional Materials, Chongqing Normal University, Chongqing 401331, People's Republic of China
| | - Zuhong Xiong
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, China.
| |
Collapse
|
34
|
A computational approach on engineering short spacer for carbazole-based dyes for dye-sensitized solar cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Biesen L, May L, Nirmalananthan‐Budau N, Hoffmann K, Resch‐Genger U, Müller TJJ. Communication of Bichromophore Emission upon Aggregation - Aroyl-S,N-ketene Acetals as Multifunctional Sensor Merocyanines. Chemistry 2021; 27:13426-13434. [PMID: 34170045 PMCID: PMC8518837 DOI: 10.1002/chem.202102052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/13/2022]
Abstract
Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution pattern-tunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Lars May
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Nithiya Nirmalananthan‐Budau
- Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM), Department 1Richard-Willstätter-Straße 1112489BerlinGermany
| | - Katrin Hoffmann
- Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM), Department 1Richard-Willstätter-Straße 1112489BerlinGermany
| | - Ute Resch‐Genger
- Division BiophotonicsBundesanstalt für Materialforschung und -prüfung (BAM), Department 1Richard-Willstätter-Straße 1112489BerlinGermany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
36
|
Zimmermann Crocomo P, Kaihara T, Kawaguchi. S, Stachelek P, Minakata S, de Silva P, Data P, Takeda Y. The Impact of C 2 Insertion into a Carbazole Donor on the Physicochemical Properties of Dibenzo[a,j]phenazine-Cored Donor-Acceptor-Donor Triads. Chemistry 2021; 27:13390-13398. [PMID: 34314537 PMCID: PMC8519004 DOI: 10.1002/chem.202101654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/10/2022]
Abstract
Novel electron donor-acceptor-donor (D-A-D) compounds comprising dibenzo[a,j]phenazine as the central acceptor core and two 7-membered diarylamines (iminodibenzyl and iminostilbene) as the donors have been designed and synthesized. Investigation of their physicochemical properties revealed the impact of C2 insertion into well-known carbazole electron donors on the properties of previously reported twisted dibenzo[a,j]phenazine-core D-A-D triads. Slight structural modification caused a drastic change in conformational preference, allowing unique photophysical behavior of dual emission derived from room-temperature phosphorescence and triplet-triplet annihilation. Furthermore, electrochemical analysis suggested sigma-dimer formation and electrochemical polymerization on the electrode. Quantum chemical calculations also rationalized the experimental results.
Collapse
Affiliation(s)
| | - Takahito Kaihara
- Department of Applied ChemistryGraduate School of EngineeringOsaka UniversityYamadaoka 2–1SuitaOsaka565-0871Japan
| | - Soki Kawaguchi.
- Nada Junior and Senior High SchoolUozakikitamachi 8–5-1KobeHigashinada-ku, Hyogo658-0082Japan
- Current contact address: Department of ChemistryFaculty of ScienceHokkaido UniversitySapporoHokkaido060-0810Japan
| | | | - Satoshi Minakata
- Department of Applied ChemistryGraduate School of EngineeringOsaka UniversityYamadaoka 2–1SuitaOsaka565-0871Japan
| | - Piotr de Silva
- Department of Energy Conversion and StorageTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Przemyslaw Data
- Faculty of ChemistrySilesian University of TechnologyM. Strzody 944-100GliwicePoland
| | - Youhei Takeda
- Department of Applied ChemistryGraduate School of EngineeringOsaka UniversityYamadaoka 2–1SuitaOsaka565-0871Japan
| |
Collapse
|
37
|
Karmakar HS, Kumar C, Kumar NR, Das S, Agrawal AR, Ghosh NG, Zade SS. Polycyclic Arene-Fused Selenophenes via Site Selective Selenocyclization of Arylethynyl Substituted Polycyclic Arenes. J Org Chem 2021; 86:12494-12506. [PMID: 34464128 DOI: 10.1021/acs.joc.1c00689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arene-fused selenophenes were synthesized by a redox neutral process from arylethynyl substituted polycyclic arenes using selenium powder in refluxing N-methyl-2-pyrrolidone (NMP) with the assistance of the residual water in NMP as a catalytic proton source. The site-selective nature of this selenocyclization produces trans-alkenes as a competitive product, which is dependent on the π-electron donation ability of polycyclic arenes and the kind of arylethynyl group attached to it. DFT calculations were performed to understand the site selectivity in the selenophene formation reaction. The HOMO coefficient on the carbon adjacent to carbon having arylalkyne substituent of the polycyclic arene correlates with the selenocyclization tendency of the substrate. The wavelength of absorption and emission and quantum yield of emission increase with increasing the number of fused benzene rings in the polycyclic unit (from naphthalene to pyrene).
Collapse
Affiliation(s)
- Himadri S Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Chandan Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Neha Rani Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sarasija Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Abhijeet R Agrawal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Nani Gopal Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sanjio S Zade
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
38
|
Feofanov M, Akhmetov V, Takayama R, Amsharov K. Transition-metal free synthesis of N-aryl carbazoles and their extended analogs. Org Biomol Chem 2021; 19:7172-7175. [PMID: 34369949 DOI: 10.1039/d1ob00940k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herein, we describe a facile synthesis of N-arylated carbazoles via ladderization of fluorinated oligophenylenes. The reaction consists of two subsequent nucleophilic substitutions triggered by an electronic transfer from dimsyl anions. The reaction allows the effective one-pot formation of at least six C-N bonds with pronounced selectivity to the C-F bond placement.
Collapse
Affiliation(s)
- Mikhail Feofanov
- Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany.
| | | | | | | |
Collapse
|
39
|
Keremane KS, Adhikari AV. Simple carbazole derivatives with mono/dimethoxyphenylacrylonitrile substituents as hole‐transporting materials: Performance studies in hybrid perovskite solar cells. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202000036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Kavya S. Keremane
- Organic Materials Laboratory Department of Chemistry National Institute of Technology Karnataka Mangalore India
| | - Airody Vasudeva Adhikari
- Organic Materials Laboratory Department of Chemistry National Institute of Technology Karnataka Mangalore India
- Yenepoya Research Centre Yenepoya deemed to be University Mangalore India
| |
Collapse
|
40
|
Lewinska G, Sanetra J, Marszalek KW. Application of quinoline derivatives in third-generation photovoltaics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2021; 32:18451-18465. [PMID: 38624760 PMCID: PMC8267773 DOI: 10.1007/s10854-021-06225-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 05/22/2023]
Abstract
Among many chemical compounds synthesized for third-generation photovoltaic applications, quinoline derivatives have recently gained popularity. This work reviews the latest developments in the quinoline derivatives (metal complexes) for applications in the photovoltaic cells. Their properties for photovoltaic applications are detailed: absorption spectra, energy levels, and other achievements presented by the authors. We have also outlined various methods for testing the compounds for application. Finally, we present the implementation of quinoline derivatives in photovoltaic cells. Their architecture and design are described, and also, the performance for polymer solar cells and dye-synthesized solar cells was highlighted. We have described their performance and characteristics. We have also pointed out other, non-photovoltaic applications for quinoline derivatives. It has been demonstrated and described that quinoline derivatives are good materials for the emission layer of organic light-emitting diodes (OLEDs) and are also used in transistors. The compounds are also being considered as materials for biomedical applications.
Collapse
Affiliation(s)
- Gabriela Lewinska
- Institute of Electronics, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, 30-059, Kraków, Poland
| | - Jerzy Sanetra
- The author Jerzy Sanetra is retired from Institute of Physics, Faculty of Materials Science and Physics, Cracow University of Technology, 30-035, Kraków, Poland
| | - Konstanty W. Marszalek
- Institute of Electronics, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, 30-059, Kraków, Poland
| |
Collapse
|
41
|
Triphenylamine dyes bearing 4-phenyl-2-(thiophen-2-yl)thiazole bridge for dye sensitized solar cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Ye CP, Qiao YF, Wang RN, Li WY. Purification of carbazole by solvent crystallization under two forced cooling modes. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Mane JY, Michaelian KH, Stoyanov SR, Billinghurst BE, Zhao J. Computational and infrared spectroscopic investigations of N-substituted carbazoles. Phys Chem Chem Phys 2021; 23:8426-8438. [PMID: 33876006 DOI: 10.1039/d0cp03879b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carbazole moiety is a commonly identified structural motif in the high-molecular-weight components of petroleum, known as asphaltenes. Detailed characterization of carbazoles is important for understanding the structure of asphaltenes and addressing challenges in the areas of heavy oil recovery, transportation, upgrading, and oil spills, arising from asphaltene properties and composition. In this work we study carbazole and the four N-substituted carbazoles 9-methylcarbazole, 9-ethylcarbazole, 9-vinylcarbazole and 9-phenylcarbazole. Experimental far- and mid-infrared spectra of these five carbazoles are measured using transmission and photoacoustic techniques. The molecular structures of the monomers and the respective dimers, optimized at the ωB97X-D/6-311++G(d,p) level of the density functional theory (DFT), are subjected to harmonic vibrational frequency calculations. The effect of changing substituents on the N-H bond, π-π stacking distances, and angles between monomers within the dimers, in addition to intermolecular interactions, is investigated. Noncovalent interaction analysis is employed to highlight the areas of attractive and repulsive interactions in the dimers. Thermochemistry calculations show that the formation of dimers of all carbazoles is spontaneous at 298 K. Comparison of the calculated vibrational spectra of these compounds with experimental spectra indicates that the existence of both monomers and dimers must be invoked to account for the observed bands in the infrared spectra. Excellent correlations between the experimentally-determined and calculated harmonic vibrational energies are obtained, with an experimental-to-calculated scaling factor of 0.95-0.96. These findings highlight the coupled computational-experimental approach for the interpretation of vibrational spectra and are essential for improving the spectroscopic characterization of N-substituted carbazoles.
Collapse
Affiliation(s)
- Jonathan Y Mane
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada.
| | | | | | | | | |
Collapse
|
44
|
DFT and TDDFT Studies of Non-Fullerene Organometallic Based Acceptors for Organic Photovoltaics. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01833-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Bühlmeyer A, Ehni P, Ullmann D, Frey W, Baro A, Laschat S. Synthesis and Liquid Crystalline Self‐Assembly of Concave Diindoles with a Hydropentalene Core. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrea Bühlmeyer
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Philipp Ehni
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Dustin Ullmann
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Frey
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Angelika Baro
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Sabine Laschat
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
46
|
Wang T, Hao X, Han L, Li Y, Ye Q, Cui Y. D-A-π-A Carbazole Dyes Bearing Fluorenone Acceptor for Dye Sensitized Solar Cells. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Tent JA, Ammenhäuser R, Braun M, Scherf U. Electrooxidative generation of polymer films from rigid tricarbazole monomers. RSC Adv 2021; 11:4654-4659. [PMID: 35424403 PMCID: PMC8694549 DOI: 10.1039/d0ra09988k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/17/2021] [Indexed: 11/21/2022] Open
Abstract
Electrooxidative generation of microporous thin films. Triphenylene- and triptycene-cored tricarbazoles have been electropolymerized into thin films. For the aTC-based film intrinsic microporosity is observed.
Collapse
Affiliation(s)
- Jannis Aron Tent
- Bergische Universität Wuppertal
- Macromolecular Chemistry Group
- Wuppertal Center for Smart Materials and Systems CM@S
- D-42119 Wuppertal
- Germany
| | - Robin Ammenhäuser
- Bergische Universität Wuppertal
- Macromolecular Chemistry Group
- Wuppertal Center for Smart Materials and Systems CM@S
- D-42119 Wuppertal
- Germany
| | - Marco Braun
- Bergische Universität Wuppertal
- Macromolecular Chemistry Group
- Wuppertal Center for Smart Materials and Systems CM@S
- D-42119 Wuppertal
- Germany
| | - Ullrich Scherf
- Bergische Universität Wuppertal
- Macromolecular Chemistry Group
- Wuppertal Center for Smart Materials and Systems CM@S
- D-42119 Wuppertal
- Germany
| |
Collapse
|
48
|
Sarıoğulları H, Sengul IF, Gürek AG. Lu( iii) bis-phthalocyanines containing carbazole moieties: synthesis, characterization, electrochemical properties and sensor applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj04052a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, the synthesis and characterization of sandwich type Lu(iii) bis-phthalocyanines bearing electropolymerizable carbazole groups were evaluated and their electrochemical sensing properties studied towards DA, UA and AA.
Collapse
Affiliation(s)
- Hidayet Sarıoğulları
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Ibrahim F. Sengul
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| | - Ayşe Gül Gürek
- Gebze Technical University, Department of Chemistry, 41400 Gebze, Kocaeli, Turkey
| |
Collapse
|
49
|
Anito DA, Wang TX, Liang HP, Ding X, Han BH. Bis(terpyridine) Ru( iii) complex functionalized porous polycarbazole for visible-light driven chemical reactions. Polym Chem 2021. [DOI: 10.1039/d1py00527h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis(terpyridine)Ru(iii) complex functionalized porous polycarbazole for photocatalytic amine coupling, aerobic hydroxylation of arylboronic acids, and selective oxidation of sulfides.
Collapse
Affiliation(s)
- Dejene Assefa Anito
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Tian-Xiong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Hai-Peng Liang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|
50
|
Albano G, Aronica LA, Minotto A, Cacialli F, Di Bari L. Chiral Oligothiophenes with Remarkable Circularly Polarized Luminescence and Electroluminescence in Thin Films. Chemistry 2020; 26:16622-16627. [PMID: 32965707 DOI: 10.1002/chem.202003547] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Indexed: 11/05/2022]
Abstract
This work reports the first observation of circularly polarized electroluminescence (CPEL) in thin films of self-organized oligothiophenes. Four new 1,4-phenylene and 9H-carbazole-based oligothiophenes were ad hoc designed to ensure efficient spontaneous formation of chiral supramolecular order. They were easily synthesized and their chiroptical properties in thin films were measured. Circularly polarized luminescence (CPL) spectra revealed glum in the order of 10-2 on a wide wavelengths range, originating from their self-organized chiral supramolecular organization. These molecules have reasonable properties as organic semiconductors and for this reason they can constitute the active layer of circularly-polarized organic light-emitting diodes (CP-OLEDs). Thus, we could investigate directly their electroluminescence (EL) and CPEL, without resorting to blends, but rather in a simple multilayer device with basic architecture. This is the first example of a CP-OLED with active layer made only of a small organic compound.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy.,Present address: Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70126, Bari, Italy
| | - Laura Antonella Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Alessandro Minotto
- Department of Physics and Astronomy and London Centre, for Nanotechnology, University College London, London, WC1E 6BT, UK
| | - Franco Cacialli
- Department of Physics and Astronomy and London Centre, for Nanotechnology, University College London, London, WC1E 6BT, UK
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|