1
|
Efficient Asymmetric Synthesis of (S)-N-Boc-3-Hydroxypiperidine by Coexpressing Ketoreductase and Glucose Dehydrogenase. Catalysts 2022. [DOI: 10.3390/catal12030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
(S)-N-Boc-3-hydroxypiperidine is an important intermediate of the anticancer drug ibrutinib and is mainly synthesized by the asymmetric reduction catalyzed by ketoreductase coupled with glucose dehydrogenase at present. In this study, the coexpression recombinant strains E. coli/pET28-K-rbs-G with single promoter and E. coli/pETDuet-K-G with double promoters were first constructed for the coexpression of ketoreductase and glucose dehydrogenase in the same cell. Then, the catalytic efficiency of E. coli/pET28-K-rbs-G for synthesizing (S)-N-Boc-3-hydroxypiperidine was found to be higher than that of E. coli/pETDuet-K-G due to the more balanced activity ratio and higher catalytic activity. On this basis, the catalytic conditions of E. coli/pET28-K-rbs-G were further optimized, and finally both the conversion of the reaction and the optical purity of the product were higher than 99%. In the end, the cell-free extract was proved to be a better catalyst than the whole cell with the improved catalytic efficiency of different recombinant strains. This study developed a better coexpression strategy for ketoreductase and glucose dehydrogenase by investigating the effect of activity ratios and forms of the biocatalysts on the catalytic efficiency deeply, which provided a research basis for the efficient synthesis of chiral compounds.
Collapse
|
2
|
Highly efficient synthesis of pharmaceutically relevant chiral 3-N-substituted-azacyclic alcohols using two enantiocomplementary short chain dehydrogenases. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
5
|
Wu Y, Zhou J, Ni J, Zhu C, Sun Z, Xu G, Ni Y. Engineering an Alcohol Dehydrogenase from
Kluyveromyces polyspora
for Efficient Synthesis of Ibrutinib Intermediate. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanfei Wu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Jieyu Zhou
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Jie Ni
- Warshel Institute for Computational Biology, School of Life and Health Science Chinese University of Hong Kong Shenzhen), Shenzhen 518172 People's Republic of China
| | - Cheng Zhu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Zewen Sun
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Guochao Xu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Ye Ni
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| |
Collapse
|
6
|
Voss M, Küng R, Hayashi T, Jonczyk M, Niklaus M, Iding H, Wetzl D, Buller R. Multi‐faceted Set‐up of a Diverse Ketoreductase Library Enables the Synthesis of Pharmaceutically‐relevant Secondary Alcohols. ChemCatChem 2021. [DOI: 10.1002/cctc.202001871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Moritz Voss
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Robin Küng
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
- Present address: Fisher Clinical Services Thermo Fisher Scientific Steinbühlweg 69 4123 Allschwil Switzerland
| | - Takahiro Hayashi
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
- Present address: Science & Innovation Center Mitsubishi Chemical Corporation 1000 Kamoshidacho Aoba ward, Yokohama Kanagawa 227-8502 Japan
| | - Magdalena Jonczyk
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Michael Niklaus
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Hans Iding
- Process Chemistry & Catalysis F. Hoffmann-La Roche Ltd. CH-4070 Basel Switzerland
| | - Dennis Wetzl
- Process Chemistry & Catalysis F. Hoffmann-La Roche Ltd. CH-4070 Basel Switzerland
| | - Rebecca Buller
- Competence Center for Biocatalysis Institute for Chemistry and Biotechnology Zurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
7
|
Qin L, Wu L, Nie Y, Xu Y. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00113b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers the recent progress in various biological approaches applied to the synthesis of enantiomerically pure cyclic and heterocyclic alcohols through CO/C–H/C–O asymmetric reactions.
Collapse
Affiliation(s)
- Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| |
Collapse
|
8
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
9
|
Wu K, Zheng K, Xiong L, Yang Z, Jiang Z, Meng X, Shao L. Efficient synthesis of an antiviral drug intermediate using an enhanced short-chain dehydrogenase in an aqueous-organic solvent system. Appl Microbiol Biotechnol 2019; 103:4417-4427. [DOI: 10.1007/s00253-019-09781-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
10
|
Recent preparative applications of redox enzymes. Curr Opin Chem Biol 2019; 49:105-112. [DOI: 10.1016/j.cbpa.2018.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/02/2023]
|
11
|
Ying X, Zhang J, Wang C, Huang M, Ji Y, Cheng F, Yu M, Wang Z, Ying M. Characterization of a Carbonyl Reductase from Rhodococcus erythropolis WZ010 and Its Variant Y54F for Asymmetric Synthesis of ( S)- N-Boc-3-Hydroxypiperidine. Molecules 2018; 23:molecules23123117. [PMID: 30487432 PMCID: PMC6321125 DOI: 10.3390/molecules23123117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022] Open
Abstract
The recombinant carbonyl reductase from Rhodococcus erythropolis WZ010 (ReCR) demonstrated strict (S)-stereoselectivity and catalyzed the irreversible reduction of N-Boc-3-piperidone (NBPO) to (S)-N-Boc-3-hydroxypiperidine [(S)-NBHP], a key chiral intermediate in the synthesis of ibrutinib. The NAD(H)-specific enzyme was active within broad ranges of pH and temperature and had remarkable activity in the presence of higher concentration of organic solvents. The amino acid residue at position 54 was critical for the activity and the substitution of Tyr54 to Phe significantly enhanced the catalytic efficiency of ReCR. The kcat/Km values of ReCR Y54F for NBPO, (R/S)-2-octanol, and 2-propanol were 49.17 s−1 mM−1, 56.56 s−1 mM−1, and 20.69 s−1 mM−1, respectively. In addition, the (S)-NBHP yield was as high as 95.92% when whole cells of E. coli overexpressing ReCR variant Y54F catalyzed the asymmetric reduction of 1.5 M NBPO for 12 h in the aqueous/(R/S)-2-octanol biphasic system, demonstrating the great potential of ReCR variant Y54F for practical applications.
Collapse
Affiliation(s)
- Xiangxian Ying
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jie Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Can Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meijuan Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuting Ji
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meilan Yu
- College of Life Sciences, Zhejiang Sci-Tech Univeristy, Hangzhou 310018, China.
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meirong Ying
- Grain and Oil Products Quality Inspection Center of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
12
|
Zheng GW, Liu YY, Chen Q, Huang L, Yu HL, Lou WY, Li CX, Bai YP, Li AT, Xu JH. Preparation of Structurally Diverse Chiral Alcohols by Engineering Ketoreductase CgKR1. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01933] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gao-Wei Zheng
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuan-Yang Liu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Chen
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Huang
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui-Lei Yu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wen-Yong Lou
- Lab
of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun-Xiu Li
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun-Peng Bai
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ai-Tao Li
- Department
of Biocatalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Jian-He Xu
- State
Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation
Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|