1
|
Ye JH, Zhang Y, Zhu Q, Chang Z, He W. A Hemicyanine-Based Highly Sensitive and Selective Near-Infrared Fluorescent Probe for Fe 3+ in Aqueous Media. LUMINESCENCE 2024; 39:e70024. [PMID: 39511927 DOI: 10.1002/bio.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Ferric ion is widely distributed in human cells and an important component of hemoglobin, which can promote the transportation of blood in the human body. Its ability to bind with oxygen is essential for participating in oxidation reactions and enzymatic reactions. Deficiency of iron (III) and excessive accumulation of iron in the blood can cause many health problems in the body, such as anemia, loss of appetite, fibrosis, reduced work routines, and decreased immunity. As a fluorescent dye, cyanine has the advantages of high fluorescence quantum yield, good optical and chemical stability, excitation and emission wavelengths in the near-infrared region, high molar extinction coefficient, and small influence on pH variation. It is a fluorescent dye that modern scholars choose more. A new near-IR hemicyanine derivative bearing 1,3-dithiane moiety was developed as an efficient fluorescence probe 1 for the detection of Fe3+ in aqueous medium (THF/H2O, 1:1, v:v). This near-IR fluorescence probe 1 exhibits high sensitivity and selectivity toward Fe3+ sensing with detection limit of 0.5 μM under lager scope of pH value (pH = 2-12).
Collapse
Affiliation(s)
- Jia-Hai Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yingming Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qiang Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Zhijian Chang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Aribuga H, Ertugral U, Alcay Y, Yavuz O, Yildirim MS, Ozdemir E, Kaya K, Sert ABO, Kok FN, Tuzun NŞ, Yilmaz I. A new Fe 3+-selective, sensitive, and dual-channel turn-on probe based on rhodamine carrying thiophenecarboxaldehyde: Smartphone application and imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122060. [PMID: 36395583 DOI: 10.1016/j.saa.2022.122060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
A new dual-channel probe based on rhodamine B derivative (MSB) was successfully designed, synthesized, characterized by Nuclear Magnetic Resonance (NMR) Spectroscopy, Fourier Transform Infrared Spectrophotometer (FTIR), Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS), X-ray Photoelectron Spectroscopy (XPS), and Single Crystal X-rayDiffraction, and the sensing abilities toward Fe3+ cation have been demonstrated and the probe was successfully utilized for fluorescence imaging of Fe3+ in living cells. The probe demonstrated quite fast, sensitive, and selective response to Fe3+ by causing an extreme enhancement in UV-vis and fluorescence spectroscopy techniques in the buffered aqueous media which makes MSB a dual-channel probe. While the color of MSB solution was initially light yellow, it turned pink in the presence of Fe3+, which provided highly selective naked-eye determination among several ions as alkaline, alkaline-earth, and transition metal ions. After that, the probe was easily applied to paper strips and real samples such as drinking waters and supplementary iron tablets for sensing Fe3+ in an aqueous solution. The detection limit (LOD) and the response time of the probe were determined as 4.85x10-9 M and 4 min, respectively, which are quite lower compared with other rhodamine based Fe3+ sensors in the literature. According to Job's plot, 1H NMR titration, MALDI-TOF MS, XPS, and DFT study techniques, the complexation ratio between MSB and Fe3+ was found as 1:1. Moreover, the spectral response was reversible with alternately addition of Fe3+ or Na2EDTA to the MSB solution. In addition, fluorescence imaging in NIH/3T3 mouse fibroblast cells and studies in real samples with a quite high recovery rate exhibited that the probe is qualified for detection of Fe3+ ion with multiple practical usages.
Collapse
Affiliation(s)
- Hulya Aribuga
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Utku Ertugral
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Yusuf Alcay
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ozgur Yavuz
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | | | - Emre Ozdemir
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Kerem Kaya
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ayse Buse Ozdabak Sert
- Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, MOBGAM, 34469 Maslak, Istanbul, Turkey; Istanbul Technical University, Molecular Biology and Genetics Department, 34469 Maslak, Istanbul, Turkey
| | - Fatma Nese Kok
- Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, MOBGAM, 34469 Maslak, Istanbul, Turkey; Istanbul Technical University, Molecular Biology and Genetics Department, 34469 Maslak, Istanbul, Turkey
| | - Nurcan Şenyurt Tuzun
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ismail Yilmaz
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
4
|
Man LL, Dou L, Li WD, La YT, Dong WK. A dual-signal half-salamo-based sensing platform for simultaneous colorimetric and fluoremetric detection of Fe3+ and reversible recognition of OH− ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Yang J, Guo R, Yang H, Wu L. Synthesis, determination, and bio-application in cellular and biomass-bamboo imaging of natural cinnamaldehyde derivatives. Front Bioeng Biotechnol 2022; 10:963128. [PMID: 36032717 PMCID: PMC9402932 DOI: 10.3389/fbioe.2022.963128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Cinnamon essential oil (CEO) is the main ingredient in the renewable biomass of cinnamon, which contains natural cinnamaldehyde. To valorize the value of cinnamaldehyde, two simple and useful compounds (1 and 2) from CEO were synthesized using a Schiff-base reaction and characterized by infrared spectra (IR), nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). Compound 1 was used to confirm the presence of Fe3+ and ClO− in solution, as well as compound 2. Using fluorescence enhancement phenomena, it offered practicable linear relationship of 1’s fluorescence intensity and Fe3+ concentrations: (0–8.0 × 10−5 mol/L), y = 36.232x + 45.054, R2 = 0.9947, with a limit of detection (LOD) of 0.323 μM, as well as compound 2. With increasing fluorescence, F404/F426 of 1 and the ClO− concentration (0–1.0 × 10−4 mol/L) also had a linear relationship: y = 0.0392x + 0.5545, R2 = 0.9931, LOD = 0.165 μM. However, the fluorescence intensity of 2 (596 nm) was quenched by a reduced concentration of ClO−, resulting in a linear. In addition, compounds 1 and 2 were used to image human astrocytoma MG (U-251), brain neuroblastoma (LN-229) cells, and bamboo tissue by adding Fe3+ or ClO−, with clear intracellular fluorescence. Thus, the two compounds based on CEO could be used to dye cells and bamboo tissues by fluorescence technology.
Collapse
Affiliation(s)
- Jinlai Yang
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
- Bamboo Industry (Jian'ou) Branch, Fujian Provincial Collaborative Innovation Institute, Jian'ou, China
| | - Rencong Guo
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
| | - Huimin Yang
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
| | - Liangru Wu
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
- Bamboo Industry (Jian'ou) Branch, Fujian Provincial Collaborative Innovation Institute, Jian'ou, China
- *Correspondence: Liangru Wu,
| |
Collapse
|
6
|
Du J, Kan W, Zhao B, Yin H, Qi X, Ding L, Wang L, Song B, Yin G. An aggregate characteristic of relay fluorescence probe for Cu2+/HPO42− with improved low detection limit based on aggregation-switching mechanism. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Lu P, Zhang X, Ren T, Yuan L. Molecular engineering of ultra-sensitive fluorescent probe with large Stokes shift for imaging of basal HOCl in tumor cells and tissues. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Zhu Z, Ding H, Wang Y, Fan C, Tu Y, Liu G, Pu S. A ratiometric and colorimetric fluorescent probe for the detection of mercury ion based on rhodamine and quinoline–benzothiazole conjugated dyad. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
A novel “OFF–ON–OFF” fluorescence chemosensor for hypersensitive detection and bioimaging of Al(Ⅲ) in living organisms and natural water environment. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Mishra SK, Dehuri S, Bag B. Effect of n-alkyl substitution on Cu(ii)-selective chemosensing of rhodamine B derivatives. Org Biomol Chem 2020; 18:316-332. [PMID: 31845711 DOI: 10.1039/c9ob02439e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodamine B hydrazide-based molecular probes (1-10) were synthesized by derivatization with n-alkyl chains of different lengths at the hydrazide amino end. These probes exhibited selective absorption (A∼557) and fluorescence (I∼580) 'off-on' signal transduction along with a colourless → magenta colour transition in the presence of Cu(ii) ions among all the competitive metal ions investigated. The effective coordination of these probes to Cu(ii) ions under the investigated environment forming [Cu·L]2+ (L = 1-5) and [Cu·L2]2+ (L = 6-10) complexes led to their spiro-ring opening, which in turn was expressed through signatory spectral peaks of ring-opened rhodamine. All these probes exhibited Cu(ii) selectivity in signalling despite structural modifications to the core receptor unit through variation of the nature of the alkyl substituents. However, the sensitivity of the signalling and kinetics of the spiro-ring opening varied and could be correlated with the number of carbon atoms present in the n-alkyl substituents. Structural elucidation with X-ray diffraction and X-ray photoemission spectroscopic analyses provided further insight into the structure-function correlation in their Cu(ii) complexes. These probes with Cu(ii) coordination showed selectivity in signalling, high complexation affinity (log Ka = 4.8-8.8), high sensitivity (LOD = 4.1-80 nM), fast response time (rate = 0.0017-0.0159 s-1) and reversibility with counter anions, which ascertained their potential utility as chemosensors for Cu(ii) ion detection.
Collapse
Affiliation(s)
- Santosh Kumar Mishra
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India.
| | | | | |
Collapse
|